Properties

Label 3840.2.f.i.769.8
Level $3840$
Weight $2$
Character 3840.769
Analytic conductor $30.663$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3840,2,Mod(769,3840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3840.769"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,-8,0,0,0,0,0,0,0,-32,0,0,0,0,0,0,0,0,0, 0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 960)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.8
Root \(-0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 3840.769
Dual form 3840.2.f.i.769.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(2.18890 + 0.456850i) q^{5} +4.37780i q^{7} -1.00000 q^{9} -5.58258 q^{11} -4.37780i q^{13} +(-0.456850 + 2.18890i) q^{15} -5.58258i q^{17} -4.00000 q^{19} -4.37780 q^{21} +(4.58258 + 2.00000i) q^{25} -1.00000i q^{27} +2.55040 q^{29} -5.29150 q^{31} -5.58258i q^{33} +(-2.00000 + 9.58258i) q^{35} +2.55040i q^{37} +4.37780 q^{39} -6.00000 q^{41} -11.1652i q^{43} +(-2.18890 - 0.456850i) q^{45} -6.92820i q^{47} -12.1652 q^{49} +5.58258 q^{51} -7.84190i q^{53} +(-12.2197 - 2.55040i) q^{55} -4.00000i q^{57} -1.58258 q^{59} -10.5830 q^{61} -4.37780i q^{63} +(2.00000 - 9.58258i) q^{65} +3.16515i q^{67} -6.92820 q^{71} +12.0000i q^{73} +(-2.00000 + 4.58258i) q^{75} -24.4394i q^{77} +5.29150 q^{79} +1.00000 q^{81} -7.16515i q^{83} +(2.55040 - 12.2197i) q^{85} +2.55040i q^{87} +2.00000 q^{89} +19.1652 q^{91} -5.29150i q^{93} +(-8.75560 - 1.82740i) q^{95} +11.1652i q^{97} +5.58258 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{11} - 32 q^{19} - 16 q^{35} - 48 q^{41} - 24 q^{49} + 8 q^{51} + 24 q^{59} + 16 q^{65} - 16 q^{75} + 8 q^{81} + 16 q^{89} + 80 q^{91} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.18890 + 0.456850i 0.978906 + 0.204310i
\(6\) 0 0
\(7\) 4.37780i 1.65465i 0.561721 + 0.827327i \(0.310140\pi\)
−0.561721 + 0.827327i \(0.689860\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −5.58258 −1.68321 −0.841605 0.540094i \(-0.818389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 0 0
\(13\) 4.37780i 1.21418i −0.794632 0.607092i \(-0.792336\pi\)
0.794632 0.607092i \(-0.207664\pi\)
\(14\) 0 0
\(15\) −0.456850 + 2.18890i −0.117958 + 0.565172i
\(16\) 0 0
\(17\) 5.58258i 1.35397i −0.735995 0.676987i \(-0.763285\pi\)
0.735995 0.676987i \(-0.236715\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −4.37780 −0.955315
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 4.58258 + 2.00000i 0.916515 + 0.400000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.55040 0.473598 0.236799 0.971559i \(-0.423902\pi\)
0.236799 + 0.971559i \(0.423902\pi\)
\(30\) 0 0
\(31\) −5.29150 −0.950382 −0.475191 0.879883i \(-0.657621\pi\)
−0.475191 + 0.879883i \(0.657621\pi\)
\(32\) 0 0
\(33\) 5.58258i 0.971802i
\(34\) 0 0
\(35\) −2.00000 + 9.58258i −0.338062 + 1.61975i
\(36\) 0 0
\(37\) 2.55040i 0.419283i 0.977778 + 0.209642i \(0.0672297\pi\)
−0.977778 + 0.209642i \(0.932770\pi\)
\(38\) 0 0
\(39\) 4.37780 0.701009
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 11.1652i 1.70267i −0.524623 0.851335i \(-0.675794\pi\)
0.524623 0.851335i \(-0.324206\pi\)
\(44\) 0 0
\(45\) −2.18890 0.456850i −0.326302 0.0681032i
\(46\) 0 0
\(47\) 6.92820i 1.01058i −0.862949 0.505291i \(-0.831385\pi\)
0.862949 0.505291i \(-0.168615\pi\)
\(48\) 0 0
\(49\) −12.1652 −1.73788
\(50\) 0 0
\(51\) 5.58258 0.781717
\(52\) 0 0
\(53\) 7.84190i 1.07717i −0.842572 0.538584i \(-0.818959\pi\)
0.842572 0.538584i \(-0.181041\pi\)
\(54\) 0 0
\(55\) −12.2197 2.55040i −1.64770 0.343896i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) −1.58258 −0.206034 −0.103017 0.994680i \(-0.532850\pi\)
−0.103017 + 0.994680i \(0.532850\pi\)
\(60\) 0 0
\(61\) −10.5830 −1.35501 −0.677507 0.735516i \(-0.736940\pi\)
−0.677507 + 0.735516i \(0.736940\pi\)
\(62\) 0 0
\(63\) 4.37780i 0.551551i
\(64\) 0 0
\(65\) 2.00000 9.58258i 0.248069 1.18857i
\(66\) 0 0
\(67\) 3.16515i 0.386685i 0.981131 + 0.193342i \(0.0619328\pi\)
−0.981131 + 0.193342i \(0.938067\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.92820 −0.822226 −0.411113 0.911584i \(-0.634860\pi\)
−0.411113 + 0.911584i \(0.634860\pi\)
\(72\) 0 0
\(73\) 12.0000i 1.40449i 0.711934 + 0.702247i \(0.247820\pi\)
−0.711934 + 0.702247i \(0.752180\pi\)
\(74\) 0 0
\(75\) −2.00000 + 4.58258i −0.230940 + 0.529150i
\(76\) 0 0
\(77\) 24.4394i 2.78513i
\(78\) 0 0
\(79\) 5.29150 0.595341 0.297670 0.954669i \(-0.403790\pi\)
0.297670 + 0.954669i \(0.403790\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.16515i 0.786478i −0.919436 0.393239i \(-0.871355\pi\)
