Properties

Label 360.3.g.c.91.7
Level $360$
Weight $3$
Character 360.91
Analytic conductor $9.809$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,3,Mod(91,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.91"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 360.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.80928951697\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + x^{14} + 24 x^{13} - 44 x^{12} - 32 x^{11} + 180 x^{10} - 64 x^{9} - 352 x^{8} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.7
Root \(0.444906 - 1.94989i\) of defining polynomial
Character \(\chi\) \(=\) 360.91
Dual form 360.3.g.c.91.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.444906 - 1.94989i) q^{2} +(-3.60412 - 1.73503i) q^{4} +2.23607i q^{5} -5.48395i q^{7} +(-4.98661 + 6.25570i) q^{8} +(4.36008 + 0.994839i) q^{10} -1.62564 q^{11} -18.0504i q^{13} +(-10.6931 - 2.43984i) q^{14} +(9.97933 + 12.5065i) q^{16} -24.0180 q^{17} -34.4282 q^{19} +(3.87965 - 8.05905i) q^{20} +(-0.723259 + 3.16982i) q^{22} +30.7256i q^{23} -5.00000 q^{25} +(-35.1962 - 8.03071i) q^{26} +(-9.51482 + 19.7648i) q^{28} +8.33039i q^{29} +5.48491i q^{31} +(28.8262 - 13.8943i) q^{32} +(-10.6858 + 46.8324i) q^{34} +12.2625 q^{35} -42.8951i q^{37} +(-15.3173 + 67.1311i) q^{38} +(-13.9882 - 11.1504i) q^{40} +6.22670 q^{41} -57.2727 q^{43} +(5.85901 + 2.82054i) q^{44} +(59.9113 + 13.6700i) q^{46} -41.5525i q^{47} +18.9263 q^{49} +(-2.22453 + 9.74943i) q^{50} +(-31.3180 + 65.0556i) q^{52} -38.1670i q^{53} -3.63505i q^{55} +(34.3059 + 27.3463i) q^{56} +(16.2433 + 3.70624i) q^{58} -70.7342 q^{59} +63.5799i q^{61} +(10.6950 + 2.44027i) q^{62} +(-14.2675 - 62.3894i) q^{64} +40.3618 q^{65} +59.4604 q^{67} +(86.5638 + 41.6720i) q^{68} +(5.45565 - 23.9104i) q^{70} -48.4629i q^{71} +93.1375 q^{73} +(-83.6407 - 19.0843i) q^{74} +(124.083 + 59.7340i) q^{76} +8.91495i q^{77} -60.2424i q^{79} +(-27.9654 + 22.3145i) q^{80} +(2.77030 - 12.1414i) q^{82} -5.69214 q^{83} -53.7060i q^{85} +(-25.4809 + 111.675i) q^{86} +(8.10645 - 10.1695i) q^{88} -49.1046 q^{89} -98.9872 q^{91} +(53.3098 - 110.739i) q^{92} +(-81.0226 - 18.4869i) q^{94} -76.9838i q^{95} +35.9229 q^{97} +(8.42044 - 36.9042i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 14 q^{4} - 20 q^{8} + 10 q^{10} - 64 q^{11} + 20 q^{14} - 14 q^{16} - 32 q^{19} + 40 q^{20} + 28 q^{22} - 80 q^{25} - 36 q^{26} - 28 q^{28} - 36 q^{32} - 72 q^{34} + 240 q^{38} + 10 q^{40}+ \cdots - 428 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.444906 1.94989i 0.222453 0.974943i
\(3\) 0 0
\(4\) −3.60412 1.73503i −0.901029 0.433758i
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 5.48395i 0.783421i −0.920089 0.391710i \(-0.871884\pi\)
0.920089 0.391710i \(-0.128116\pi\)
\(8\) −4.98661 + 6.25570i −0.623326 + 0.781962i
\(9\) 0 0
\(10\) 4.36008 + 0.994839i 0.436008 + 0.0994839i
\(11\) −1.62564 −0.147786 −0.0738929 0.997266i \(-0.523542\pi\)
−0.0738929 + 0.997266i \(0.523542\pi\)
\(12\) 0 0
\(13\) 18.0504i 1.38849i −0.719739 0.694245i \(-0.755739\pi\)
0.719739 0.694245i \(-0.244261\pi\)
\(14\) −10.6931 2.43984i −0.763791 0.174274i
\(15\) 0 0
\(16\) 9.97933 + 12.5065i 0.623708 + 0.781657i
\(17\) −24.0180 −1.41283 −0.706413 0.707800i \(-0.749688\pi\)
−0.706413 + 0.707800i \(0.749688\pi\)
\(18\) 0 0
\(19\) −34.4282 −1.81201 −0.906005 0.423267i \(-0.860883\pi\)
−0.906005 + 0.423267i \(0.860883\pi\)
\(20\) 3.87965 8.05905i 0.193982 0.402953i
\(21\) 0 0
\(22\) −0.723259 + 3.16982i −0.0328754 + 0.144083i
\(23\) 30.7256i 1.33589i 0.744209 + 0.667947i \(0.232827\pi\)
−0.744209 + 0.667947i \(0.767173\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) −35.1962 8.03071i −1.35370 0.308873i
\(27\) 0 0
\(28\) −9.51482 + 19.7648i −0.339815 + 0.705885i
\(29\) 8.33039i 0.287255i 0.989632 + 0.143627i \(0.0458767\pi\)
−0.989632 + 0.143627i \(0.954123\pi\)
\(30\) 0 0
\(31\) 5.48491i 0.176933i 0.996079 + 0.0884663i \(0.0281966\pi\)
