Properties

Label 480.3.g.a.271.14
Level $480$
Weight $3$
Character 480.271
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [480,3,Mod(271,480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("480.271"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 480.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0790526893\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + x^{14} + 24 x^{13} - 44 x^{12} - 32 x^{11} + 180 x^{10} - 64 x^{9} - 352 x^{8} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{32} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.14
Root \(0.444906 - 1.94989i\) of defining polynomial
Character \(\chi\) \(=\) 480.271
Dual form 480.3.g.a.271.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{3} +2.23607i q^{5} -5.48395i q^{7} +3.00000 q^{9} -1.62564 q^{11} +18.0504i q^{13} +3.87298i q^{15} +24.0180 q^{17} +34.4282 q^{19} -9.49847i q^{21} -30.7256i q^{23} -5.00000 q^{25} +5.19615 q^{27} +8.33039i q^{29} +5.48491i q^{31} -2.81570 q^{33} +12.2625 q^{35} +42.8951i q^{37} +31.2641i q^{39} -6.22670 q^{41} +57.2727 q^{43} +6.70820i q^{45} +41.5525i q^{47} +18.9263 q^{49} +41.6005 q^{51} -38.1670i q^{53} -3.63505i q^{55} +59.6314 q^{57} -70.7342 q^{59} -63.5799i q^{61} -16.4518i q^{63} -40.3618 q^{65} -59.4604 q^{67} -53.2182i q^{69} +48.4629i q^{71} +93.1375 q^{73} -8.66025 q^{75} +8.91495i q^{77} -60.2424i q^{79} +9.00000 q^{81} -5.69214 q^{83} +53.7060i q^{85} +14.4287i q^{87} +49.1046 q^{89} +98.9872 q^{91} +9.50015i q^{93} +76.9838i q^{95} +35.9229 q^{97} -4.87693 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 48 q^{9} - 64 q^{11} + 32 q^{19} - 80 q^{25} + 192 q^{43} - 80 q^{49} - 96 q^{51} + 96 q^{57} - 128 q^{59} + 64 q^{67} - 160 q^{73} + 144 q^{81} + 192 q^{91} - 224 q^{97} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 0.577350
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) − 5.48395i − 0.783421i −0.920089 0.391710i \(-0.871884\pi\)
0.920089 0.391710i \(-0.128116\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) −1.62564 −0.147786 −0.0738929 0.997266i \(-0.523542\pi\)
−0.0738929 + 0.997266i \(0.523542\pi\)
\(12\) 0 0
\(13\) 18.0504i 1.38849i 0.719739 + 0.694245i \(0.244261\pi\)
−0.719739 + 0.694245i \(0.755739\pi\)
\(14\) 0 0
\(15\) 3.87298i 0.258199i
\(16\) 0 0
\(17\) 24.0180 1.41283 0.706413 0.707800i \(-0.250312\pi\)
0.706413 + 0.707800i \(0.250312\pi\)
\(18\) 0 0
\(19\) 34.4282 1.81201 0.906005 0.423267i \(-0.139117\pi\)
0.906005 + 0.423267i \(0.139117\pi\)
\(20\) 0 0
\(21\) − 9.49847i − 0.452308i
\(22\) 0 0
\(23\) − 30.7256i − 1.33589i −0.744209 0.667947i \(-0.767173\pi\)
0.744209 0.667947i \(-0.232827\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) 0 0
\(29\) 8.33039i 0.287255i 0.989632 + 0.143627i \(0.0458767\pi\)
−0.989632 + 0.143627i \(0.954123\pi\)
\(30\) 0 0
\(31\) 5.48491i 0.176933i 0.996079 + 0.0884663i \(0.0281966\pi\)
−0.996079 + 0.0884663i \(0.971803\pi\)
\(32\) 0 0
\(33\) −2.81570 −0.0853242
\(34\) 0 0
\(35\) 12.2625 0.350356
\(36\) 0 0
\(37\) 42.8951i 1.15933i 0.814856 + 0.579664i \(0.196816\pi\)
−0.814856 + 0.579664i \(0.803184\pi\)
\(38\) 0 0
\(39\) 31.2641i 0.801645i
\(40\) 0 0
\(41\) −6.22670 −0.151871 −0.0759354 0.997113i \(-0.524194\pi\)
−0.0759354 + 0.997113i \(0.524194\pi\)
\(42\) 0 0
\(43\) 57.2727 1.33192 0.665961 0.745986i \(-0.268022\pi\)
0.665961 + 0.745986i \(0.268022\pi\)
\(44\) 0 0
\(45\) 6.70820i 0.149071i
\(46\) 0 0
\(47\) 41.5525i 0.884095i 0.896992 + 0.442048i \(0.145748\pi\)
−0.896992 + 0.442048i \(0.854252\pi\)
\(48\) 0 0
\(49\) 18.9263 0.386252
\(50\) 0 0
\(51\) 41.6005 0.815695
\(52\) 0 0
\(53\) − 38.1670i − 0.720132i −0.932927 0.360066i \(-0.882754\pi\)
0.932927 0.360066i \(-0.117246\pi\)
\(54\) 0 0
\(55\) − 3.63505i − 0.0660918i
\(56\) 0 0
\(57\) 59.6314 1.04616
\(58\) 0 0
\(59\) −70.7342 −1.19889 −0.599443 0.800418i \(-0.704611\pi\)
−0.599443 + 0.800418i \(0.704611\pi\)
\(60\) 0 0
\(61\) − 63.5799i − 1.04229i −0.853467 0.521147i \(-0.825504\pi\)
0.853467 0.521147i \(-0.174496\pi\)
\(62\) 0 0
\(63\) − 16.4518i − 0.261140i
\(64\) 0 0
\(65\) −40.3618 −0.620951
\(66\) 0 0
\(67\) −59.4604 −0.887468 −0.443734 0.896159i \(-0.646346\pi\)
−0.443734 + 0.896159i \(0.646346\pi\)
\(68\) 0 0
\(69\) − 53.2182i − 0.771278i
\(70\) 0 0
\(71\) 48.4629i 0.682576i 0.939959 + 0.341288i \(0.110863\pi\)
−0.939959 + 0.341288i \(0.889137\pi\)
\(72\) 0 0
\(73\) 93.1375 1.27586 0.637928 0.770096i \(-0.279792\pi\)