0.919436 0.393239i \(-0.128645\pi\)
\(84\) 0 0
\(85\) 2.55040 12.2197i 0.276630 1.32541i
\(86\) 0 0
\(87\) 2.55040i 0.273432i
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 19.1652 2.00905
\(92\) 0 0
\(93\) 5.29150i 0.548703i
\(94\) 0 0
\(95\) −8.75560 1.82740i −0.898306 0.187487i
\(96\) 0 0
\(97\) 11.1652i 1.13365i 0.823838 + 0.566825i \(0.191828\pi\)
−0.823838 + 0.566825i \(0.808172\pi\)
\(98\) 0 0
\(99\) 5.58258 0.561070
\(100\) 0 0
\(101\) 0.723000 0.0719412 0.0359706 0.999353i \(-0.488548\pi\)
0.0359706 + 0.999353i \(0.488548\pi\)
\(102\) 0 0
\(103\) 0.723000i 0.0712393i −0.999365 0.0356197i \(-0.988660\pi\)
0.999365 0.0356197i \(-0.0113405\pi\)
\(104\) 0 0
\(105\) −9.58258 2.00000i −0.935164 0.195180i
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) −1.82740 −0.175033 −0.0875166 0.996163i \(-0.527893\pi\)
−0.0875166 + 0.996163i \(0.527893\pi\)
\(110\) 0 0
\(111\) −2.55040 −0.242073
\(112\) 0 0
\(113\) 13.5826i 1.27774i 0.769314 + 0.638871i \(0.220598\pi\)
−0.769314 + 0.638871i \(0.779402\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.37780i 0.404728i
\(118\) 0 0
\(119\) 24.4394 2.24036
\(120\) 0 0
\(121\) 20.1652 1.83320
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 9.11710 + 6.47135i 0.815459 + 0.578815i
\(126\) 0 0
\(127\) 9.47860i 0.841090i −0.907272 0.420545i \(-0.861839\pi\)
0.907272 0.420545i \(-0.138161\pi\)
\(128\) 0 0
\(129\) 11.1652 0.983037
\(130\) 0 0
\(131\) 6.41742 0.560693 0.280346 0.959899i \(-0.409551\pi\)
0.280346 + 0.959899i \(0.409551\pi\)
\(132\) 0 0
\(133\) 17.5112i 1.51841i
\(134\) 0 0
\(135\) 0.456850 2.18890i 0.0393194 0.188391i
\(136\) 0 0
\(137\) 10.4174i 0.890021i −0.895525 0.445010i \(-0.853200\pi\)
0.895525 0.445010i \(-0.146800\pi\)
\(138\) 0 0
\(139\) 7.16515 0.607740 0.303870 0.952713i \(-0.401721\pi\)
0.303870 + 0.952713i \(0.401721\pi\)
\(140\) 0 0
\(141\) 6.92820 0.583460
\(142\) 0 0
\(143\) 24.4394i 2.04373i
\(144\) 0 0
\(145\) 5.58258 + 1.16515i 0.463608 + 0.0967606i
\(146\) 0 0
\(147\) 12.1652i 1.00336i
\(148\) 0 0
\(149\) −14.9608 −1.22564 −0.612819 0.790224i \(-0.709964\pi\)
−0.612819 + 0.790224i \(0.709964\pi\)
\(150\) 0 0
\(151\) −15.8745 −1.29185 −0.645925 0.763401i \(-0.723528\pi\)
−0.645925 + 0.763401i \(0.723528\pi\)
\(152\) 0 0
\(153\) 5.58258i 0.451324i
\(154\) 0 0
\(155\) −11.5826 2.41742i −0.930335 0.194172i
\(156\) 0 0
\(157\) 16.4068i 1.30941i −0.755886 0.654703i \(-0.772794\pi\)
0.755886 0.654703i \(-0.227206\pi\)
\(158\) 0 0
\(159\) 7.84190 0.621903
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 2.55040 12.2197i 0.198548 0.951303i
\(166\) 0 0
\(167\) 12.0290i 0.930832i 0.885092 + 0.465416i \(0.154095\pi\)
−0.885092 + 0.465416i \(0.845905\pi\)
\(168\) 0 0
\(169\) −6.16515 −0.474242
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 6.01450i 0.457274i 0.973512 + 0.228637i \(0.0734269\pi\)
−0.973512 + 0.228637i \(0.926573\pi\)
\(174\) 0 0
\(175\) −8.75560 + 20.0616i −0.661861 + 1.51652i
\(176\) 0 0
\(177\) 1.58258i 0.118954i
\(178\) 0 0
\(179\) −1.58258 −0.118287 −0.0591436 0.998249i \(-0.518837\pi\)
−0.0591436 + 0.998249i \(0.518837\pi\)
\(180\) 0 0
\(181\) −1.82740 −0.135830 −0.0679148 0.997691i \(-0.521635\pi\)
−0.0679148 + 0.997691i \(0.521635\pi\)
\(182\) 0 0
\(183\) 10.5830i 0.782318i
\(184\) 0 0
\(185\) −1.16515 + 5.58258i −0.0856636 + 0.410439i
\(186\) 0 0
\(187\) 31.1652i 2.27902i
\(188\) 0 0
\(189\) 4.37780 0.318438
\(190\) 0 0
\(191\) 13.8564 1.00261 0.501307 0.865269i \(-0.332853\pi\)
0.501307 + 0.865269i \(0.332853\pi\)
\(192\) 0 0
\(193\) 15.1652i 1.09161i 0.837912 + 0.545806i \(0.183776\pi\)
−0.837912 + 0.545806i \(0.816224\pi\)
\(194\) 0 0
\(195\) 9.58258 + 2.00000i 0.686222 + 0.143223i
\(196\) 0 0
\(197\) 22.0797i 1.57311i −0.617518 0.786557i \(-0.711862\pi\)
0.617518 0.786557i \(-0.288138\pi\)
\(198\) 0 0
\(199\) −12.2197 −0.866232 −0.433116 0.901338i \(-0.642586\pi\)
−0.433116 + 0.901338i \(0.642586\pi\)
\(200\) 0 0
\(201\) −3.16515 −0.223253
\(202\) 0 0
\(203\) 11.1652i 0.783640i
\(204\) 0 0
\(205\) −13.1334 2.74110i −0.917277 0.191447i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 22.3303 1.54462
\(210\) 0 0
\(211\) −7.16515 −0.493269 −0.246635 0.969109i \(-0.579325\pi\)
−0.246635 + 0.969109i \(0.579325\pi\)
\(212\) 0 0
\(213\) 6.92820i 0.474713i
\(214\) 0 0
\(215\) 5.10080 24.4394i 0.347872 1.66675i
\(216\) 0 0
\(217\) 23.1652i 1.57255i
\(218\) 0 0
\(219\) −12.0000 −0.810885
\(220\) 0 0
\(221\) −24.4394 −1.64397
\(222\) 0 0