−0.996079 + 0.0884663i \(0.971803\pi\)
\(32\) 28.8262 13.8943i 0.900817 0.434198i
\(33\) 0 0
\(34\) −10.6858 + 46.8324i −0.314287 + 1.37742i
\(35\) 12.2625 0.350356
\(36\) 0 0
\(37\) 42.8951i 1.15933i −0.814856 0.579664i \(-0.803184\pi\)
0.814856 0.579664i \(-0.196816\pi\)
\(38\) −15.3173 + 67.1311i −0.403087 + 1.76661i
\(39\) 0 0
\(40\) −13.9882 11.1504i −0.349704 0.278760i
\(41\) 6.22670 0.151871 0.0759354 0.997113i \(-0.475806\pi\)
0.0759354 + 0.997113i \(0.475806\pi\)
\(42\) 0 0
\(43\) −57.2727 −1.33192 −0.665961 0.745986i \(-0.731978\pi\)
−0.665961 + 0.745986i \(0.731978\pi\)
\(44\) 5.85901 + 2.82054i 0.133159 + 0.0641033i
\(45\) 0 0
\(46\) 59.9113 + 13.6700i 1.30242 + 0.297173i
\(47\) 41.5525i 0.884095i −0.896992 0.442048i \(-0.854252\pi\)
0.896992 0.442048i \(-0.145748\pi\)
\(48\) 0 0
\(49\) 18.9263 0.386252
\(50\) −2.22453 + 9.74943i −0.0444906 + 0.194989i
\(51\) 0 0
\(52\) −31.3180 + 65.0556i −0.602268 + 1.25107i
\(53\) 38.1670i 0.720132i −0.932927 0.360066i \(-0.882754\pi\)
0.932927 0.360066i \(-0.117246\pi\)
\(54\) 0 0
\(55\) 3.63505i 0.0660918i
\(56\) 34.3059 + 27.3463i 0.612605 + 0.488327i
\(57\) 0 0
\(58\) 16.2433 + 3.70624i 0.280057 + 0.0639006i
\(59\) −70.7342 −1.19889 −0.599443 0.800418i \(-0.704611\pi\)
−0.599443 + 0.800418i \(0.704611\pi\)
\(60\) 0 0
\(61\) 63.5799i 1.04229i 0.853467 + 0.521147i \(0.174496\pi\)
−0.853467 + 0.521147i \(0.825504\pi\)
\(62\) 10.6950 + 2.44027i 0.172499 + 0.0393592i
\(63\) 0 0
\(64\) −14.2675 62.3894i −0.222929 0.974835i
\(65\) 40.3618 0.620951
\(66\) 0 0
\(67\) 59.4604 0.887468 0.443734 0.896159i \(-0.353654\pi\)
0.443734 + 0.896159i \(0.353654\pi\)
\(68\) 86.5638 + 41.6720i 1.27300 + 0.612824i
\(69\) 0 0
\(70\) 5.45565 23.9104i 0.0779378 0.341578i
\(71\) 48.4629i 0.682576i −0.939959 0.341288i \(-0.889137\pi\)
0.939959 0.341288i \(-0.110863\pi\)
\(72\) 0 0
\(73\) 93.1375 1.27586 0.637928 0.770096i \(-0.279792\pi\)
0.637928 + 0.770096i \(0.279792\pi\)
\(74\) −83.6407 19.0843i −1.13028 0.257896i
\(75\) 0 0
\(76\) 124.083 + 59.7340i 1.63267 + 0.785974i
\(77\) 8.91495i 0.115779i
\(78\) 0 0
\(79\) 60.2424i 0.762562i −0.924459 0.381281i \(-0.875483\pi\)
0.924459 0.381281i \(-0.124517\pi\)
\(80\) −27.9654 + 22.3145i −0.349568 + 0.278931i
\(81\) 0 0
\(82\) 2.77030 12.1414i 0.0337841 0.148065i
\(83\) −5.69214 −0.0685800 −0.0342900 0.999412i \(-0.510917\pi\)
−0.0342900 + 0.999412i \(0.510917\pi\)
\(84\) 0 0
\(85\) 53.7060i 0.631835i
\(86\) −25.4809 + 111.675i −0.296290 + 1.29855i
\(87\) 0 0
\(88\) 8.10645 10.1695i 0.0921188 0.115563i
\(89\) −49.1046 −0.551737 −0.275868 0.961195i \(-0.588965\pi\)
−0.275868 + 0.961195i \(0.588965\pi\)
\(90\) 0 0
\(91\) −98.9872 −1.08777
\(92\) 53.3098 110.739i 0.579454 1.20368i
\(93\) 0 0
\(94\) −81.0226 18.4869i −0.861943 0.196670i
\(95\) 76.9838i 0.810356i
\(96\) 0 0
\(97\) 35.9229 0.370339 0.185170 0.982707i \(-0.440717\pi\)
0.185170 + 0.982707i \(0.440717\pi\)
\(98\) 8.42044 36.9042i 0.0859228 0.376574i
\(99\) 0 0
\(100\) 18.0206 + 8.67516i 0.180206 + 0.0867516i
\(101\) 67.3302i 0.666635i −0.942815 0.333318i \(-0.891832\pi\)
0.942815 0.333318i \(-0.108168\pi\)
\(102\) 0 0
\(103\) 73.3368i 0.712008i −0.934484 0.356004i \(-0.884139\pi\)
0.934484 0.356004i \(-0.115861\pi\)
\(104\) 112.918 + 90.0101i 1.08575 + 0.865482i
\(105\) 0 0
\(106\) −74.4214 16.9807i −0.702088 0.160196i
\(107\) −154.194 −1.44107 −0.720533 0.693421i \(-0.756103\pi\)
−0.720533 + 0.693421i \(0.756103\pi\)
\(108\) 0 0
\(109\) 120.753i 1.10782i −0.832575 0.553912i \(-0.813134\pi\)
0.832575 0.553912i \(-0.186866\pi\)
\(110\) −7.08794 1.61726i −0.0644358 0.0147023i
\(111\) 0 0
\(112\) 68.5851 54.7261i 0.612367 0.488626i
\(113\) 209.411 1.85320 0.926599 0.376050i \(-0.122718\pi\)
0.926599 + 0.376050i \(0.122718\pi\)
\(114\) 0 0
\(115\) −68.7044 −0.597430
\(116\) 14.4535 30.0237i 0.124599 0.258825i
\(117\) 0 0