0.637928 + 0.770096i \(0.279792\pi\)
\(74\) 0 0
\(75\) −8.66025 −0.115470
\(76\) 0 0
\(77\) 8.91495i 0.115779i
\(78\) 0 0
\(79\) − 60.2424i − 0.762562i −0.924459 0.381281i \(-0.875483\pi\)
0.924459 0.381281i \(-0.124517\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −5.69214 −0.0685800 −0.0342900 0.999412i \(-0.510917\pi\)
−0.0342900 + 0.999412i \(0.510917\pi\)
\(84\) 0 0
\(85\) 53.7060i 0.631835i
\(86\) 0 0
\(87\) 14.4287i 0.165847i
\(88\) 0 0
\(89\) 49.1046 0.551737 0.275868 0.961195i \(-0.411035\pi\)
0.275868 + 0.961195i \(0.411035\pi\)
\(90\) 0 0
\(91\) 98.9872 1.08777
\(92\) 0 0
\(93\) 9.50015i 0.102152i
\(94\) 0 0
\(95\) 76.9838i 0.810356i
\(96\) 0 0
\(97\) 35.9229 0.370339 0.185170 0.982707i \(-0.440717\pi\)
0.185170 + 0.982707i \(0.440717\pi\)
\(98\) 0 0
\(99\) −4.87693 −0.0492620
\(100\) 0 0
\(101\) − 67.3302i − 0.666635i −0.942815 0.333318i \(-0.891832\pi\)
0.942815 0.333318i \(-0.108168\pi\)
\(102\) 0 0
\(103\) − 73.3368i − 0.712008i −0.934484 0.356004i \(-0.884139\pi\)
0.934484 0.356004i \(-0.115861\pi\)
\(104\) 0 0
\(105\) 21.2392 0.202278
\(106\) 0 0
\(107\) −154.194 −1.44107 −0.720533 0.693421i \(-0.756103\pi\)
−0.720533 + 0.693421i \(0.756103\pi\)
\(108\) 0 0
\(109\) 120.753i 1.10782i 0.832575 + 0.553912i \(0.186866\pi\)
−0.832575 + 0.553912i \(0.813134\pi\)
\(110\) 0 0
\(111\) 74.2965i 0.669338i
\(112\) 0 0
\(113\) −209.411 −1.85320 −0.926599 0.376050i \(-0.877282\pi\)
−0.926599 + 0.376050i \(0.877282\pi\)
\(114\) 0 0
\(115\) 68.7044 0.597430
\(116\) 0 0
\(117\) 54.1511i 0.462830i
\(118\) 0 0
\(119\) − 131.714i − 1.10684i
\(120\) 0 0
\(121\) −118.357 −0.978159
\(122\) 0 0
\(123\) −10.7850 −0.0876827
\(124\) 0 0
\(125\) − 11.1803i − 0.0894427i
\(126\) 0 0
\(127\) 137.663i 1.08396i 0.840391 + 0.541981i \(0.182326\pi\)
−0.840391 + 0.541981i \(0.817674\pi\)
\(128\) 0 0
\(129\) 99.1992 0.768986
\(130\) 0 0
\(131\) −30.3019 −0.231312 −0.115656 0.993289i \(-0.536897\pi\)
−0.115656 + 0.993289i \(0.536897\pi\)
\(132\) 0 0
\(133\) − 188.802i − 1.41957i
\(134\) 0 0
\(135\) 11.6190i 0.0860663i
\(136\) 0 0
\(137\) −186.067 −1.35815 −0.679076 0.734068i \(-0.737619\pi\)
−0.679076 + 0.734068i \(0.737619\pi\)
\(138\) 0 0
\(139\) −5.92262 −0.0426087 −0.0213044 0.999773i \(-0.506782\pi\)
−0.0213044 + 0.999773i \(0.506782\pi\)
\(140\) 0 0
\(141\) 71.9710i 0.510433i
\(142\) 0 0
\(143\) − 29.3435i − 0.205199i
\(144\) 0 0
\(145\) −18.6273 −0.128464
\(146\) 0 0
\(147\) 32.7814 0.223003
\(148\) 0 0
\(149\) − 235.886i − 1.58313i −0.611086 0.791564i \(-0.709267\pi\)
0.611086 0.791564i \(-0.290733\pi\)
\(150\) 0 0
\(151\) − 56.9382i − 0.377074i −0.982066 0.188537i \(-0.939625\pi\)
0.982066 0.188537i \(-0.0603745\pi\)
\(152\) 0 0
\(153\) 72.0541 0.470942
\(154\) 0 0
\(155\) −12.2646 −0.0791267
\(156\) 0 0
\(157\) 304.162i 1.93734i 0.248351 + 0.968670i \(0.420111\pi\)
−0.248351 + 0.968670i \(0.579889\pi\)
\(158\) 0 0
\(159\) − 66.1072i − 0.415769i
\(160\) 0 0
\(161\) −168.497 −1.04657
\(162\) 0 0
\(163\) −248.671 −1.52559 −0.762796 0.646640i \(-0.776174\pi\)
−0.762796 + 0.646640i \(0.776174\pi\)
\(164\) 0 0
\(165\) − 6.29609i − 0.0381581i
\(166\) 0 0
\(167\) − 20.4759i − 0.122610i −0.998119 0.0613051i \(-0.980474\pi\)
0.998119 0.0613051i \(-0.0195263\pi\)
\(168\) 0 0
\(169\) −156.816 −0.927903
\(170\) 0 0
\(171\) 103.285 0.604003
\(172\) 0 0
\(173\) 10.9926i 0.0635410i 0.999495 + 0.0317705i \(0.0101146\pi\)
−0.999495 + 0.0317705i \(0.989885\pi\)
\(174\) 0 0
\(175\) 27.4197i 0.156684i
\(176\) 0 0
\(177\) −122.515 −0.692177
\(178\) 0 0
\(179\) −177.062 −0.989173 −0.494587 0.869128i \(-0.664681\pi\)
−0.494587 + 0.869128i \(0.664681\pi\)
\(180\) 0 0
\(181\) − 194.021i − 1.07194i −0.844237 0.535969i \(-0.819946\pi\)
0.844237 0.535969i \(-0.180054\pi\)
\(182\) 0 0
\(183\) − 110.124i − 0.601768i
\(184\) 0 0
\(185\) −95.9164 −0.518467
\(186\) 0 0
\(187\) −39.0448 −0.208796
\(188\) 0 0
\(189\) − 28.4954i − 0.150769i
\(190\) 0 0
\(191\) − 326.808i − 1.71104i −0.517772 0.855519i \(-0.673238\pi\)
0.517772 0.855519i \(-0.326762\pi\)
\(192\) 0 0
\(193\) 255.564 1.32416 0.662082 0.749431i \(-0.269673\pi\)
0.662082 + 0.749431i \(0.269673\pi\)
\(194\) 0 0
\(195\) −69.9088 −0.358506
\(196\) 0 0
\(197\) 266.053i 1.35053i 0.737577 + 0.675263i \(0.235970\pi\)
−0.737577 + 0.675263i \(0.764030\pi\)
\(198\) 0 0
\(199\) − 266.589i − 1.33964i −0.742521 0.669822i \(-0.766370\pi\)
0.742521 0.669822i \(-0.233630\pi\)