\(223\) 4.37780i 0.293159i −0.989199 0.146580i \(-0.953174\pi\)
0.989199 0.146580i \(-0.0468265\pi\)
\(224\) 0 0
\(225\) −4.58258 2.00000i −0.305505 0.133333i
\(226\) 0 0
\(227\) 15.1652i 1.00655i −0.864127 0.503273i \(-0.832129\pi\)
0.864127 0.503273i \(-0.167871\pi\)
\(228\) 0 0
\(229\) 12.0290 0.794899 0.397450 0.917624i \(-0.369895\pi\)
0.397450 + 0.917624i \(0.369895\pi\)
\(230\) 0 0
\(231\) 24.4394 1.60800
\(232\) 0 0
\(233\) 10.4174i 0.682468i 0.939978 + 0.341234i \(0.110845\pi\)
−0.939978 + 0.341234i \(0.889155\pi\)
\(234\) 0 0
\(235\) 3.16515 15.1652i 0.206472 0.989265i
\(236\) 0 0
\(237\) 5.29150i 0.343720i
\(238\) 0 0
\(239\) 21.1660 1.36912 0.684558 0.728959i \(-0.259995\pi\)
0.684558 + 0.728959i \(0.259995\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −26.6283 5.55765i −1.70122 0.355065i
\(246\) 0 0
\(247\) 17.5112i 1.11421i
\(248\) 0 0
\(249\) 7.16515 0.454073
\(250\) 0 0
\(251\) −2.41742 −0.152586 −0.0762932 0.997085i \(-0.524309\pi\)
−0.0762932 + 0.997085i \(0.524309\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 12.2197 + 2.55040i 0.765228 + 0.159712i
\(256\) 0 0
\(257\) 24.7477i 1.54372i 0.635792 + 0.771860i \(0.280674\pi\)
−0.635792 + 0.771860i \(0.719326\pi\)
\(258\) 0 0
\(259\) −11.1652 −0.693769
\(260\) 0 0
\(261\) −2.55040 −0.157866
\(262\) 0 0
\(263\) 1.82740i 0.112682i −0.998412 0.0563412i \(-0.982057\pi\)
0.998412 0.0563412i \(-0.0179435\pi\)
\(264\) 0 0
\(265\) 3.58258 17.1652i 0.220076 1.05445i
\(266\) 0 0
\(267\) 2.00000i 0.122398i
\(268\) 0 0
\(269\) −6.20520 −0.378338 −0.189169 0.981945i \(-0.560579\pi\)
−0.189169 + 0.981945i \(0.560579\pi\)
\(270\) 0 0
\(271\) −15.4931 −0.941139 −0.470570 0.882363i \(-0.655952\pi\)
−0.470570 + 0.882363i \(0.655952\pi\)
\(272\) 0 0
\(273\) 19.1652i 1.15993i
\(274\) 0 0
\(275\) −25.5826 11.1652i −1.54269 0.673284i
\(276\) 0 0
\(277\) 9.47860i 0.569514i 0.958600 + 0.284757i \(0.0919129\pi\)
−0.958600 + 0.284757i \(0.908087\pi\)
\(278\) 0 0
\(279\) 5.29150 0.316794
\(280\) 0 0
\(281\) −32.3303 −1.92866 −0.964332 0.264695i \(-0.914729\pi\)
−0.964332 + 0.264695i \(0.914729\pi\)
\(282\) 0 0
\(283\) 11.1652i 0.663699i 0.943332 + 0.331850i \(0.107673\pi\)
−0.943332 + 0.331850i \(0.892327\pi\)
\(284\) 0 0
\(285\) 1.82740 8.75560i 0.108246 0.518637i
\(286\) 0 0
\(287\) 26.2668i 1.55048i
\(288\) 0 0
\(289\) −14.1652 −0.833244
\(290\) 0 0
\(291\) −11.1652 −0.654513
\(292\) 0 0
\(293\) 0.913701i 0.0533790i 0.999644 + 0.0266895i \(0.00849653\pi\)
−0.999644 + 0.0266895i \(0.991503\pi\)
\(294\) 0 0
\(295\) −3.46410 0.723000i −0.201688 0.0420947i
\(296\) 0 0
\(297\) 5.58258i 0.323934i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 48.8788 2.81733
\(302\) 0 0
\(303\) 0.723000i 0.0415353i
\(304\) 0 0
\(305\) −23.1652 4.83485i −1.32643 0.276843i
\(306\) 0 0
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 0.723000 0.0411300
\(310\) 0 0
\(311\) 3.65480 0.207245 0.103622 0.994617i \(-0.466957\pi\)
0.103622 + 0.994617i \(0.466957\pi\)
\(312\) 0 0
\(313\) 0.834849i 0.0471884i 0.999722 + 0.0235942i \(0.00751097\pi\)
−0.999722 + 0.0235942i \(0.992489\pi\)
\(314\) 0 0
\(315\) 2.00000 9.58258i 0.112687 0.539917i
\(316\) 0 0
\(317\) 34.1087i 1.91574i −0.287208 0.957868i \(-0.592727\pi\)
0.287208 0.957868i \(-0.407273\pi\)
\(318\) 0 0
\(319\) −14.2378 −0.797164
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 22.3303i 1.24249i
\(324\) 0 0
\(325\) 8.75560 20.0616i 0.485674 1.11282i
\(326\) 0 0
\(327\) 1.82740i 0.101056i
\(328\) 0 0
\(329\) 30.3303 1.67216
\(330\) 0 0
\(331\) −10.3303 −0.567805 −0.283902 0.958853i \(-0.591629\pi\)
−0.283902 + 0.958853i \(0.591629\pi\)
\(332\) 0 0
\(333\) 2.55040i 0.139761i
\(334\) 0 0
\(335\) −1.44600 + 6.92820i −0.0790034 + 0.378528i
\(336\) 0 0
\(337\) 26.3303i 1.43430i −0.696917 0.717151i \(-0.745446\pi\)
0.696917 0.717151i \(-0.254554\pi\)
\(338\) 0 0
\(339\) −13.5826 −0.737704
\(340\) 0 0
\(341\) 29.5402 1.59969
\(342\) 0 0
\(343\) 22.6120i 1.22093i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.834849i 0.0448170i 0.999749 + 0.0224085i \(0.00713345\pi\)
−0.999749 + 0.0224085i \(0.992867\pi\)
\(348\) 0 0
\(349\) −24.4394 −1.30821 −0.654106 0.756403i \(-0.726955\pi\)
−0.654106 + 0.756403i \(0.726955\pi\)
\(350\) 0 0
\(351\) −4.37780 −0.233670
\(352\) 0 0
\(353\) 11.9129i 0.634059i −0.948416 0.317029i \(-0.897315\pi\)
0.948416 0.317029i \(-0.102685\pi\)
\(354\) 0 0
\(355\) −15.1652 3.16515i −0.804883 0.167989i
\(356\) 0 0
\(357\) 24.4394i 1.29347i
\(358\) 0 0