\(118\) −31.4701 + 137.924i −0.266696 + 1.16885i
\(119\) 131.714i 1.10684i
\(120\) 0 0
\(121\) −118.357 −0.978159
\(122\) 123.974 + 28.2871i 1.01618 + 0.231861i
\(123\) 0 0
\(124\) 9.51650 19.7683i 0.0767459 0.159422i
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 137.663i 1.08396i 0.840391 + 0.541981i \(0.182326\pi\)
−0.840391 + 0.541981i \(0.817674\pi\)
\(128\) −128.000 + 0.0625616i −1.00000 + 0.000488762i
\(129\) 0 0
\(130\) 17.9572 78.7010i 0.138132 0.605393i
\(131\) −30.3019 −0.231312 −0.115656 0.993289i \(-0.536897\pi\)
−0.115656 + 0.993289i \(0.536897\pi\)
\(132\) 0 0
\(133\) 188.802i 1.41957i
\(134\) 26.4543 115.941i 0.197420 0.865231i
\(135\) 0 0
\(136\) 119.769 150.250i 0.880651 1.10478i
\(137\) 186.067 1.35815 0.679076 0.734068i \(-0.262381\pi\)
0.679076 + 0.734068i \(0.262381\pi\)
\(138\) 0 0
\(139\) 5.92262 0.0426087 0.0213044 0.999773i \(-0.493218\pi\)
0.0213044 + 0.999773i \(0.493218\pi\)
\(140\) −44.1954 21.2758i −0.315681 0.151970i
\(141\) 0 0
\(142\) −94.4972 21.5614i −0.665473 0.151841i
\(143\) 29.3435i 0.205199i
\(144\) 0 0
\(145\) −18.6273 −0.128464
\(146\) 41.4374 181.608i 0.283818 1.24389i
\(147\) 0 0
\(148\) −74.4244 + 154.599i −0.502868 + 1.04459i
\(149\) 235.886i 1.58313i −0.611086 0.791564i \(-0.709267\pi\)
0.611086 0.791564i \(-0.290733\pi\)
\(150\) 0 0
\(151\) 56.9382i 0.377074i −0.982066 0.188537i \(-0.939625\pi\)
0.982066 0.188537i \(-0.0603745\pi\)
\(152\) 171.680 215.372i 1.12947 1.41692i
\(153\) 0 0
\(154\) 17.3831 + 3.96631i 0.112878 + 0.0257553i
\(155\) −12.2646 −0.0791267
\(156\) 0 0
\(157\) 304.162i 1.93734i −0.248351 0.968670i \(-0.579889\pi\)
0.248351 0.968670i \(-0.420111\pi\)
\(158\) −117.466 26.8022i −0.743455 0.169634i
\(159\) 0 0
\(160\) 31.0687 + 64.4572i 0.194179 + 0.402858i
\(161\) 168.497 1.04657
\(162\) 0 0
\(163\) 248.671 1.52559 0.762796 0.646640i \(-0.223826\pi\)
0.762796 + 0.646640i \(0.223826\pi\)
\(164\) −22.4418 10.8035i −0.136840 0.0658752i
\(165\) 0 0
\(166\) −2.53246 + 11.0990i −0.0152558 + 0.0668616i
\(167\) 20.4759i 0.122610i 0.998119 + 0.0613051i \(0.0195263\pi\)
−0.998119 + 0.0613051i \(0.980474\pi\)
\(168\) 0 0
\(169\) −156.816 −0.927903
\(170\) −104.721 23.8941i −0.616003 0.140553i
\(171\) 0 0
\(172\) 206.417 + 99.3699i 1.20010 + 0.577732i
\(173\) 10.9926i 0.0635410i 0.999495 + 0.0317705i \(0.0101146\pi\)
−0.999495 + 0.0317705i \(0.989885\pi\)
\(174\) 0 0
\(175\) 27.4197i 0.156684i
\(176\) −16.2228 20.3312i −0.0921752 0.115518i
\(177\) 0 0
\(178\) −21.8469 + 95.7484i −0.122735 + 0.537912i
\(179\) −177.062 −0.989173 −0.494587 0.869128i \(-0.664681\pi\)
−0.494587 + 0.869128i \(0.664681\pi\)
\(180\) 0 0
\(181\) 194.021i 1.07194i 0.844237 + 0.535969i \(0.180054\pi\)
−0.844237 + 0.535969i \(0.819946\pi\)
\(182\) −44.0400 + 193.014i −0.241978 + 1.06052i
\(183\) 0 0
\(184\) −192.210 153.216i −1.04462 0.832697i
\(185\) 95.9164 0.518467
\(186\) 0 0
\(187\) 39.0448 0.208796
\(188\) −72.0949 + 149.760i −0.383483 + 0.796596i
\(189\) 0 0
\(190\) −150.110 34.2505i −0.790051 0.180266i
\(191\) 326.808i 1.71104i 0.517772 + 0.855519i \(0.326762\pi\)
−0.517772 + 0.855519i \(0.673238\pi\)
\(192\) 0 0
\(193\) 255.564 1.32416 0.662082 0.749431i \(-0.269673\pi\)
0.662082 + 0.749431i \(0.269673\pi\)
\(194\) 15.9823 70.0456i 0.0823830 0.361060i
\(195\) 0 0
\(196\) −68.2127 32.8378i −0.348024 0.167540i
\(197\) 266.053i 1.35053i 0.737577 + 0.675263i \(0.235970\pi\)
−0.737577 + 0.675263i \(0.764030\pi\)
\(198\) 0 0
\(199\) 266.589i 1.33964i −0.742521 0.669822i \(-0.766370\pi\)
0.742521 0.669822i \(-0.233630\pi\)
\(200\) 24.9330 31.2785i 0.124665 0.156392i
\(201\) 0 0
\(202\) −131.286 29.9556i −0.649932 0.148295i
\(203\) 45.6834 0.225041
\(204\) 0 0
\(205\) 13.9233i 0.0679187i
\(206\) −142.998 32.6280i −0.694167 0.158388i
\(207\) 0 0
\(208\) 225.747 180.131i 1.08532 0.866012i
\(209\) 55.9680 0.267790
\(210\) 0 0
\(211\) −50.6253 −0.239930 −0.119965 0.992778i \(-0.538278\pi\)