\(200\) 0 0
\(201\) −102.988 −0.512380
\(202\) 0 0
\(203\) 45.6834 0.225041
\(204\) 0 0
\(205\) − 13.9233i − 0.0679187i
\(206\) 0 0
\(207\) − 92.1767i − 0.445298i
\(208\) 0 0
\(209\) −55.9680 −0.267790
\(210\) 0 0
\(211\) 50.6253 0.239930 0.119965 0.992778i \(-0.461722\pi\)
0.119965 + 0.992778i \(0.461722\pi\)
\(212\) 0 0
\(213\) 83.9402i 0.394085i
\(214\) 0 0
\(215\) 128.066i 0.595654i
\(216\) 0 0
\(217\) 30.0790 0.138613
\(218\) 0 0
\(219\) 161.319 0.736616
\(220\) 0 0
\(221\) 433.534i 1.96169i
\(222\) 0 0
\(223\) 357.193i 1.60176i 0.598825 + 0.800880i \(0.295635\pi\)
−0.598825 + 0.800880i \(0.704365\pi\)
\(224\) 0 0
\(225\) −15.0000 −0.0666667
\(226\) 0 0
\(227\) −135.900 −0.598680 −0.299340 0.954146i \(-0.596767\pi\)
−0.299340 + 0.954146i \(0.596767\pi\)
\(228\) 0 0
\(229\) − 396.479i − 1.73135i −0.500608 0.865674i \(-0.666890\pi\)
0.500608 0.865674i \(-0.333110\pi\)
\(230\) 0 0
\(231\) 15.4411i 0.0668448i
\(232\) 0 0
\(233\) −95.1970 −0.408571 −0.204285 0.978911i \(-0.565487\pi\)
−0.204285 + 0.978911i \(0.565487\pi\)
\(234\) 0 0
\(235\) −92.9142 −0.395379
\(236\) 0 0
\(237\) − 104.343i − 0.440266i
\(238\) 0 0
\(239\) − 96.9914i − 0.405822i −0.979197 0.202911i \(-0.934960\pi\)
0.979197 0.202911i \(-0.0650402\pi\)
\(240\) 0 0
\(241\) 36.2570 0.150444 0.0752220 0.997167i \(-0.476033\pi\)
0.0752220 + 0.997167i \(0.476033\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) 42.3206i 0.172737i
\(246\) 0 0
\(247\) 621.442i 2.51596i
\(248\) 0 0
\(249\) −9.85907 −0.0395947
\(250\) 0 0
\(251\) −323.513 −1.28890 −0.644449 0.764647i \(-0.722913\pi\)
−0.644449 + 0.764647i \(0.722913\pi\)
\(252\) 0 0
\(253\) 49.9488i 0.197426i
\(254\) 0 0
\(255\) 93.0214i 0.364790i
\(256\) 0 0
\(257\) 403.216 1.56893 0.784467 0.620171i \(-0.212937\pi\)
0.784467 + 0.620171i \(0.212937\pi\)
\(258\) 0 0
\(259\) 235.235 0.908242
\(260\) 0 0
\(261\) 24.9912i 0.0957516i
\(262\) 0 0
\(263\) − 16.0314i − 0.0609561i −0.999535 0.0304780i \(-0.990297\pi\)
0.999535 0.0304780i \(-0.00970296\pi\)
\(264\) 0 0
\(265\) 85.3441 0.322053
\(266\) 0 0
\(267\) 85.0516 0.318545
\(268\) 0 0
\(269\) − 261.953i − 0.973804i −0.873457 0.486902i \(-0.838127\pi\)
0.873457 0.486902i \(-0.161873\pi\)
\(270\) 0 0
\(271\) 25.2639i 0.0932246i 0.998913 + 0.0466123i \(0.0148425\pi\)
−0.998913 + 0.0466123i \(0.985157\pi\)
\(272\) 0 0
\(273\) 171.451 0.628025
\(274\) 0 0
\(275\) 8.12822 0.0295572
\(276\) 0 0
\(277\) 2.48104i 0.00895683i 0.999990 + 0.00447842i \(0.00142553\pi\)
−0.999990 + 0.00447842i \(0.998574\pi\)
\(278\) 0 0
\(279\) 16.4547i 0.0589776i
\(280\) 0 0
\(281\) 386.378 1.37501 0.687505 0.726180i \(-0.258706\pi\)
0.687505 + 0.726180i \(0.258706\pi\)
\(282\) 0 0
\(283\) −115.917 −0.409600 −0.204800 0.978804i \(-0.565654\pi\)
−0.204800 + 0.978804i \(0.565654\pi\)
\(284\) 0 0
\(285\) 133.340i 0.467859i
\(286\) 0 0
\(287\) 34.1469i 0.118979i
\(288\) 0 0
\(289\) 287.866 0.996076
\(290\) 0 0
\(291\) 62.2203 0.213816
\(292\) 0 0
\(293\) − 536.585i − 1.83135i −0.401922 0.915674i \(-0.631658\pi\)
0.401922 0.915674i \(-0.368342\pi\)
\(294\) 0 0
\(295\) − 158.167i − 0.536158i
\(296\) 0 0
\(297\) −8.44710 −0.0284414
\(298\) 0 0
\(299\) 554.607 1.85487
\(300\) 0 0
\(301\) − 314.080i − 1.04346i
\(302\) 0 0
\(303\) − 116.619i − 0.384882i
\(304\) 0 0
\(305\) 142.169 0.466128
\(306\) 0 0
\(307\) 332.415 1.08279 0.541393 0.840770i \(-0.317897\pi\)
0.541393 + 0.840770i \(0.317897\pi\)
\(308\) 0 0
\(309\) − 127.023i − 0.411078i
\(310\) 0 0
\(311\) 523.655i 1.68378i 0.539651 + 0.841889i \(0.318556\pi\)
−0.539651 + 0.841889i \(0.681444\pi\)
\(312\) 0 0
\(313\) −188.357 −0.601781 −0.300890 0.953659i \(-0.597284\pi\)
−0.300890 + 0.953659i \(0.597284\pi\)
\(314\) 0 0
\(315\) 36.7874 0.116785
\(316\) 0 0
\(317\) 393.769i 1.24217i 0.783742 + 0.621087i \(0.213308\pi\)
−0.783742 + 0.621087i \(0.786692\pi\)
\(318\) 0 0
\(319\) − 13.5422i − 0.0424522i
\(320\) 0 0
\(321\) −267.072 −0.832000
\(322\) 0 0
\(323\) 826.897 2.56005
\(324\) 0 0
\(325\) − 90.2518i − 0.277698i
\(326\) 0 0
\(327\) 209.150i 0.639603i
\(328\) 0 0
\(329\) 227.872 0.692619
\(330\) 0 0
\(331\) 94.6057 0.285818 0.142909 0.989736i \(-0.454354\pi\)
0.142909 + 0.989736i \(0.454354\pi\)
\(332\) 0 0
\(333\) 128.685i 0.386443i
\(334\) 0 0
\(335\) − 132.957i − 0.396888i
\(336\) 0 0
\(337\) −520.784 −1.54535 −0.772676 0.634800i \(-0.781082\pi\)
−0.772676 + 0.634800i \(0.781082\pi\)
\(338\) 0 0