\(359\) −6.92820 −0.365657 −0.182828 0.983145i \(-0.558525\pi\)
−0.182828 + 0.983145i \(0.558525\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 20.1652i 1.05840i
\(364\) 0 0
\(365\) −5.48220 + 26.2668i −0.286952 + 1.37487i
\(366\) 0 0
\(367\) 11.6874i 0.610078i 0.952340 + 0.305039i \(0.0986694\pi\)
−0.952340 + 0.305039i \(0.901331\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 34.3303 1.78234
\(372\) 0 0
\(373\) 11.3060i 0.585403i −0.956204 0.292701i \(-0.905446\pi\)
0.956204 0.292701i \(-0.0945542\pi\)
\(374\) 0 0
\(375\) −6.47135 + 9.11710i −0.334179 + 0.470805i
\(376\) 0 0
\(377\) 11.1652i 0.575035i
\(378\) 0 0
\(379\) −23.1652 −1.18991 −0.594957 0.803758i \(-0.702831\pi\)
−0.594957 + 0.803758i \(0.702831\pi\)
\(380\) 0 0
\(381\) 9.47860 0.485604
\(382\) 0 0
\(383\) 29.9216i 1.52892i −0.644669 0.764462i \(-0.723005\pi\)
0.644669 0.764462i \(-0.276995\pi\)
\(384\) 0 0
\(385\) 11.1652 53.4955i 0.569029 2.72638i
\(386\) 0 0
\(387\) 11.1652i 0.567557i
\(388\) 0 0
\(389\) 8.03260 0.407269 0.203635 0.979047i \(-0.434725\pi\)
0.203635 + 0.979047i \(0.434725\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 6.41742i 0.323716i
\(394\) 0 0
\(395\) 11.5826 + 2.41742i 0.582783 + 0.121634i
\(396\) 0 0
\(397\) 2.55040i 0.128001i 0.997950 + 0.0640005i \(0.0203859\pi\)
−0.997950 + 0.0640005i \(0.979614\pi\)
\(398\) 0 0
\(399\) 17.5112 0.876657
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) 23.1652i 1.15394i
\(404\) 0 0
\(405\) 2.18890 + 0.456850i 0.108767 + 0.0227011i
\(406\) 0 0
\(407\) 14.2378i 0.705742i
\(408\) 0 0
\(409\) −37.1652 −1.83770 −0.918849 0.394609i \(-0.870880\pi\)
−0.918849 + 0.394609i \(0.870880\pi\)
\(410\) 0 0
\(411\) 10.4174 0.513854
\(412\) 0 0
\(413\) 6.92820i 0.340915i
\(414\) 0 0
\(415\) 3.27340 15.6838i 0.160685 0.769888i
\(416\) 0 0
\(417\) 7.16515i 0.350879i
\(418\) 0 0
\(419\) 16.7477 0.818180 0.409090 0.912494i \(-0.365846\pi\)
0.409090 + 0.912494i \(0.365846\pi\)
\(420\) 0 0
\(421\) −29.5402 −1.43970 −0.719851 0.694129i \(-0.755790\pi\)
−0.719851 + 0.694129i \(0.755790\pi\)
\(422\) 0 0
\(423\) 6.92820i 0.336861i
\(424\) 0 0
\(425\) 11.1652 25.5826i 0.541589 1.24094i
\(426\) 0 0
\(427\) 46.3303i 2.24208i
\(428\) 0 0
\(429\) −24.4394 −1.17995
\(430\) 0 0
\(431\) 38.2958 1.84464 0.922322 0.386421i \(-0.126289\pi\)
0.922322 + 0.386421i \(0.126289\pi\)
\(432\) 0 0
\(433\) 1.66970i 0.0802405i 0.999195 + 0.0401203i \(0.0127741\pi\)
−0.999195 + 0.0401203i \(0.987226\pi\)
\(434\) 0 0
\(435\) −1.16515 + 5.58258i −0.0558647 + 0.267664i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −29.7309 −1.41898 −0.709490 0.704716i \(-0.751074\pi\)
−0.709490 + 0.704716i \(0.751074\pi\)
\(440\) 0 0
\(441\) 12.1652 0.579293
\(442\) 0 0
\(443\) 31.1652i 1.48070i −0.672221 0.740351i \(-0.734660\pi\)
0.672221 0.740351i \(-0.265340\pi\)
\(444\) 0 0
\(445\) 4.37780 + 0.913701i 0.207528 + 0.0433136i
\(446\) 0 0
\(447\) 14.9608i 0.707622i
\(448\) 0 0
\(449\) −28.3303 −1.33699 −0.668495 0.743717i \(-0.733061\pi\)
−0.668495 + 0.743717i \(0.733061\pi\)
\(450\) 0 0
\(451\) 33.4955 1.57724
\(452\) 0 0
\(453\) 15.8745i 0.745849i
\(454\) 0 0
\(455\) 41.9506 + 8.75560i 1.96668 + 0.410469i
\(456\) 0 0
\(457\) 4.83485i 0.226165i −0.993586 0.113082i \(-0.963928\pi\)
0.993586 0.113082i \(-0.0360724\pi\)
\(458\) 0 0
\(459\) −5.58258 −0.260572
\(460\) 0 0
\(461\) 1.10440 0.0514371 0.0257185 0.999669i \(-0.491813\pi\)
0.0257185 + 0.999669i \(0.491813\pi\)
\(462\) 0 0
\(463\) 29.1986i 1.35697i 0.734612 + 0.678487i \(0.237364\pi\)
−0.734612 + 0.678487i \(0.762636\pi\)
\(464\) 0 0
\(465\) 2.41742 11.5826i 0.112105 0.537129i
\(466\) 0 0
\(467\) 0.834849i 0.0386322i −0.999813 0.0193161i \(-0.993851\pi\)
0.999813 0.0193161i \(-0.00614889\pi\)
\(468\) 0 0
\(469\) −13.8564 −0.639829
\(470\) 0 0
\(471\) 16.4068 0.755986
\(472\) 0 0
\(473\) 62.3303i 2.86595i
\(474\) 0 0
\(475\) −18.3303 8.00000i −0.841052 0.367065i
\(476\) 0 0
\(477\) 7.84190i 0.359056i
\(478\) 0 0
\(479\) −31.7490 −1.45065 −0.725325 0.688407i \(-0.758310\pi\)
−0.725325 + 0.688407i \(0.758310\pi\)
\(480\) 0 0
\(481\) 11.1652 0.509087
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.10080 + 24.4394i −0.231615 + 1.10974i
\(486\) 0 0
\(487\) 16.7882i 0.760746i 0.924833 + 0.380373i \(0.124204\pi\)
−0.924833 + 0.380373i \(0.875796\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 12.7477 0.575297 0.287648 0.957736i \(-0.407127\pi\)
0.287648 + 0.957736i \(0.407127\pi\)
\(492\) 0 0
\(493\) 14.2378i 0.641239i
\(494\) 0 0
\(495\) 12.2197 + 2.55040i 0.549235 + 0.114632i