−0.119965 + 0.992778i \(0.538278\pi\)
\(212\) −66.2210 + 137.558i −0.312363 + 0.648861i
\(213\) 0 0
\(214\) −68.6018 + 300.661i −0.320569 + 1.40496i
\(215\) 128.066i 0.595654i
\(216\) 0 0
\(217\) 30.0790 0.138613
\(218\) −235.454 53.7236i −1.08007 0.246439i
\(219\) 0 0
\(220\) −6.30693 + 13.1012i −0.0286679 + 0.0595507i
\(221\) 433.534i 1.96169i
\(222\) 0 0
\(223\) 357.193i 1.60176i 0.598825 + 0.800880i \(0.295635\pi\)
−0.598825 + 0.800880i \(0.704365\pi\)
\(224\) −76.1958 158.081i −0.340160 0.705719i
\(225\) 0 0
\(226\) 93.1684 408.329i 0.412249 1.80676i
\(227\) −135.900 −0.598680 −0.299340 0.954146i \(-0.596767\pi\)
−0.299340 + 0.954146i \(0.596767\pi\)
\(228\) 0 0
\(229\) 396.479i 1.73135i 0.500608 + 0.865674i \(0.333110\pi\)
−0.500608 + 0.865674i \(0.666890\pi\)
\(230\) −30.5670 + 133.966i −0.132900 + 0.582460i
\(231\) 0 0
\(232\) −52.1124 41.5404i −0.224622 0.179053i
\(233\) 95.1970 0.408571 0.204285 0.978911i \(-0.434513\pi\)
0.204285 + 0.978911i \(0.434513\pi\)
\(234\) 0 0
\(235\) 92.9142 0.395379
\(236\) 254.935 + 122.726i 1.08023 + 0.520026i
\(237\) 0 0
\(238\) 256.827 + 58.6001i 1.07910 + 0.246219i
\(239\) 96.9914i 0.405822i 0.979197 + 0.202911i \(0.0650402\pi\)
−0.979197 + 0.202911i \(0.934960\pi\)
\(240\) 0 0
\(241\) 36.2570 0.150444 0.0752220 0.997167i \(-0.476033\pi\)
0.0752220 + 0.997167i \(0.476033\pi\)
\(242\) −52.6578 + 230.783i −0.217594 + 0.953650i
\(243\) 0 0
\(244\) 110.313 229.149i 0.452103 0.939137i
\(245\) 42.3206i 0.172737i
\(246\) 0 0
\(247\) 621.442i 2.51596i
\(248\) −34.3119 27.3511i −0.138355 0.110287i
\(249\) 0 0
\(250\) −21.8004 4.97420i −0.0872016 0.0198968i
\(251\) −323.513 −1.28890 −0.644449 0.764647i \(-0.722913\pi\)
−0.644449 + 0.764647i \(0.722913\pi\)
\(252\) 0 0
\(253\) 49.9488i 0.197426i
\(254\) 268.428 + 61.2471i 1.05680 + 0.241130i
\(255\) 0 0
\(256\) −56.8259 + 249.613i −0.221976 + 0.975052i
\(257\) −403.216 −1.56893 −0.784467 0.620171i \(-0.787063\pi\)
−0.784467 + 0.620171i \(0.787063\pi\)
\(258\) 0 0
\(259\) −235.235 −0.908242
\(260\) −145.469 70.0291i −0.559496 0.269343i
\(261\) 0 0
\(262\) −13.4815 + 59.0853i −0.0514561 + 0.225516i
\(263\) 16.0314i 0.0609561i 0.999535 + 0.0304780i \(0.00970296\pi\)
−0.999535 + 0.0304780i \(0.990297\pi\)
\(264\) 0 0
\(265\) 85.3441 0.322053
\(266\) 368.143 + 83.9993i 1.38400 + 0.315787i
\(267\) 0 0
\(268\) −214.302 103.166i −0.799635 0.384946i
\(269\) 261.953i 0.973804i −0.873457 0.486902i \(-0.838127\pi\)
0.873457 0.486902i \(-0.161873\pi\)
\(270\) 0 0
\(271\) 25.2639i 0.0932246i 0.998913 + 0.0466123i \(0.0148425\pi\)
−0.998913 + 0.0466123i \(0.985157\pi\)
\(272\) −239.684 300.382i −0.881191 1.10435i
\(273\) 0 0
\(274\) 82.7822 362.809i 0.302125 1.32412i
\(275\) 8.12822 0.0295572
\(276\) 0 0
\(277\) 2.48104i 0.00895683i −0.999990 0.00447842i \(-0.998574\pi\)
0.999990 0.00447842i \(-0.00142553\pi\)
\(278\) 2.63501 11.5484i 0.00947844 0.0415411i
\(279\) 0 0
\(280\) −61.1482 + 76.7103i −0.218386 + 0.273965i
\(281\) −386.378 −1.37501 −0.687505 0.726180i \(-0.741294\pi\)
−0.687505 + 0.726180i \(0.741294\pi\)
\(282\) 0 0
\(283\) 115.917 0.409600 0.204800 0.978804i \(-0.434346\pi\)
0.204800 + 0.978804i \(0.434346\pi\)
\(284\) −84.0847 + 174.666i −0.296073 + 0.615021i
\(285\) 0 0
\(286\) 57.2165 + 13.0551i 0.200058 + 0.0456471i
\(287\) 34.1469i 0.118979i
\(288\) 0 0
\(289\) 287.866 0.996076
\(290\) −8.28740 + 36.3211i −0.0285772 + 0.125245i
\(291\) 0 0
\(292\) −335.678 161.596i −1.14958 0.553413i
\(293\) 536.585i 1.83135i −0.401922 0.915674i \(-0.631658\pi\)
0.401922 0.915674i \(-0.368342\pi\)
\(294\) 0 0
\(295\) 158.167i 0.536158i
\(296\) 268.339 + 213.901i 0.906550 + 0.722639i
\(297\) 0 0
\(298\) −459.951 104.947i −1.54346 0.352171i
\(299\) 554.607 1.85487
\(300\) 0 0
\(301\) 314.080i 1.04346i
\(302\) −111.023 25.3321i −0.367626 0.0838812i
\(303\) 0 0
\(304\) −343.570 430.577i −1.13017 1.41637i