\(339\) −362.711 −1.06994
\(340\) 0 0
\(341\) − 8.91652i − 0.0261481i
\(342\) 0 0
\(343\) − 372.504i − 1.08602i
\(344\) 0 0
\(345\) 119.000 0.344926
\(346\) 0 0
\(347\) 21.6254 0.0623210 0.0311605 0.999514i \(-0.490080\pi\)
0.0311605 + 0.999514i \(0.490080\pi\)
\(348\) 0 0
\(349\) 241.608i 0.692286i 0.938182 + 0.346143i \(0.112509\pi\)
−0.938182 + 0.346143i \(0.887491\pi\)
\(350\) 0 0
\(351\) 93.7924i 0.267215i
\(352\) 0 0
\(353\) −100.887 −0.285799 −0.142899 0.989737i \(-0.545643\pi\)
−0.142899 + 0.989737i \(0.545643\pi\)
\(354\) 0 0
\(355\) −108.366 −0.305257
\(356\) 0 0
\(357\) − 228.135i − 0.639033i
\(358\) 0 0
\(359\) − 161.368i − 0.449494i −0.974417 0.224747i \(-0.927844\pi\)
0.974417 0.224747i \(-0.0721556\pi\)
\(360\) 0 0
\(361\) 824.301 2.28338
\(362\) 0 0
\(363\) −205.001 −0.564741
\(364\) 0 0
\(365\) 208.262i 0.570580i
\(366\) 0 0
\(367\) 301.732i 0.822157i 0.911600 + 0.411079i \(0.134848\pi\)
−0.911600 + 0.411079i \(0.865152\pi\)
\(368\) 0 0
\(369\) −18.6801 −0.0506236
\(370\) 0 0
\(371\) −209.306 −0.564167
\(372\) 0 0
\(373\) 263.001i 0.705097i 0.935794 + 0.352548i \(0.114685\pi\)
−0.935794 + 0.352548i \(0.885315\pi\)
\(374\) 0 0
\(375\) − 19.3649i − 0.0516398i
\(376\) 0 0
\(377\) −150.367 −0.398850
\(378\) 0 0
\(379\) 9.55298 0.0252057 0.0126029 0.999921i \(-0.495988\pi\)
0.0126029 + 0.999921i \(0.495988\pi\)
\(380\) 0 0
\(381\) 238.440i 0.625826i
\(382\) 0 0
\(383\) 319.027i 0.832968i 0.909143 + 0.416484i \(0.136738\pi\)
−0.909143 + 0.416484i \(0.863262\pi\)
\(384\) 0 0
\(385\) −19.9344 −0.0517777
\(386\) 0 0
\(387\) 171.818 0.443974
\(388\) 0 0
\(389\) 108.219i 0.278198i 0.990278 + 0.139099i \(0.0444206\pi\)
−0.990278 + 0.139099i \(0.955579\pi\)
\(390\) 0 0
\(391\) − 737.967i − 1.88738i
\(392\) 0 0
\(393\) −52.4845 −0.133548
\(394\) 0 0
\(395\) 134.706 0.341028
\(396\) 0 0
\(397\) 533.165i 1.34299i 0.741011 + 0.671493i \(0.234346\pi\)
−0.741011 + 0.671493i \(0.765654\pi\)
\(398\) 0 0
\(399\) − 327.015i − 0.819587i
\(400\) 0 0
\(401\) 610.423 1.52225 0.761126 0.648604i \(-0.224647\pi\)
0.761126 + 0.648604i \(0.224647\pi\)
\(402\) 0 0
\(403\) −99.0047 −0.245669
\(404\) 0 0
\(405\) 20.1246i 0.0496904i
\(406\) 0 0
\(407\) − 69.7322i − 0.171332i
\(408\) 0 0
\(409\) −174.487 −0.426618 −0.213309 0.976985i \(-0.568424\pi\)
−0.213309 + 0.976985i \(0.568424\pi\)
\(410\) 0 0
\(411\) −322.277 −0.784129
\(412\) 0 0
\(413\) 387.903i 0.939232i
\(414\) 0 0
\(415\) − 12.7280i − 0.0306699i
\(416\) 0 0
\(417\) −10.2583 −0.0246002
\(418\) 0 0
\(419\) −35.8925 −0.0856622 −0.0428311 0.999082i \(-0.513638\pi\)
−0.0428311 + 0.999082i \(0.513638\pi\)
\(420\) 0 0
\(421\) − 236.757i − 0.562368i −0.959654 0.281184i \(-0.909273\pi\)
0.959654 0.281184i \(-0.0907271\pi\)
\(422\) 0 0
\(423\) 124.657i 0.294698i
\(424\) 0 0
\(425\) −120.090 −0.282565
\(426\) 0 0
\(427\) −348.669 −0.816554
\(428\) 0 0
\(429\) − 50.8244i − 0.118472i
\(430\) 0 0
\(431\) − 195.847i − 0.454403i −0.973848 0.227201i \(-0.927042\pi\)
0.973848 0.227201i \(-0.0729575\pi\)
\(432\) 0 0
\(433\) −66.2067 −0.152902 −0.0764512 0.997073i \(-0.524359\pi\)
−0.0764512 + 0.997073i \(0.524359\pi\)
\(434\) 0 0
\(435\) −32.2634 −0.0741688
\(436\) 0 0
\(437\) − 1057.83i − 2.42065i
\(438\) 0 0
\(439\) 551.797i 1.25694i 0.777834 + 0.628470i \(0.216319\pi\)
−0.777834 + 0.628470i \(0.783681\pi\)
\(440\) 0 0
\(441\) 56.7790 0.128751
\(442\) 0 0
\(443\) 277.959 0.627446 0.313723 0.949515i \(-0.398424\pi\)
0.313723 + 0.949515i \(0.398424\pi\)
\(444\) 0 0
\(445\) 109.801i 0.246744i
\(446\) 0 0
\(447\) − 408.567i − 0.914019i
\(448\) 0 0
\(449\) −147.609 −0.328752 −0.164376 0.986398i \(-0.552561\pi\)
−0.164376 + 0.986398i \(0.552561\pi\)
\(450\) 0 0
\(451\) 10.1224 0.0224444
\(452\) 0 0
\(453\) − 98.6198i − 0.217704i
\(454\) 0 0
\(455\) 221.342i 0.486466i
\(456\) 0 0
\(457\) −485.661 −1.06272 −0.531358 0.847147i \(-0.678318\pi\)
−0.531358 + 0.847147i \(0.678318\pi\)
\(458\) 0 0
\(459\) 124.801 0.271898
\(460\) 0 0
\(461\) 447.963i 0.971721i 0.874036 + 0.485861i \(0.161494\pi\)
−0.874036 + 0.485861i \(0.838506\pi\)
\(462\) 0 0
\(463\) − 762.712i − 1.64733i −0.567080 0.823663i \(-0.691927\pi\)
0.567080 0.823663i \(-0.308073\pi\)
\(464\) 0 0
\(465\) −21.2430 −0.0456838
\(466\) 0 0
\(467\) 838.223 1.79491 0.897455 0.441106i \(-0.145414\pi\)
0.897455 + 0.441106i \(0.145414\pi\)
\(468\) 0 0
\(469\) 326.077i 0.695261i
\(470\) 0 0
\(471\) 526.825i 1.11852i
\(472\) 0 0