\(496\) 0 0
\(497\) 30.3303i 1.36050i
\(498\) 0 0
\(499\) 18.3303 0.820577 0.410289 0.911956i \(-0.365428\pi\)
0.410289 + 0.911956i \(0.365428\pi\)
\(500\) 0 0
\(501\) −12.0290 −0.537416
\(502\) 0 0
\(503\) 28.0942i 1.25266i 0.779558 + 0.626330i \(0.215444\pi\)
−0.779558 + 0.626330i \(0.784556\pi\)
\(504\) 0 0
\(505\) 1.58258 + 0.330303i 0.0704237 + 0.0146983i
\(506\) 0 0
\(507\) 6.16515i 0.273804i
\(508\) 0 0
\(509\) 39.4002 1.74638 0.873192 0.487376i \(-0.162046\pi\)
0.873192 + 0.487376i \(0.162046\pi\)
\(510\) 0 0
\(511\) −52.5336 −2.32395
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) 0.330303 1.58258i 0.0145549 0.0697366i
\(516\) 0 0
\(517\) 38.6772i 1.70102i
\(518\) 0 0
\(519\) −6.01450 −0.264007
\(520\) 0 0
\(521\) 34.6606 1.51851 0.759254 0.650794i \(-0.225564\pi\)
0.759254 + 0.650794i \(0.225564\pi\)
\(522\) 0 0
\(523\) 18.3303i 0.801528i 0.916181 + 0.400764i \(0.131255\pi\)
−0.916181 + 0.400764i \(0.868745\pi\)
\(524\) 0 0
\(525\) −20.0616 8.75560i −0.875560 0.382126i
\(526\) 0 0
\(527\) 29.5402i 1.28679i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 1.58258 0.0686779
\(532\) 0 0
\(533\) 26.2668i 1.13774i
\(534\) 0 0
\(535\) −1.82740 + 8.75560i −0.0790054 + 0.378538i
\(536\) 0 0
\(537\) 1.58258i 0.0682932i
\(538\) 0 0
\(539\) 67.9129 2.92521
\(540\) 0 0
\(541\) −36.8498 −1.58430 −0.792149 0.610328i \(-0.791038\pi\)
−0.792149 + 0.610328i \(0.791038\pi\)
\(542\) 0 0
\(543\) 1.82740i 0.0784213i
\(544\) 0 0
\(545\) −4.00000 0.834849i −0.171341 0.0357610i
\(546\) 0 0
\(547\) 25.4955i 1.09011i −0.838401 0.545053i \(-0.816509\pi\)
0.838401 0.545053i \(-0.183491\pi\)
\(548\) 0 0
\(549\) 10.5830 0.451672
\(550\) 0 0
\(551\) −10.2016 −0.434603
\(552\) 0 0
\(553\) 23.1652i 0.985082i
\(554\) 0 0
\(555\) −5.58258 1.16515i −0.236967 0.0494579i
\(556\) 0 0
\(557\) 4.18710i 0.177413i −0.996058 0.0887066i \(-0.971727\pi\)
0.996058 0.0887066i \(-0.0282733\pi\)
\(558\) 0 0
\(559\) −48.8788 −2.06735
\(560\) 0 0
\(561\) −31.1652 −1.31579
\(562\) 0 0
\(563\) 29.4955i 1.24309i 0.783380 + 0.621543i \(0.213494\pi\)
−0.783380 + 0.621543i \(0.786506\pi\)
\(564\) 0 0
\(565\) −6.20520 + 29.7309i −0.261055 + 1.25079i
\(566\) 0 0
\(567\) 4.37780i 0.183850i
\(568\) 0 0
\(569\) −36.3303 −1.52305 −0.761523 0.648138i \(-0.775548\pi\)
−0.761523 + 0.648138i \(0.775548\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 13.8564i 0.578860i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15.1652i 0.631334i −0.948870 0.315667i \(-0.897772\pi\)
0.948870 0.315667i \(-0.102228\pi\)
\(578\) 0 0
\(579\) −15.1652 −0.630242
\(580\) 0 0
\(581\) 31.3676 1.30135
\(582\) 0 0
\(583\) 43.7780i 1.81310i
\(584\) 0 0
\(585\) −2.00000 + 9.58258i −0.0826898 + 0.396191i
\(586\) 0 0
\(587\) 5.66970i 0.234013i −0.993131 0.117007i \(-0.962670\pi\)
0.993131 0.117007i \(-0.0373299\pi\)
\(588\) 0 0
\(589\) 21.1660 0.872130
\(590\) 0 0
\(591\) 22.0797 0.908238
\(592\) 0 0
\(593\) 35.9129i 1.47477i 0.675475 + 0.737383i \(0.263938\pi\)
−0.675475 + 0.737383i \(0.736062\pi\)
\(594\) 0 0
\(595\) 53.4955 + 11.1652i 2.19310 + 0.457727i
\(596\) 0 0
\(597\) 12.2197i 0.500119i
\(598\) 0 0
\(599\) −14.2378 −0.581741 −0.290871 0.956762i \(-0.593945\pi\)
−0.290871 + 0.956762i \(0.593945\pi\)
\(600\) 0 0
\(601\) −13.1652 −0.537018 −0.268509 0.963277i \(-0.586531\pi\)
−0.268509 + 0.963277i \(0.586531\pi\)
\(602\) 0 0
\(603\) 3.16515i 0.128895i
\(604\) 0 0
\(605\) 44.1395 + 9.21245i 1.79453 + 0.374540i
\(606\) 0 0
\(607\) 35.7454i 1.45086i −0.688295 0.725431i \(-0.741641\pi\)
0.688295 0.725431i \(-0.258359\pi\)
\(608\) 0 0
\(609\) −11.1652 −0.452435
\(610\) 0 0
\(611\) −30.3303 −1.22703
\(612\) 0 0
\(613\) 32.4720i 1.31153i 0.754964 + 0.655766i \(0.227654\pi\)
−0.754964 + 0.655766i \(0.772346\pi\)
\(614\) 0 0
\(615\) 2.74110 13.1334i 0.110532 0.529590i
\(616\) 0 0
\(617\) 13.5826i 0.546814i 0.961898 + 0.273407i \(0.0881506\pi\)
−0.961898 + 0.273407i \(0.911849\pi\)
\(618\) 0 0
\(619\) −45.4955 −1.82862 −0.914308 0.405019i \(-0.867265\pi\)
−0.914308 + 0.405019i \(0.867265\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.75560i 0.350786i
\(624\) 0 0
\(625\) 17.0000 + 18.3303i 0.680000 + 0.733212i
\(626\) 0 0
\(627\) 22.3303i 0.891786i
\(628\) 0 0
\(629\) 14.2378 0.567699
\(630\) 0 0
\(631\) 12.2197 0.486459 0.243229 0.969969i \(-0.421793\pi\)
0.243229 + 0.969969i \(0.421793\pi\)
\(632\) 0 0
\(633\) 7.16515i 0.284789i
\(634\) 0 0
\(635\) 4.33030 20.7477i 0.171843 0.823348i
\(636\) 0 0
\(637\) 53.2566i 2.11010i
\(638\) 0 0