\(305\) −142.169 −0.466128
\(306\) 0 0
\(307\) −332.415 −1.08279 −0.541393 0.840770i \(-0.682103\pi\)
−0.541393 + 0.840770i \(0.682103\pi\)
\(308\) 15.4677 32.1305i 0.0502199 0.104320i
\(309\) 0 0
\(310\) −5.45661 + 23.9147i −0.0176020 + 0.0771441i
\(311\) 523.655i 1.68378i −0.539651 0.841889i \(-0.681444\pi\)
0.539651 0.841889i \(-0.318556\pi\)
\(312\) 0 0
\(313\) −188.357 −0.601781 −0.300890 0.953659i \(-0.597284\pi\)
−0.300890 + 0.953659i \(0.597284\pi\)
\(314\) −593.082 135.324i −1.88880 0.430967i
\(315\) 0 0
\(316\) −104.523 + 217.121i −0.330768 + 0.687091i
\(317\) 393.769i 1.24217i 0.783742 + 0.621087i \(0.213308\pi\)
−0.783742 + 0.621087i \(0.786692\pi\)
\(318\) 0 0
\(319\) 13.5422i 0.0424522i
\(320\) 139.507 31.9031i 0.435959 0.0996970i
\(321\) 0 0
\(322\) 74.9654 328.551i 0.232812 1.02034i
\(323\) 826.897 2.56005
\(324\) 0 0
\(325\) 90.2518i 0.277698i
\(326\) 110.635 484.881i 0.339372 1.48737i
\(327\) 0 0
\(328\) −31.0501 + 38.9524i −0.0946650 + 0.118757i
\(329\) −227.872 −0.692619
\(330\) 0 0
\(331\) −94.6057 −0.285818 −0.142909 0.989736i \(-0.545646\pi\)
−0.142909 + 0.989736i \(0.545646\pi\)
\(332\) 20.5151 + 9.87604i 0.0617926 + 0.0297471i
\(333\) 0 0
\(334\) 39.9257 + 9.10984i 0.119538 + 0.0272750i
\(335\) 132.957i 0.396888i
\(336\) 0 0
\(337\) −520.784 −1.54535 −0.772676 0.634800i \(-0.781082\pi\)
−0.772676 + 0.634800i \(0.781082\pi\)
\(338\) −69.7682 + 305.773i −0.206415 + 0.904653i
\(339\) 0 0
\(340\) −93.1815 + 193.563i −0.274063 + 0.569302i
\(341\) 8.91652i 0.0261481i
\(342\) 0 0
\(343\) 372.504i 1.08602i
\(344\) 285.596 358.280i 0.830222 1.04151i
\(345\) 0 0
\(346\) 21.4343 + 4.89067i 0.0619489 + 0.0141349i
\(347\) 21.6254 0.0623210 0.0311605 0.999514i \(-0.490080\pi\)
0.0311605 + 0.999514i \(0.490080\pi\)
\(348\) 0 0
\(349\) 241.608i 0.692286i −0.938182 0.346143i \(-0.887491\pi\)
0.938182 0.346143i \(-0.112509\pi\)
\(350\) 53.4654 + 12.1992i 0.152758 + 0.0348548i
\(351\) 0 0
\(352\) −46.8611 + 22.5873i −0.133128 + 0.0641684i
\(353\) 100.887 0.285799 0.142899 0.989737i \(-0.454357\pi\)
0.142899 + 0.989737i \(0.454357\pi\)
\(354\) 0 0
\(355\) 108.366 0.305257
\(356\) 176.979 + 85.1980i 0.497131 + 0.239320i
\(357\) 0 0
\(358\) −78.7759 + 345.251i −0.220044 + 0.964388i
\(359\) 161.368i 0.449494i 0.974417 + 0.224747i \(0.0721556\pi\)
−0.974417 + 0.224747i \(0.927844\pi\)
\(360\) 0 0
\(361\) 824.301 2.28338
\(362\) 378.319 + 86.3210i 1.04508 + 0.238456i
\(363\) 0 0
\(364\) 356.762 + 171.746i 0.980114 + 0.471830i
\(365\) 208.262i 0.570580i
\(366\) 0 0
\(367\) 301.732i 0.822157i 0.911600 + 0.411079i \(0.134848\pi\)
−0.911600 + 0.411079i \(0.865152\pi\)
\(368\) −384.270 + 306.620i −1.04421 + 0.833208i
\(369\) 0 0
\(370\) 42.6738 187.026i 0.115335 0.505476i
\(371\) −209.306 −0.564167
\(372\) 0 0
\(373\) 263.001i 0.705097i −0.935794 0.352548i \(-0.885315\pi\)
0.935794 0.352548i \(-0.114685\pi\)
\(374\) 17.3712 76.1329i 0.0464472 0.203564i
\(375\) 0 0
\(376\) 259.940 + 207.206i 0.691329 + 0.551080i
\(377\) 150.367 0.398850
\(378\) 0 0
\(379\) −9.55298 −0.0252057 −0.0126029 0.999921i \(-0.504012\pi\)
−0.0126029 + 0.999921i \(0.504012\pi\)
\(380\) −133.569 + 277.459i −0.351498 + 0.730154i
\(381\) 0 0
\(382\) 637.239 + 145.399i 1.66816 + 0.380625i
\(383\) 319.027i 0.832968i −0.909143 0.416484i \(-0.863262\pi\)
0.909143 0.416484i \(-0.136738\pi\)
\(384\) 0 0
\(385\) −19.9344 −0.0517777
\(386\) 113.702 498.320i 0.294564 1.29098i
\(387\) 0 0
\(388\) −129.470 62.3274i −0.333687 0.160638i
\(389\) 108.219i 0.278198i 0.990278 + 0.139099i \(0.0444206\pi\)
−0.990278 + 0.139099i \(0.955579\pi\)
\(390\) 0 0
\(391\) 737.967i 1.88738i
\(392\) −94.3782 + 118.397i −0.240761 + 0.302034i
\(393\) 0 0
\(394\) 518.774 + 118.369i 1.31669 + 0.300428i
\(395\) 134.706 0.341028
\(396\) 0 0
\(397\) 533.165i 1.34299i −0.741011 0.671493i \(-0.765654\pi\)
0.741011 0.671493i \(-0.234346\pi\)