\(473\) −93.1050 −0.196839
\(474\) 0 0
\(475\) −172.141 −0.362402
\(476\) 0 0
\(477\) − 114.501i − 0.240044i
\(478\) 0 0
\(479\) − 150.795i − 0.314812i −0.987534 0.157406i \(-0.949687\pi\)
0.987534 0.157406i \(-0.0503131\pi\)
\(480\) 0 0
\(481\) −774.273 −1.60971
\(482\) 0 0
\(483\) −291.846 −0.604236
\(484\) 0 0
\(485\) 80.3261i 0.165621i
\(486\) 0 0
\(487\) − 148.464i − 0.304855i −0.988315 0.152427i \(-0.951291\pi\)
0.988315 0.152427i \(-0.0487090\pi\)
\(488\) 0 0
\(489\) −430.711 −0.880801
\(490\) 0 0
\(491\) −76.8116 −0.156439 −0.0782196 0.996936i \(-0.524924\pi\)
−0.0782196 + 0.996936i \(0.524924\pi\)
\(492\) 0 0
\(493\) 200.079i 0.405841i
\(494\) 0 0
\(495\) − 10.9052i − 0.0220306i
\(496\) 0 0
\(497\) 265.768 0.534744
\(498\) 0 0
\(499\) −564.248 −1.13076 −0.565379 0.824832i \(-0.691270\pi\)
−0.565379 + 0.824832i \(0.691270\pi\)
\(500\) 0 0
\(501\) − 35.4653i − 0.0707890i
\(502\) 0 0
\(503\) 223.999i 0.445327i 0.974895 + 0.222663i \(0.0714750\pi\)
−0.974895 + 0.222663i \(0.928525\pi\)
\(504\) 0 0
\(505\) 150.555 0.298128
\(506\) 0 0
\(507\) −271.613 −0.535725
\(508\) 0 0
\(509\) − 174.435i − 0.342701i −0.985210 0.171350i \(-0.945187\pi\)
0.985210 0.171350i \(-0.0548130\pi\)
\(510\) 0 0
\(511\) − 510.761i − 0.999532i
\(512\) 0 0
\(513\) 178.894 0.348722
\(514\) 0 0
\(515\) 163.986 0.318420
\(516\) 0 0
\(517\) − 67.5496i − 0.130657i
\(518\) 0 0
\(519\) 19.0397i 0.0366854i
\(520\) 0 0
\(521\) 478.465 0.918358 0.459179 0.888344i \(-0.348144\pi\)
0.459179 + 0.888344i \(0.348144\pi\)
\(522\) 0 0
\(523\) 491.609 0.939979 0.469990 0.882672i \(-0.344258\pi\)
0.469990 + 0.882672i \(0.344258\pi\)
\(524\) 0 0
\(525\) 47.4924i 0.0904616i
\(526\) 0 0
\(527\) 131.737i 0.249975i
\(528\) 0 0
\(529\) −415.059 −0.784611
\(530\) 0 0
\(531\) −212.203 −0.399628
\(532\) 0 0
\(533\) − 112.394i − 0.210871i
\(534\) 0 0
\(535\) − 344.788i − 0.644464i
\(536\) 0 0
\(537\) −306.680 −0.571099
\(538\) 0 0
\(539\) −30.7675 −0.0570826
\(540\) 0 0
\(541\) − 166.802i − 0.308322i −0.988046 0.154161i \(-0.950733\pi\)
0.988046 0.154161i \(-0.0492674\pi\)
\(542\) 0 0
\(543\) − 336.054i − 0.618884i
\(544\) 0 0
\(545\) −270.012 −0.495434
\(546\) 0 0
\(547\) −166.395 −0.304195 −0.152098 0.988365i \(-0.548603\pi\)
−0.152098 + 0.988365i \(0.548603\pi\)
\(548\) 0 0
\(549\) − 190.740i − 0.347431i
\(550\) 0 0
\(551\) 286.800i 0.520508i
\(552\) 0 0
\(553\) −330.366 −0.597407
\(554\) 0 0
\(555\) −166.132 −0.299337
\(556\) 0 0
\(557\) − 267.280i − 0.479856i −0.970791 0.239928i \(-0.922876\pi\)
0.970791 0.239928i \(-0.0771238\pi\)
\(558\) 0 0
\(559\) 1033.79i 1.84936i
\(560\) 0 0
\(561\) −67.6275 −0.120548
\(562\) 0 0
\(563\) −637.679 −1.13264 −0.566322 0.824184i \(-0.691634\pi\)
−0.566322 + 0.824184i \(0.691634\pi\)
\(564\) 0 0
\(565\) − 468.258i − 0.828776i
\(566\) 0 0
\(567\) − 49.3555i − 0.0870468i
\(568\) 0 0
\(569\) 58.7735 0.103293 0.0516463 0.998665i \(-0.483553\pi\)
0.0516463 + 0.998665i \(0.483553\pi\)
\(570\) 0 0
\(571\) 3.25216 0.00569555 0.00284778 0.999996i \(-0.499094\pi\)
0.00284778 + 0.999996i \(0.499094\pi\)
\(572\) 0 0
\(573\) − 566.048i − 0.987868i
\(574\) 0 0
\(575\) 153.628i 0.267179i
\(576\) 0 0
\(577\) 366.712 0.635549 0.317775 0.948166i \(-0.397064\pi\)
0.317775 + 0.948166i \(0.397064\pi\)
\(578\) 0 0
\(579\) 442.649 0.764506
\(580\) 0 0
\(581\) 31.2154i 0.0537270i
\(582\) 0 0
\(583\) 62.0460i 0.106425i
\(584\) 0 0
\(585\) −121.086 −0.206984
\(586\) 0 0
\(587\) −203.754 −0.347111 −0.173556 0.984824i \(-0.555526\pi\)
−0.173556 + 0.984824i \(0.555526\pi\)
\(588\) 0 0
\(589\) 188.836i 0.320604i
\(590\) 0 0
\(591\) 460.818i 0.779726i
\(592\) 0 0
\(593\) 291.378 0.491362 0.245681 0.969351i \(-0.420988\pi\)
0.245681 + 0.969351i \(0.420988\pi\)
\(594\) 0 0
\(595\) 294.521 0.494992
\(596\) 0 0
\(597\) − 461.746i − 0.773444i
\(598\) 0 0
\(599\) 855.966i 1.42899i 0.699640 + 0.714495i \(0.253344\pi\)
−0.699640 + 0.714495i \(0.746656\pi\)
\(600\) 0 0
\(601\) −426.264 −0.709258 −0.354629 0.935007i \(-0.615393\pi\)
−0.354629 + 0.935007i \(0.615393\pi\)
\(602\) 0 0
\(603\) −178.381 −0.295823
\(604\) 0 0
\(605\) − 264.655i − 0.437446i
\(606\) 0 0
\(607\) 410.035i 0.675510i 0.941234 + 0.337755i \(0.109668\pi\)
−0.941234 + 0.337755i \(0.890332\pi\)
\(608\) 0 0
\(609\) 79.1259 0.129928
\(610\) 0 0
\(611\) −750.037 −1.22756
\(612\) 0 0
\(613\) 252.628i 0.412118i 0.978540 + 0.206059i \(0.0660639\pi\)
−0.978540 + 0.206059i \(0.933936\pi\)