\(639\) 6.92820 0.274075
\(640\) 0 0
\(641\) −4.33030 −0.171037 −0.0855183 0.996337i \(-0.527255\pi\)
−0.0855183 + 0.996337i \(0.527255\pi\)
\(642\) 0 0
\(643\) 18.3303i 0.722877i −0.932396 0.361438i \(-0.882286\pi\)
0.932396 0.361438i \(-0.117714\pi\)
\(644\) 0 0
\(645\) 24.4394 + 5.10080i 0.962301 + 0.200844i
\(646\) 0 0
\(647\) 17.8926i 0.703431i 0.936107 + 0.351716i \(0.114402\pi\)
−0.936107 + 0.351716i \(0.885598\pi\)
\(648\) 0 0
\(649\) 8.83485 0.346798
\(650\) 0 0
\(651\) 23.1652 0.907914
\(652\) 0 0
\(653\) 22.0797i 0.864046i 0.901863 + 0.432023i \(0.142200\pi\)
−0.901863 + 0.432023i \(0.857800\pi\)
\(654\) 0 0
\(655\) 14.0471 + 2.93180i 0.548866 + 0.114555i
\(656\) 0 0
\(657\) 12.0000i 0.468165i
\(658\) 0 0
\(659\) 25.5826 0.996556 0.498278 0.867017i \(-0.333966\pi\)
0.498278 + 0.867017i \(0.333966\pi\)
\(660\) 0 0
\(661\) 17.8926 0.695942 0.347971 0.937505i \(-0.386871\pi\)
0.347971 + 0.937505i \(0.386871\pi\)
\(662\) 0 0
\(663\) 24.4394i 0.949148i
\(664\) 0 0
\(665\) 8.00000 38.3303i 0.310227 1.48639i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 4.37780 0.169256
\(670\) 0 0
\(671\) 59.0804 2.28077
\(672\) 0 0
\(673\) 40.0000i 1.54189i 0.636904 + 0.770943i \(0.280215\pi\)
−0.636904 + 0.770943i \(0.719785\pi\)
\(674\) 0 0
\(675\) 2.00000 4.58258i 0.0769800 0.176383i
\(676\) 0 0
\(677\) 28.6265i 1.10021i −0.835097 0.550103i \(-0.814588\pi\)
0.835097 0.550103i \(-0.185412\pi\)
\(678\) 0 0
\(679\) −48.8788 −1.87580
\(680\) 0 0
\(681\) 15.1652 0.581130
\(682\) 0 0
\(683\) 5.49545i 0.210278i −0.994458 0.105139i \(-0.966471\pi\)
0.994458 0.105139i \(-0.0335287\pi\)
\(684\) 0 0
\(685\) 4.75920 22.8027i 0.181840 0.871247i
\(686\) 0 0
\(687\) 12.0290i 0.458935i
\(688\) 0 0
\(689\) −34.3303 −1.30788
\(690\) 0 0
\(691\) −40.6606 −1.54680 −0.773401 0.633917i \(-0.781446\pi\)
−0.773401 + 0.633917i \(0.781446\pi\)
\(692\) 0 0
\(693\) 24.4394i 0.928376i
\(694\) 0 0
\(695\) 15.6838 + 3.27340i 0.594921 + 0.124167i
\(696\) 0 0
\(697\) 33.4955i 1.26873i
\(698\) 0 0
\(699\) −10.4174 −0.394023
\(700\) 0 0
\(701\) −45.9470 −1.73540 −0.867698 0.497093i \(-0.834401\pi\)
−0.867698 + 0.497093i \(0.834401\pi\)
\(702\) 0 0
\(703\) 10.2016i 0.384761i
\(704\) 0 0
\(705\) 15.1652 + 3.16515i 0.571153 + 0.119206i
\(706\) 0 0
\(707\) 3.16515i 0.119038i
\(708\) 0 0
\(709\) −15.6838 −0.589018 −0.294509 0.955649i \(-0.595156\pi\)
−0.294509 + 0.955649i \(0.595156\pi\)
\(710\) 0 0
\(711\) −5.29150 −0.198447
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −11.1652 + 53.4955i −0.417553 + 2.00062i
\(716\) 0 0
\(717\) 21.1660i 0.790459i
\(718\) 0 0
\(719\) −30.9862 −1.15559 −0.577795 0.816182i \(-0.696087\pi\)
−0.577795 + 0.816182i \(0.696087\pi\)
\(720\) 0 0
\(721\) 3.16515 0.117876
\(722\) 0 0
\(723\) 10.0000i 0.371904i
\(724\) 0 0
\(725\) 11.6874 + 5.10080i 0.434059 + 0.189439i
\(726\) 0 0
\(727\) 49.6018i 1.83963i −0.392353 0.919815i \(-0.628339\pi\)
0.392353 0.919815i \(-0.371661\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −62.3303 −2.30537
\(732\) 0 0
\(733\) 29.1986i 1.07848i 0.842154 + 0.539238i \(0.181288\pi\)
−0.842154 + 0.539238i \(0.818712\pi\)
\(734\) 0 0
\(735\) 5.55765 26.6283i 0.204997 0.982200i
\(736\) 0 0
\(737\) 17.6697i 0.650872i
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −17.5112 −0.643290
\(742\) 0 0
\(743\) 47.4328i 1.74014i −0.492927 0.870071i \(-0.664073\pi\)
0.492927 0.870071i \(-0.335927\pi\)
\(744\) 0 0
\(745\) −32.7477 6.83485i −1.19978 0.250409i
\(746\) 0 0
\(747\) 7.16515i 0.262159i
\(748\) 0 0
\(749\) −17.5112 −0.639846
\(750\) 0 0
\(751\) −33.0043 −1.20434 −0.602172 0.798366i \(-0.705698\pi\)
−0.602172 + 0.798366i \(0.705698\pi\)
\(752\) 0 0
\(753\) 2.41742i 0.0880958i
\(754\) 0 0
\(755\) −34.7477 7.25227i −1.26460 0.263937i
\(756\) 0 0
\(757\) 18.2342i 0.662734i −0.943502 0.331367i \(-0.892490\pi\)
0.943502 0.331367i \(-0.107510\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 0 0
\(765\) −2.55040 + 12.2197i −0.0922099 + 0.441804i
\(766\) 0 0
\(767\) 6.92820i 0.250163i
\(768\) 0 0
\(769\) 23.4955 0.847268 0.423634 0.905834i \(-0.360754\pi\)
0.423634 + 0.905834i \(0.360754\pi\)
\(770\) 0 0
\(771\) −24.7477 −0.891268
\(772\) 0 0
\(773\) 30.4539i 1.09535i 0.836691 + 0.547676i \(0.184487\pi\)
−0.836691 + 0.547676i \(0.815513\pi\)
\(774\) 0 0
\(775\) −24.2487 10.5830i −0.871039 0.380153i
\(776\) 0 0
\(777\) 11.1652i 0.400548i
\(778\) 0 0
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 38.6772 1.38398
\(782\) 0 0
\(783\) 2.55040i 0.0911439i
\(784\) 0 0