\(398\) −519.819 118.607i −1.30608 0.298008i
\(399\) 0 0
\(400\) −49.8967 62.5326i −0.124742 0.156331i
\(401\) −610.423 −1.52225 −0.761126 0.648604i \(-0.775353\pi\)
−0.761126 + 0.648604i \(0.775353\pi\)
\(402\) 0 0
\(403\) 99.0047 0.245669
\(404\) −116.820 + 242.666i −0.289158 + 0.600658i
\(405\) 0 0
\(406\) 20.3248 89.0774i 0.0500611 0.219403i
\(407\) 69.7322i 0.171332i
\(408\) 0 0
\(409\) −174.487 −0.426618 −0.213309 0.976985i \(-0.568424\pi\)
−0.213309 + 0.976985i \(0.568424\pi\)
\(410\) 27.1489 + 6.19457i 0.0662169 + 0.0151087i
\(411\) 0 0
\(412\) −127.242 + 264.314i −0.308839 + 0.641540i
\(413\) 387.903i 0.939232i
\(414\) 0 0
\(415\) 12.7280i 0.0306699i
\(416\) −250.798 520.323i −0.602880 1.25078i
\(417\) 0 0
\(418\) 24.9005 109.131i 0.0595705 0.261080i
\(419\) −35.8925 −0.0856622 −0.0428311 0.999082i \(-0.513638\pi\)
−0.0428311 + 0.999082i \(0.513638\pi\)
\(420\) 0 0
\(421\) 236.757i 0.562368i 0.959654 + 0.281184i \(0.0907271\pi\)
−0.959654 + 0.281184i \(0.909273\pi\)
\(422\) −22.5235 + 98.7136i −0.0533732 + 0.233918i
\(423\) 0 0
\(424\) 238.761 + 190.324i 0.563116 + 0.448877i
\(425\) 120.090 0.282565
\(426\) 0 0
\(427\) 348.669 0.816554
\(428\) 555.733 + 267.532i 1.29844 + 0.625074i
\(429\) 0 0
\(430\) −249.713 56.9771i −0.580729 0.132505i
\(431\) 195.847i 0.454403i 0.973848 + 0.227201i \(0.0729575\pi\)
−0.973848 + 0.227201i \(0.927042\pi\)
\(432\) 0 0
\(433\) −66.2067 −0.152902 −0.0764512 0.997073i \(-0.524359\pi\)
−0.0764512 + 0.997073i \(0.524359\pi\)
\(434\) 13.3823 58.6506i 0.0308348 0.135140i
\(435\) 0 0
\(436\) −209.510 + 435.208i −0.480528 + 0.998183i
\(437\) 1057.83i 2.42065i
\(438\) 0 0
\(439\) 551.797i 1.25694i 0.777834 + 0.628470i \(0.216319\pi\)
−0.777834 + 0.628470i \(0.783681\pi\)
\(440\) 22.7398 + 18.1266i 0.0516813 + 0.0411968i
\(441\) 0 0
\(442\) 845.343 + 192.882i 1.91254 + 0.436384i
\(443\) 277.959 0.627446 0.313723 0.949515i \(-0.398424\pi\)
0.313723 + 0.949515i \(0.398424\pi\)
\(444\) 0 0
\(445\) 109.801i 0.246744i
\(446\) 696.485 + 158.917i 1.56163 + 0.356316i
\(447\) 0 0
\(448\) −342.140 + 78.2421i −0.763706 + 0.174647i
\(449\) 147.609 0.328752 0.164376 0.986398i \(-0.447439\pi\)
0.164376 + 0.986398i \(0.447439\pi\)
\(450\) 0 0
\(451\) −10.1224 −0.0224444
\(452\) −754.744 363.336i −1.66979 0.803840i
\(453\) 0 0
\(454\) −60.4629 + 264.990i −0.133178 + 0.583679i
\(455\) 221.342i 0.486466i
\(456\) 0 0
\(457\) −485.661 −1.06272 −0.531358 0.847147i \(-0.678318\pi\)
−0.531358 + 0.847147i \(0.678318\pi\)
\(458\) 773.089 + 176.396i 1.68797 + 0.385143i
\(459\) 0 0
\(460\) 247.619 + 119.204i 0.538302 + 0.259140i
\(461\) 447.963i 0.971721i 0.874036 + 0.485861i \(0.161494\pi\)
−0.874036 + 0.485861i \(0.838506\pi\)
\(462\) 0 0
\(463\) 762.712i 1.64733i −0.567080 0.823663i \(-0.691927\pi\)
0.567080 0.823663i \(-0.308073\pi\)
\(464\) −104.184 + 83.1317i −0.224535 + 0.179163i
\(465\) 0 0
\(466\) 42.3537 185.623i 0.0908877 0.398333i
\(467\) 838.223 1.79491 0.897455 0.441106i \(-0.145414\pi\)
0.897455 + 0.441106i \(0.145414\pi\)
\(468\) 0 0
\(469\) 326.077i 0.695261i
\(470\) 41.3380 181.172i 0.0879533 0.385473i
\(471\) 0 0
\(472\) 352.724 442.492i 0.747297 0.937483i
\(473\) 93.1050 0.196839
\(474\) 0 0
\(475\) 172.141 0.362402
\(476\) 228.527 474.711i 0.480099 0.997293i
\(477\) 0 0
\(478\) 189.122 + 43.1520i 0.395653 + 0.0902762i
\(479\) 150.795i 0.314812i 0.987534 + 0.157406i \(0.0503131\pi\)
−0.987534 + 0.157406i \(0.949687\pi\)
\(480\) 0 0
\(481\) −774.273 −1.60971
\(482\) 16.1309 70.6970i 0.0334667 0.146674i
\(483\) 0 0
\(484\) 426.574 + 205.354i 0.881350 + 0.424284i
\(485\) 80.3261i 0.165621i
\(486\) 0 0
\(487\) 148.464i 0.304855i −0.988315 0.152427i \(-0.951291\pi\)
0.988315 0.152427i \(-0.0487090\pi\)
\(488\) −397.736 317.048i −0.815034 0.649688i
\(489\) 0 0
\(490\) 82.5203 + 18.8287i 0.168409 + 0.0384259i
\(491\) −76.8116 −0.156439 −0.0782196 0.996936i \(-0.524924\pi\)