\(614\) 0 0
\(615\) − 24.1159i − 0.0392129i
\(616\) 0 0
\(617\) 234.903 0.380718 0.190359 0.981715i \(-0.439035\pi\)
0.190359 + 0.981715i \(0.439035\pi\)
\(618\) 0 0
\(619\) −412.764 −0.666824 −0.333412 0.942781i \(-0.608200\pi\)
−0.333412 + 0.942781i \(0.608200\pi\)
\(620\) 0 0
\(621\) − 159.655i − 0.257093i
\(622\) 0 0
\(623\) − 269.287i − 0.432242i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) −96.9394 −0.154608
\(628\) 0 0
\(629\) 1030.26i 1.63793i
\(630\) 0 0
\(631\) − 969.308i − 1.53615i −0.640363 0.768073i \(-0.721216\pi\)
0.640363 0.768073i \(-0.278784\pi\)
\(632\) 0 0
\(633\) 87.6856 0.138524
\(634\) 0 0
\(635\) −307.824 −0.484763
\(636\) 0 0
\(637\) 341.627i 0.536307i
\(638\) 0 0
\(639\) 145.389i 0.227525i
\(640\) 0 0
\(641\) −805.292 −1.25631 −0.628153 0.778090i \(-0.716189\pi\)
−0.628153 + 0.778090i \(0.716189\pi\)
\(642\) 0 0
\(643\) −887.377 −1.38006 −0.690028 0.723782i \(-0.742402\pi\)
−0.690028 + 0.723782i \(0.742402\pi\)
\(644\) 0 0
\(645\) 221.816i 0.343901i
\(646\) 0 0
\(647\) − 1129.74i − 1.74612i −0.487614 0.873059i \(-0.662133\pi\)
0.487614 0.873059i \(-0.337867\pi\)
\(648\) 0 0
\(649\) 114.989 0.177178
\(650\) 0 0
\(651\) 52.0983 0.0800281
\(652\) 0 0
\(653\) − 384.844i − 0.589348i −0.955598 0.294674i \(-0.904789\pi\)
0.955598 0.294674i \(-0.0952111\pi\)
\(654\) 0 0
\(655\) − 67.7572i − 0.103446i
\(656\) 0 0
\(657\) 279.412 0.425285
\(658\) 0 0
\(659\) −38.8992 −0.0590276 −0.0295138 0.999564i \(-0.509396\pi\)
−0.0295138 + 0.999564i \(0.509396\pi\)
\(660\) 0 0
\(661\) − 877.861i − 1.32808i −0.747697 0.664040i \(-0.768841\pi\)
0.747697 0.664040i \(-0.231159\pi\)
\(662\) 0 0
\(663\) 750.903i 1.13258i
\(664\) 0 0
\(665\) 422.175 0.634850
\(666\) 0 0
\(667\) 255.956 0.383742
\(668\) 0 0
\(669\) 618.676i 0.924777i
\(670\) 0 0
\(671\) 103.358i 0.154036i
\(672\) 0 0
\(673\) −343.747 −0.510768 −0.255384 0.966840i \(-0.582202\pi\)
−0.255384 + 0.966840i \(0.582202\pi\)
\(674\) 0 0
\(675\) −25.9808 −0.0384900
\(676\) 0 0
\(677\) − 404.932i − 0.598126i −0.954233 0.299063i \(-0.903326\pi\)
0.954233 0.299063i \(-0.0966741\pi\)
\(678\) 0 0
\(679\) − 196.999i − 0.290132i
\(680\) 0 0
\(681\) −235.386 −0.345648
\(682\) 0 0
\(683\) −145.169 −0.212546 −0.106273 0.994337i \(-0.533892\pi\)
−0.106273 + 0.994337i \(0.533892\pi\)
\(684\) 0 0
\(685\) − 416.058i − 0.607384i
\(686\) 0 0
\(687\) − 686.721i − 0.999594i
\(688\) 0 0
\(689\) 688.929 0.999896
\(690\) 0 0
\(691\) 104.860 0.151751 0.0758757 0.997117i \(-0.475825\pi\)
0.0758757 + 0.997117i \(0.475825\pi\)
\(692\) 0 0
\(693\) 26.7448i 0.0385928i
\(694\) 0 0
\(695\) − 13.2434i − 0.0190552i
\(696\) 0 0
\(697\) −149.553 −0.214567
\(698\) 0 0
\(699\) −164.886 −0.235888
\(700\) 0 0
\(701\) 88.5728i 0.126352i 0.998002 + 0.0631760i \(0.0201229\pi\)
−0.998002 + 0.0631760i \(0.979877\pi\)
\(702\) 0 0
\(703\) 1476.80i 2.10071i
\(704\) 0 0
\(705\) −160.932 −0.228272
\(706\) 0 0
\(707\) −369.235 −0.522256
\(708\) 0 0
\(709\) − 295.500i − 0.416784i −0.978045 0.208392i \(-0.933177\pi\)
0.978045 0.208392i \(-0.0668230\pi\)
\(710\) 0 0
\(711\) − 180.727i − 0.254187i
\(712\) 0 0
\(713\) 168.527 0.236363
\(714\) 0 0
\(715\) 65.6140 0.0917678
\(716\) 0 0
\(717\) − 167.994i − 0.234301i
\(718\) 0 0
\(719\) − 464.090i − 0.645467i −0.946490 0.322733i \(-0.895398\pi\)
0.946490 0.322733i \(-0.104602\pi\)
\(720\) 0 0
\(721\) −402.175 −0.557802
\(722\) 0 0
\(723\) 62.7989 0.0868588
\(724\) 0 0
\(725\) − 41.6519i − 0.0574509i
\(726\) 0 0
\(727\) − 1052.48i − 1.44771i −0.689952 0.723855i \(-0.742369\pi\)
0.689952 0.723855i \(-0.257631\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 1375.58 1.88177
\(732\) 0 0
\(733\) 82.5148i 0.112571i 0.998415 + 0.0562857i \(0.0179258\pi\)
−0.998415 + 0.0562857i \(0.982074\pi\)
\(734\) 0 0
\(735\) 73.3014i 0.0997298i
\(736\) 0 0
\(737\) 96.6614 0.131155
\(738\) 0 0
\(739\) −214.733 −0.290572 −0.145286 0.989390i \(-0.546410\pi\)
−0.145286 + 0.989390i \(0.546410\pi\)
\(740\) 0 0
\(741\) 1076.37i 1.45259i
\(742\) 0 0
\(743\) 96.3747i 0.129710i 0.997895 + 0.0648551i \(0.0206585\pi\)
−0.997895 + 0.0648551i \(0.979341\pi\)
\(744\) 0 0
\(745\) 527.457 0.707996
\(746\) 0 0
\(747\) −17.0764 −0.0228600
\(748\) 0 0
\(749\) 845.592i 1.12896i
\(750\) 0 0
\(751\) 547.767i 0.729384i 0.931128 + 0.364692i \(0.118826\pi\)
−0.931128 + 0.364692i \(0.881174\pi\)
\(752\) 0 0
\(753\) −560.342 −0.744146
\(754\) 0 0
\(755\) 127.318 0.168633
\(756\) 0 0