\(785\) 7.49545 35.9129i 0.267524 1.28179i
\(786\) 0 0
\(787\) 36.0000i 1.28326i 0.767014 + 0.641631i \(0.221742\pi\)
−0.767014 + 0.641631i \(0.778258\pi\)
\(788\) 0 0
\(789\) 1.82740 0.0650572
\(790\) 0 0
\(791\) −59.4618 −2.11422
\(792\) 0 0
\(793\) 46.3303i 1.64524i
\(794\) 0 0
\(795\) 17.1652 + 3.58258i 0.608785 + 0.127061i
\(796\) 0 0
\(797\) 53.0659i 1.87969i 0.341599 + 0.939846i \(0.389031\pi\)
−0.341599 + 0.939846i \(0.610969\pi\)
\(798\) 0 0
\(799\) −38.6772 −1.36830
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) 0 0
\(803\) 66.9909i 2.36406i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.20520i 0.218433i
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) −0.834849 −0.0293155 −0.0146577 0.999893i \(-0.504666\pi\)
−0.0146577 + 0.999893i \(0.504666\pi\)
\(812\) 0 0
\(813\) 15.4931i 0.543367i
\(814\) 0 0
\(815\) 1.82740 8.75560i 0.0640111 0.306695i
\(816\) 0 0
\(817\) 44.6606i 1.56248i
\(818\) 0 0
\(819\) −19.1652 −0.669685
\(820\) 0 0
\(821\) −6.20520 −0.216563 −0.108282 0.994120i \(-0.534535\pi\)
−0.108282 + 0.994120i \(0.534535\pi\)
\(822\) 0 0
\(823\) 9.47860i 0.330403i −0.986260 0.165202i \(-0.947172\pi\)
0.986260 0.165202i \(-0.0528275\pi\)
\(824\) 0 0
\(825\) 11.1652 25.5826i 0.388721 0.890671i
\(826\) 0 0
\(827\) 28.0000i 0.973655i 0.873498 + 0.486828i \(0.161846\pi\)
−0.873498 + 0.486828i \(0.838154\pi\)
\(828\) 0 0
\(829\) 36.8498 1.27985 0.639924 0.768439i \(-0.278966\pi\)
0.639924 + 0.768439i \(0.278966\pi\)
\(830\) 0 0
\(831\) −9.47860 −0.328809
\(832\) 0 0
\(833\) 67.9129i 2.35304i
\(834\) 0 0
\(835\) −5.49545 + 26.3303i −0.190178 + 0.911198i
\(836\) 0 0
\(837\) 5.29150i 0.182901i
\(838\) 0 0
\(839\) 55.8070 1.92667 0.963336 0.268297i \(-0.0864608\pi\)
0.963336 + 0.268297i \(0.0864608\pi\)
\(840\) 0 0
\(841\) −22.4955 −0.775705
\(842\) 0 0
\(843\) 32.3303i 1.11351i
\(844\) 0 0
\(845\) −13.4949 2.81655i −0.464239 0.0968923i
\(846\) 0 0
\(847\) 88.2790i 3.03330i
\(848\) 0 0
\(849\) −11.1652 −0.383187
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 7.65120i 0.261972i 0.991384 + 0.130986i \(0.0418143\pi\)
−0.991384 + 0.130986i \(0.958186\pi\)
\(854\) 0 0
\(855\) 8.75560 + 1.82740i 0.299435 + 0.0624958i
\(856\) 0 0
\(857\) 29.5826i 1.01052i −0.862967 0.505261i \(-0.831396\pi\)
0.862967 0.505261i \(-0.168604\pi\)
\(858\) 0 0
\(859\) −24.8348 −0.847354 −0.423677 0.905813i \(-0.639261\pi\)
−0.423677 + 0.905813i \(0.639261\pi\)
\(860\) 0 0
\(861\) 26.2668 0.895171
\(862\) 0 0
\(863\) 50.7062i 1.72606i −0.505153 0.863030i \(-0.668564\pi\)
0.505153 0.863030i \(-0.331436\pi\)
\(864\) 0 0
\(865\) −2.74773 + 13.1652i −0.0934255 + 0.447629i
\(866\) 0 0
\(867\) 14.1652i 0.481074i
\(868\) 0 0
\(869\) −29.5402 −1.00208
\(870\) 0 0
\(871\) 13.8564 0.469506
\(872\) 0 0
\(873\) 11.1652i 0.377883i
\(874\) 0 0
\(875\) −28.3303 + 39.9129i −0.957739 + 1.34930i
\(876\) 0 0
\(877\) 17.8528i 0.602846i 0.953490 + 0.301423i \(0.0974617\pi\)
−0.953490 + 0.301423i \(0.902538\pi\)
\(878\) 0 0
\(879\) −0.913701 −0.0308184
\(880\) 0 0
\(881\) 36.3303 1.22400 0.612000 0.790858i \(-0.290365\pi\)
0.612000 + 0.790858i \(0.290365\pi\)
\(882\) 0 0
\(883\) 34.3303i 1.15531i −0.816282 0.577653i \(-0.803969\pi\)
0.816282 0.577653i \(-0.196031\pi\)
\(884\) 0 0
\(885\) 0.723000 3.46410i 0.0243034 0.116445i
\(886\) 0 0
\(887\) 47.0514i 1.57983i −0.613215 0.789916i \(-0.710124\pi\)
0.613215 0.789916i \(-0.289876\pi\)
\(888\) 0 0
\(889\) 41.4955 1.39171
\(890\) 0 0
\(891\) −5.58258 −0.187023
\(892\) 0 0
\(893\) 27.7128i 0.927374i
\(894\) 0 0
\(895\) −3.46410 0.723000i −0.115792 0.0241672i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.4955 −0.450099
\(900\) 0 0
\(901\) −43.7780 −1.45846
\(902\) 0 0
\(903\) 48.8788i 1.62659i
\(904\) 0 0
\(905\) −4.00000 0.834849i −0.132964 0.0277513i
\(906\) 0 0
\(907\) 17.4955i 0.580927i 0.956886 + 0.290464i \(0.0938095\pi\)
−0.956886 + 0.290464i \(0.906191\pi\)
\(908\) 0 0
\(909\) −0.723000 −0.0239804
\(910\) 0 0
\(911\) 7.30960 0.242178 0.121089 0.992642i \(-0.461361\pi\)
0.121089 + 0.992642i \(0.461361\pi\)
\(912\) 0 0
\(913\) 40.0000i 1.32381i
\(914\) 0 0
\(915\) 4.83485 23.1652i 0.159835 0.765816i
\(916\) 0 0
\(917\) 28.0942i 0.927753i
\(918\) 0 0
\(919\) 11.8383 0.390510 0.195255 0.980753i \(-0.437447\pi\)
0.195255 + 0.980753i \(0.437447\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 0 0
\(923\) 30.3303i 0.998334i
\(924\) 0 0
\(925\) −5.10080 + 11.6874i −0.167713 + 0.384280i
\(926\) 0 0
\(927\) 0.723000i 0.0237464i
\(928\) 0 0