−0.0782196 + 0.996936i \(0.524924\pi\)
\(492\) 0 0
\(493\) 200.079i 0.405841i
\(494\) 1211.74 + 276.483i 2.45292 + 0.559682i
\(495\) 0 0
\(496\) −68.5972 + 54.7358i −0.138301 + 0.110354i
\(497\) −265.768 −0.534744
\(498\) 0 0
\(499\) 564.248 1.13076 0.565379 0.824832i \(-0.308730\pi\)
0.565379 + 0.824832i \(0.308730\pi\)
\(500\) −19.3982 + 40.2953i −0.0387965 + 0.0805905i
\(501\) 0 0
\(502\) −143.933 + 630.815i −0.286719 + 1.25660i
\(503\) 223.999i 0.445327i −0.974895 0.222663i \(-0.928525\pi\)
0.974895 0.222663i \(-0.0714750\pi\)
\(504\) 0 0
\(505\) 150.555 0.298128
\(506\) −97.3946 22.2225i −0.192479 0.0439180i
\(507\) 0 0
\(508\) 238.850 496.154i 0.470177 0.976682i
\(509\) 174.435i 0.342701i −0.985210 0.171350i \(-0.945187\pi\)
0.985210 0.171350i \(-0.0548130\pi\)
\(510\) 0 0
\(511\) 510.761i 0.999532i
\(512\) 461.436 + 221.859i 0.901241 + 0.433317i
\(513\) 0 0
\(514\) −179.393 + 786.226i −0.349014 + 1.52962i
\(515\) 163.986 0.318420
\(516\) 0 0
\(517\) 67.5496i 0.130657i
\(518\) −104.657 + 458.681i −0.202041 + 0.885484i
\(519\) 0 0
\(520\) −201.269 + 252.491i −0.387055 + 0.485560i
\(521\) −478.465 −0.918358 −0.459179 0.888344i \(-0.651856\pi\)
−0.459179 + 0.888344i \(0.651856\pi\)
\(522\) 0 0
\(523\) −491.609 −0.939979 −0.469990 0.882672i \(-0.655742\pi\)
−0.469990 + 0.882672i \(0.655742\pi\)
\(524\) 109.212 + 52.5748i 0.208419 + 0.100334i
\(525\) 0 0
\(526\) 31.2595 + 7.13248i 0.0594287 + 0.0135599i
\(527\) 131.737i 0.249975i
\(528\) 0 0
\(529\) −415.059 −0.784611
\(530\) 37.9701 166.411i 0.0716416 0.313983i
\(531\) 0 0
\(532\) 327.578 680.466i 0.615748 1.27907i
\(533\) 112.394i 0.210871i
\(534\) 0 0
\(535\) 344.788i 0.644464i
\(536\) −296.505 + 371.966i −0.553182 + 0.693966i
\(537\) 0 0
\(538\) −510.779 116.545i −0.949404 0.216625i
\(539\) −30.7675 −0.0570826
\(540\) 0 0
\(541\) 166.802i 0.308322i 0.988046 + 0.154161i \(0.0492674\pi\)
−0.988046 + 0.154161i \(0.950733\pi\)
\(542\) 49.2617 + 11.2400i 0.0908887 + 0.0207381i
\(543\) 0 0
\(544\) −692.347 + 333.715i −1.27270 + 0.613446i
\(545\) 270.012 0.495434
\(546\) 0 0
\(547\) 166.395 0.304195 0.152098 0.988365i \(-0.451397\pi\)
0.152098 + 0.988365i \(0.451397\pi\)
\(548\) −670.606 322.832i −1.22373 0.589109i
\(549\) 0 0
\(550\) 3.61629 15.8491i 0.00657508 0.0288166i
\(551\) 286.800i 0.520508i
\(552\) 0 0
\(553\) −330.366 −0.597407
\(554\) −4.83775 1.10383i −0.00873240 0.00199247i
\(555\) 0 0
\(556\) −21.3458 10.2759i −0.0383917 0.0184819i
\(557\) 267.280i 0.479856i −0.970791 0.239928i \(-0.922876\pi\)
0.970791 0.239928i \(-0.0771238\pi\)
\(558\) 0 0
\(559\) 1033.79i 1.84936i
\(560\) 122.371 + 153.361i 0.218520 + 0.273859i
\(561\) 0 0
\(562\) −171.902 + 753.393i −0.305875 + 1.34056i
\(563\) −637.679 −1.13264 −0.566322 0.824184i \(-0.691634\pi\)
−0.566322 + 0.824184i \(0.691634\pi\)
\(564\) 0 0
\(565\) 468.258i 0.828776i
\(566\) 51.5720 226.024i 0.0911166 0.399337i
\(567\) 0 0
\(568\) 303.169 + 241.666i 0.533749 + 0.425467i
\(569\) −58.7735 −0.103293 −0.0516463 0.998665i \(-0.516447\pi\)
−0.0516463 + 0.998665i \(0.516447\pi\)
\(570\) 0 0
\(571\) −3.25216 −0.00569555 −0.00284778 0.999996i \(-0.500906\pi\)
−0.00284778 + 0.999996i \(0.500906\pi\)
\(572\) 50.9119 105.757i 0.0890068 0.184890i
\(573\) 0 0
\(574\) −66.5826 15.1922i −0.115998 0.0264672i
\(575\) 153.628i 0.267179i
\(576\) 0 0
\(577\) 366.712 0.635549 0.317775 0.948166i \(-0.397064\pi\)
0.317775 + 0.948166i \(0.397064\pi\)
\(578\) 128.073 561.306i 0.221580 0.971117i
\(579\) 0 0
\(580\) 67.1350 + 32.3190i 0.115750 + 0.0557224i
\(581\) 31.2154i 0.0537270i
\(582\) 0 0
\(583\) 62.0460i 0.106425i
\(584\) −464.440 + 582.640i −0.795274 + 0.997671i
\(585\) 0 0
\(586\) −1046.28 238.730i −1.78546 0.407389i
\(587\) −203.754 −0.347111 −0.173556 0.984824i \(-0.555526\pi\)
−0.173556 + 0.984824i \(0.555526\pi\)
\(588\) 0 0
\(589\) 188.836i 0.320604i
\(590\) −308.407 70.3692i −0.522724 0.119270i
\(591\) 0 0