\(757\) 516.109i 0.681782i 0.940103 + 0.340891i \(0.110729\pi\)
−0.940103 + 0.340891i \(0.889271\pi\)
\(758\) 0 0
\(759\) 86.5139i 0.113984i
\(760\) 0 0
\(761\) −446.601 −0.586861 −0.293430 0.955980i \(-0.594797\pi\)
−0.293430 + 0.955980i \(0.594797\pi\)
\(762\) 0 0
\(763\) 662.202 0.867893
\(764\) 0 0
\(765\) 161.118i 0.210612i
\(766\) 0 0
\(767\) − 1276.78i − 1.66464i
\(768\) 0 0
\(769\) −253.980 −0.330273 −0.165136 0.986271i \(-0.552806\pi\)
−0.165136 + 0.986271i \(0.552806\pi\)
\(770\) 0 0
\(771\) 698.391 0.905824
\(772\) 0 0
\(773\) − 226.748i − 0.293335i −0.989186 0.146667i \(-0.953145\pi\)
0.989186 0.146667i \(-0.0468547\pi\)
\(774\) 0 0
\(775\) − 27.4246i − 0.0353865i
\(776\) 0 0
\(777\) 407.438 0.524374
\(778\) 0 0
\(779\) −214.374 −0.275192
\(780\) 0 0
\(781\) − 78.7835i − 0.100875i
\(782\) 0 0
\(783\) 43.2860i 0.0552822i
\(784\) 0 0
\(785\) −680.128 −0.866405
\(786\) 0 0
\(787\) 86.1883 0.109515 0.0547575 0.998500i \(-0.482561\pi\)
0.0547575 + 0.998500i \(0.482561\pi\)
\(788\) 0 0
\(789\) − 27.7673i − 0.0351930i
\(790\) 0 0
\(791\) 1148.40i 1.45183i
\(792\) 0 0
\(793\) 1147.64 1.44721
\(794\) 0 0
\(795\) 147.820 0.185937
\(796\) 0 0
\(797\) − 661.678i − 0.830211i −0.909773 0.415105i \(-0.863745\pi\)
0.909773 0.415105i \(-0.136255\pi\)
\(798\) 0 0
\(799\) 998.009i 1.24907i
\(800\) 0 0
\(801\) 147.314 0.183912
\(802\) 0 0
\(803\) −151.408 −0.188553
\(804\) 0 0
\(805\) − 376.771i − 0.468039i
\(806\) 0 0
\(807\) − 453.716i − 0.562226i
\(808\) 0 0
\(809\) −1095.50 −1.35414 −0.677070 0.735919i \(-0.736750\pi\)
−0.677070 + 0.735919i \(0.736750\pi\)
\(810\) 0 0
\(811\) 743.013 0.916169 0.458084 0.888909i \(-0.348536\pi\)
0.458084 + 0.888909i \(0.348536\pi\)
\(812\) 0 0
\(813\) 43.7583i 0.0538232i
\(814\) 0 0
\(815\) − 556.046i − 0.682265i
\(816\) 0 0
\(817\) 1971.79 2.41346
\(818\) 0 0
\(819\) 296.962 0.362591
\(820\) 0 0
\(821\) 1269.96i 1.54685i 0.633888 + 0.773425i \(0.281458\pi\)
−0.633888 + 0.773425i \(0.718542\pi\)
\(822\) 0 0
\(823\) 297.950i 0.362029i 0.983480 + 0.181015i \(0.0579381\pi\)
−0.983480 + 0.181015i \(0.942062\pi\)
\(824\) 0 0
\(825\) 14.0785 0.0170648
\(826\) 0 0
\(827\) 386.605 0.467478 0.233739 0.972299i \(-0.424904\pi\)
0.233739 + 0.972299i \(0.424904\pi\)
\(828\) 0 0
\(829\) 606.395i 0.731478i 0.930717 + 0.365739i \(0.119184\pi\)
−0.930717 + 0.365739i \(0.880816\pi\)
\(830\) 0 0
\(831\) 4.29729i 0.00517123i
\(832\) 0 0
\(833\) 454.573 0.545706
\(834\) 0 0
\(835\) 45.7855 0.0548329
\(836\) 0 0
\(837\) 28.5004i 0.0340507i
\(838\) 0 0
\(839\) − 634.313i − 0.756035i −0.925799 0.378017i \(-0.876606\pi\)
0.925799 0.378017i \(-0.123394\pi\)
\(840\) 0 0
\(841\) 771.605 0.917485
\(842\) 0 0
\(843\) 669.226 0.793862
\(844\) 0 0
\(845\) − 350.651i − 0.414971i
\(846\) 0 0
\(847\) 649.065i 0.766310i
\(848\) 0 0
\(849\) −200.774 −0.236482
\(850\) 0 0
\(851\) 1317.98 1.54874
\(852\) 0 0
\(853\) 350.351i 0.410728i 0.978686 + 0.205364i \(0.0658379\pi\)
−0.978686 + 0.205364i \(0.934162\pi\)
\(854\) 0 0
\(855\) 230.951i 0.270119i
\(856\) 0 0
\(857\) −582.739 −0.679976 −0.339988 0.940430i \(-0.610423\pi\)
−0.339988 + 0.940430i \(0.610423\pi\)
\(858\) 0 0
\(859\) 91.0452 0.105990 0.0529948 0.998595i \(-0.483123\pi\)
0.0529948 + 0.998595i \(0.483123\pi\)
\(860\) 0 0
\(861\) 59.1442i 0.0686924i
\(862\) 0 0
\(863\) − 311.660i − 0.361135i −0.983563 0.180568i \(-0.942207\pi\)
0.983563 0.180568i \(-0.0577935\pi\)
\(864\) 0 0
\(865\) −24.5802 −0.0284164
\(866\) 0 0
\(867\) 498.598 0.575084
\(868\) 0 0
\(869\) 97.9328i 0.112696i
\(870\) 0 0
\(871\) − 1073.28i − 1.23224i
\(872\) 0 0
\(873\) 107.769 0.123446
\(874\) 0 0
\(875\) −61.3124 −0.0700713
\(876\) 0 0
\(877\) − 1264.84i − 1.44223i −0.692815 0.721115i \(-0.743630\pi\)
0.692815 0.721115i \(-0.256370\pi\)
\(878\) 0 0
\(879\) − 929.392i − 1.05733i
\(880\) 0 0
\(881\) −1185.61 −1.34576 −0.672880 0.739752i \(-0.734943\pi\)
−0.672880 + 0.739752i \(0.734943\pi\)
\(882\) 0 0
\(883\) 1734.26 1.96405 0.982026 0.188745i \(-0.0604420\pi\)
0.982026 + 0.188745i \(0.0604420\pi\)
\(884\) 0 0
\(885\) − 273.953i − 0.309551i
\(886\) 0 0
\(887\) 780.604i 0.880050i 0.897986 + 0.440025i \(0.145030\pi\)
−0.897986 + 0.440025i \(0.854970\pi\)
\(888\) 0 0
\(889\) 754.937 0.849198
\(890\) 0 0
\(891\) −14.6308 −0.0164207
\(892\) 0 0
\(893\) 1430.58i 1.60199i
\(894\) 0 0
\(895\) − 395.923i − 0.442372i
\(896\) 0 0
\(897\) 960.608 1.07091
\(898\) 0 0