\(929\) 30.6606 1.00594 0.502971 0.864303i \(-0.332240\pi\)
0.502971 + 0.864303i \(0.332240\pi\)
\(930\) 0 0
\(931\) 48.6606 1.59479
\(932\) 0 0
\(933\) 3.65480i 0.119653i
\(934\) 0 0
\(935\) −14.2378 + 68.2174i −0.465626 + 2.23095i
\(936\) 0 0
\(937\) 14.3303i 0.468151i −0.972218 0.234075i \(-0.924794\pi\)
0.972218 0.234075i \(-0.0752062\pi\)
\(938\) 0 0
\(939\) −0.834849 −0.0272443
\(940\) 0 0
\(941\) −28.4358 −0.926981 −0.463491 0.886102i \(-0.653403\pi\)
−0.463491 + 0.886102i \(0.653403\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 9.58258 + 2.00000i 0.311721 + 0.0650600i
\(946\) 0 0
\(947\) 52.0000i 1.68977i 0.534946 + 0.844886i \(0.320332\pi\)
−0.534946 + 0.844886i \(0.679668\pi\)
\(948\) 0 0
\(949\) 52.5336 1.70531
\(950\) 0 0
\(951\) 34.1087 1.10605
\(952\) 0 0
\(953\) 26.2432i 0.850100i −0.905170 0.425050i \(-0.860257\pi\)
0.905170 0.425050i \(-0.139743\pi\)
\(954\) 0 0
\(955\) 30.3303 + 6.33030i 0.981466 + 0.204844i
\(956\) 0 0
\(957\) 14.2378i 0.460243i
\(958\) 0 0
\(959\) 45.6054 1.47268
\(960\) 0 0
\(961\) −3.00000 −0.0967742
\(962\) 0 0
\(963\) 4.00000i 0.128898i
\(964\) 0 0
\(965\) −6.92820 + 33.1950i −0.223027 + 1.06859i
\(966\) 0 0
\(967\) 26.9898i 0.867934i −0.900929 0.433967i \(-0.857113\pi\)
0.900929 0.433967i \(-0.142887\pi\)
\(968\) 0 0
\(969\) −22.3303 −0.717353
\(970\) 0 0
\(971\) −4.08712 −0.131162 −0.0655810 0.997847i \(-0.520890\pi\)
−0.0655810 + 0.997847i \(0.520890\pi\)
\(972\) 0 0
\(973\) 31.3676i 1.00560i
\(974\) 0 0
\(975\) 20.0616 + 8.75560i 0.642486 + 0.280404i
\(976\) 0 0
\(977\) 7.25227i 0.232021i −0.993248 0.116010i \(-0.962989\pi\)
0.993248 0.116010i \(-0.0370106\pi\)
\(978\) 0 0
\(979\) −11.1652 −0.356840
\(980\) 0 0
\(981\) 1.82740 0.0583444
\(982\) 0 0
\(983\) 2.20880i 0.0704498i −0.999379 0.0352249i \(-0.988785\pi\)
0.999379 0.0352249i \(-0.0112148\pi\)
\(984\) 0 0
\(985\) 10.0871 48.3303i 0.321402 1.53993i
\(986\) 0 0
\(987\) 30.3303i 0.965424i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 11.8383 0.376056 0.188028 0.982164i \(-0.439790\pi\)
0.188028 + 0.982164i \(0.439790\pi\)
\(992\) 0 0
\(993\) 10.3303i 0.327822i
\(994\) 0 0
\(995\) −26.7477 5.58258i −0.847960 0.176980i
\(996\) 0 0
\(997\) 12.7520i 0.403860i −0.979400 0.201930i \(-0.935279\pi\)
0.979400 0.201930i \(-0.0647214\pi\)
\(998\) 0 0
\(999\) 2.55040 0.0806911
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.f.i.769.8 8
4.3 odd 2 3840.2.f.k.769.4 8
5.4 even 2 inner 3840.2.f.i.769.4 8
8.3 odd 2 inner 3840.2.f.i.769.5 8
8.5 even 2 3840.2.f.k.769.1 8
16.3 odd 4 960.2.d.f.289.5 yes 8
16.5 even 4 960.2.d.f.289.4 yes 8
16.11 odd 4 960.2.d.e.289.4 yes 8
16.13 even 4 960.2.d.e.289.5 yes 8
20.19 odd 2 3840.2.f.k.769.8 8
40.19 odd 2 inner 3840.2.f.i.769.1 8
40.29 even 2 3840.2.f.k.769.5 8
48.5 odd 4 2880.2.d.i.289.5 8
48.11 even 4 2880.2.d.j.289.5 8
48.29 odd 4 2880.2.d.j.289.4 8
48.35 even 4 2880.2.d.i.289.4 8
80.3 even 4 4800.2.k.q.2401.8 8
80.13 odd 4 4800.2.k.q.2401.1 8
80.19 odd 4 960.2.d.e.289.3 8
80.27 even 4 4800.2.k.r.2401.5 8
80.29 even 4 960.2.d.f.289.3 yes 8
80.37 odd 4 4800.2.k.r.2401.4 8
80.43 even 4 4800.2.k.q.2401.4 8
80.53 odd 4 4800.2.k.q.2401.5 8
80.59 odd 4 960.2.d.f.289.6 yes 8
80.67 even 4 4800.2.k.r.2401.1 8
80.69 even 4 960.2.d.e.289.6 yes 8
80.77 odd 4 4800.2.k.r.2401.8 8
240.29 odd 4 2880.2.d.i.289.6 8
240.59 even 4 2880.2.d.i.289.3 8
240.149 odd 4 2880.2.d.j.289.3 8
240.179 even 4 2880.2.d.j.289.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.2.d.e.289.3 8 80.19 odd 4
960.2.d.e.289.4 yes 8 16.11 odd 4
960.2.d.e.289.5 yes 8 16.13 even 4
960.2.d.e.289.6 yes 8 80.69 even 4
960.2.d.f.289.3 yes 8 80.29 even 4
960.2.d.f.289.4 yes 8 16.5 even 4
960.2.d.f.289.5 yes 8 16.3 odd 4
960.2.d.f.289.6 yes 8 80.59 odd 4
2880.2.d.i.289.3 8 240.59 even 4
2880.2.d.i.289.4 8 48.35 even 4
2880.2.d.i.289.5 8 48.5 odd 4
2880.2.d.i.289.6 8 240.29 odd 4
2880.2.d.j.289.3 8 240.149 odd 4
2880.2.d.j.289.4 8 48.29 odd 4
2880.2.d.j.289.5 8 48.11 even 4
2880.2.d.j.289.6 8 240.179 even 4
3840.2.f.i.769.1 8 40.19 odd 2 inner
3840.2.f.i.769.4 8 5.4 even 2 inner
3840.2.f.i.769.5 8 8.3 odd 2 inner
3840.2.f.i.769.8 8 1.1 even 1 trivial
3840.2.f.k.769.1 8 8.5 even 2
3840.2.f.k.769.4 8 4.3 odd 2
3840.2.f.k.769.5 8 40.29 even 2
3840.2.f.k.769.8 8 20.19 odd 2
4800.2.k.q.2401.1 8 80.13 odd 4
4800.2.k.q.2401.4 8 80.43 even 4
4800.2.k.q.2401.5 8 80.53 odd 4
4800.2.k.q.2401.8 8 80.3 even 4
4800.2.k.r.2401.1 8 80.67 even 4
4800.2.k.r.2401.4 8 80.37 odd 4
4800.2.k.r.2401.5 8 80.27 even 4
4800.2.k.r.2401.8 8 80.77 odd 4