\(899\) −45.6914 −0.0508247
\(900\) 0 0
\(901\) − 916.697i − 1.01742i
\(902\) 0 0
\(903\) − 544.003i − 0.602439i
\(904\) 0 0
\(905\) 433.844 0.479386
\(906\) 0 0
\(907\) −1546.71 −1.70531 −0.852654 0.522476i \(-0.825008\pi\)
−0.852654 + 0.522476i \(0.825008\pi\)
\(908\) 0 0
\(909\) − 201.990i − 0.222212i
\(910\) 0 0
\(911\) 739.818i 0.812094i 0.913852 + 0.406047i \(0.133093\pi\)
−0.913852 + 0.406047i \(0.866907\pi\)
\(912\) 0 0
\(913\) 9.25339 0.0101352
\(914\) 0 0
\(915\) 246.244 0.269119
\(916\) 0 0
\(917\) 166.174i 0.181215i
\(918\) 0 0
\(919\) 334.138i 0.363589i 0.983337 + 0.181795i \(0.0581906\pi\)
−0.983337 + 0.181795i \(0.941809\pi\)
\(920\) 0 0
\(921\) 575.760 0.625146
\(922\) 0 0
\(923\) −874.773 −0.947750
\(924\) 0 0
\(925\) − 214.476i − 0.231866i
\(926\) 0 0
\(927\) − 220.010i − 0.237336i
\(928\) 0 0
\(929\) 668.207 0.719276 0.359638 0.933092i \(-0.382900\pi\)
0.359638 + 0.933092i \(0.382900\pi\)
\(930\) 0 0
\(931\) 651.600 0.699892
\(932\) 0 0
\(933\) 906.997i 0.972129i
\(934\) 0 0
\(935\) − 87.3068i − 0.0933762i
\(936\) 0 0
\(937\) −1204.35 −1.28532 −0.642661 0.766151i \(-0.722170\pi\)
−0.642661 + 0.766151i \(0.722170\pi\)
\(938\) 0 0
\(939\) −326.245 −0.347438
\(940\) 0 0
\(941\) − 794.818i − 0.844653i −0.906444 0.422326i \(-0.861214\pi\)
0.906444 0.422326i \(-0.138786\pi\)
\(942\) 0 0
\(943\) 191.319i 0.202883i
\(944\) 0 0
\(945\) 63.7177 0.0674261
\(946\) 0 0
\(947\) −505.479 −0.533769 −0.266884 0.963729i \(-0.585994\pi\)
−0.266884 + 0.963729i \(0.585994\pi\)
\(948\) 0 0
\(949\) 1681.17i 1.77151i
\(950\) 0 0
\(951\) 682.028i 0.717169i
\(952\) 0 0
\(953\) −586.218 −0.615129 −0.307564 0.951527i \(-0.599514\pi\)
−0.307564 + 0.951527i \(0.599514\pi\)
\(954\) 0 0
\(955\) 730.765 0.765199
\(956\) 0 0
\(957\) − 23.4559i − 0.0245098i
\(958\) 0 0
\(959\) 1020.38i 1.06400i
\(960\) 0 0
\(961\) 930.916 0.968695
\(962\) 0 0
\(963\) −462.582 −0.480355
\(964\) 0 0
\(965\) 571.458i 0.592184i
\(966\) 0 0
\(967\) − 598.983i − 0.619424i −0.950830 0.309712i \(-0.899767\pi\)
0.950830 0.309712i \(-0.100233\pi\)
\(968\) 0 0
\(969\) 1432.23 1.47805
\(970\) 0 0
\(971\) −335.550 −0.345571 −0.172786 0.984959i \(-0.555277\pi\)
−0.172786 + 0.984959i \(0.555277\pi\)
\(972\) 0 0
\(973\) 32.4793i 0.0333806i
\(974\) 0 0
\(975\) − 156.321i − 0.160329i
\(976\) 0 0
\(977\) 1009.81 1.03359 0.516794 0.856110i \(-0.327125\pi\)
0.516794 + 0.856110i \(0.327125\pi\)
\(978\) 0 0
\(979\) −79.8266 −0.0815389
\(980\) 0 0
\(981\) 362.259i 0.369275i
\(982\) 0 0
\(983\) 1449.61i 1.47468i 0.675521 + 0.737340i \(0.263919\pi\)
−0.675521 + 0.737340i \(0.736081\pi\)
\(984\) 0 0
\(985\) −594.914 −0.603973
\(986\) 0 0
\(987\) 394.685 0.399884
\(988\) 0 0
\(989\) − 1759.73i − 1.77931i
\(990\) 0 0
\(991\) 1085.11i 1.09497i 0.836816 + 0.547485i \(0.184415\pi\)
−0.836816 + 0.547485i \(0.815585\pi\)
\(992\) 0 0
\(993\) 163.862 0.165017
\(994\) 0 0
\(995\) 596.112 0.599107
\(996\) 0 0
\(997\) 1471.19i 1.47561i 0.675011 + 0.737807i \(0.264139\pi\)
−0.675011 + 0.737807i \(0.735861\pi\)
\(998\) 0 0
\(999\) 222.890i 0.223113i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.3.g.a.271.14 16
3.2 odd 2 1440.3.g.c.271.3 16
4.3 odd 2 120.3.g.a.91.9 16
5.2 odd 4 2400.3.p.b.1999.27 32
5.3 odd 4 2400.3.p.b.1999.6 32
5.4 even 2 2400.3.g.b.751.5 16
8.3 odd 2 inner 480.3.g.a.271.11 16
8.5 even 2 120.3.g.a.91.10 yes 16
12.11 even 2 360.3.g.c.91.8 16
20.3 even 4 600.3.p.b.499.2 32
20.7 even 4 600.3.p.b.499.31 32
20.19 odd 2 600.3.g.d.451.8 16
24.5 odd 2 360.3.g.c.91.7 16
24.11 even 2 1440.3.g.c.271.14 16
40.3 even 4 2400.3.p.b.1999.28 32
40.13 odd 4 600.3.p.b.499.32 32
40.19 odd 2 2400.3.g.b.751.4 16
40.27 even 4 2400.3.p.b.1999.5 32
40.29 even 2 600.3.g.d.451.7 16
40.37 odd 4 600.3.p.b.499.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.9 16 4.3 odd 2
120.3.g.a.91.10 yes 16 8.5 even 2
360.3.g.c.91.7 16 24.5 odd 2
360.3.g.c.91.8 16 12.11 even 2
480.3.g.a.271.11 16 8.3 odd 2 inner
480.3.g.a.271.14 16 1.1 even 1 trivial
600.3.g.d.451.7 16 40.29 even 2
600.3.g.d.451.8 16 20.19 odd 2
600.3.p.b.499.1 32 40.37 odd 4
600.3.p.b.499.2 32 20.3 even 4
600.3.p.b.499.31 32 20.7 even 4
600.3.p.b.499.32 32 40.13 odd 4
1440.3.g.c.271.3 16 3.2 odd 2
1440.3.g.c.271.14 16 24.11 even 2
2400.3.g.b.751.4 16 40.19 odd 2
2400.3.g.b.751.5 16 5.4 even 2
2400.3.p.b.1999.5 32 40.27 even 4
2400.3.p.b.1999.6 32 5.3 odd 4
2400.3.p.b.1999.27 32 5.2 odd 4
2400.3.p.b.1999.28 32 40.3 even 4