\(592\) 536.469 428.065i 0.906197 0.723082i
\(593\) −291.378 −0.491362 −0.245681 0.969351i \(-0.579012\pi\)
−0.245681 + 0.969351i \(0.579012\pi\)
\(594\) 0 0
\(595\) −294.521 −0.494992
\(596\) −409.270 + 850.161i −0.686694 + 1.42644i
\(597\) 0 0
\(598\) 246.748 1081.42i 0.412622 1.80840i
\(599\) 855.966i 1.42899i −0.699640 0.714495i \(-0.746656\pi\)
0.699640 0.714495i \(-0.253344\pi\)
\(600\) 0 0
\(601\) −426.264 −0.709258 −0.354629 0.935007i \(-0.615393\pi\)
−0.354629 + 0.935007i \(0.615393\pi\)
\(602\) 612.421 + 139.736i 1.01731 + 0.232120i
\(603\) 0 0
\(604\) −98.7895 + 205.212i −0.163559 + 0.339755i
\(605\) 264.655i 0.437446i
\(606\) 0 0
\(607\) 410.035i 0.675510i 0.941234 + 0.337755i \(0.109668\pi\)
−0.941234 + 0.337755i \(0.890332\pi\)
\(608\) −992.433 + 478.357i −1.63229 + 0.786772i
\(609\) 0 0
\(610\) −63.2518 + 277.213i −0.103691 + 0.454448i
\(611\) −750.037 −1.22756
\(612\) 0 0
\(613\) 252.628i 0.412118i −0.978540 0.206059i \(-0.933936\pi\)
0.978540 0.206059i \(-0.0660639\pi\)
\(614\) −147.893 + 648.172i −0.240869 + 1.05565i
\(615\) 0 0
\(616\) −55.7692 44.4553i −0.0905344 0.0721678i
\(617\) −234.903 −0.380718 −0.190359 0.981715i \(-0.560965\pi\)
−0.190359 + 0.981715i \(0.560965\pi\)
\(618\) 0 0
\(619\) 412.764 0.666824 0.333412 0.942781i \(-0.391800\pi\)
0.333412 + 0.942781i \(0.391800\pi\)
\(620\) 44.2032 + 21.2795i 0.0712955 + 0.0343218i
\(621\) 0 0
\(622\) −1021.07 232.977i −1.64159 0.374561i
\(623\) 269.287i 0.432242i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) −83.8013 + 367.276i −0.133868 + 0.586702i
\(627\) 0 0
\(628\) −527.731 + 1096.24i −0.840337 + 1.74560i
\(629\) 1030.26i 1.63793i
\(630\) 0 0
\(631\) 969.308i 1.53615i −0.640363 0.768073i \(-0.721216\pi\)
0.640363 0.768073i \(-0.278784\pi\)
\(632\) 376.858 + 300.405i 0.596295 + 0.475325i
\(633\) 0 0
\(634\) 767.805 + 175.190i 1.21105 + 0.276325i
\(635\) −307.824 −0.484763
\(636\) 0 0
\(637\) 341.627i 0.536307i
\(638\) −26.4058 6.02502i −0.0413885 0.00944361i
\(639\) 0 0
\(640\) −0.139892 286.217i −0.000218581 0.447214i
\(641\) 805.292 1.25631 0.628153 0.778090i \(-0.283811\pi\)
0.628153 + 0.778090i \(0.283811\pi\)
\(642\) 0 0
\(643\) 887.377 1.38006 0.690028 0.723782i \(-0.257598\pi\)
0.690028 + 0.723782i \(0.257598\pi\)
\(644\) −607.284 292.348i −0.942988 0.453957i
\(645\) 0 0
\(646\) 367.891 1612.36i 0.569491 2.49591i
\(647\) 1129.74i 1.74612i 0.487614 + 0.873059i \(0.337867\pi\)
−0.487614 + 0.873059i \(0.662133\pi\)
\(648\) 0 0
\(649\) 114.989 0.177178
\(650\) 175.981 + 40.1536i 0.270740 + 0.0617747i
\(651\) 0 0
\(652\) −896.241 431.453i −1.37460 0.661737i
\(653\) 384.844i 0.589348i −0.955598 0.294674i \(-0.904789\pi\)
0.955598 0.294674i \(-0.0952111\pi\)
\(654\) 0 0
\(655\) 67.7572i 0.103446i
\(656\) 62.1383 + 77.8744i 0.0947231 + 0.118711i
\(657\) 0 0
\(658\) −101.381 + 444.324i −0.154075 + 0.675264i
\(659\) −38.8992 −0.0590276 −0.0295138 0.999564i \(-0.509396\pi\)
−0.0295138 + 0.999564i \(0.509396\pi\)
\(660\) 0 0
\(661\) 877.861i 1.32808i 0.747697 + 0.664040i \(0.231159\pi\)
−0.747697 + 0.664040i \(0.768841\pi\)
\(662\) −42.0906 + 184.470i −0.0635810 + 0.278656i
\(663\) 0 0
\(664\) 28.3845 35.6083i 0.0427477 0.0536269i
\(665\) −422.175 −0.634850
\(666\) 0 0
\(667\) −255.956 −0.383742
\(668\) 35.5263 73.7975i 0.0531831 0.110475i
\(669\) 0 0
\(670\) 259.252 + 59.1535i 0.386943 + 0.0882888i
\(671\) 103.358i 0.154036i
\(672\) 0 0
\(673\) −343.747 −0.510768 −0.255384 0.966840i \(-0.582202\pi\)
−0.255384 + 0.966840i \(0.582202\pi\)
\(674\) −231.700 + 1015.47i −0.343768 + 1.50663i
\(675\) 0 0
\(676\) 565.182 + 272.080i 0.836068 + 0.402485i
\(677\) 404.932i 0.598126i −0.954233 0.299063i \(-0.903326\pi\)
0.954233 0.299063i \(-0.0966741\pi\)
\(678\) 0 0
\(679\) 196.999i 0.290132i
\(680\) 335.968 + 267.811i 0.494071 + 0.393839i
\(681\) 0 0
\(682\) −17.3862 3.96701i −0.0254930 0.00581673i
\(683\) −145.169 −0.212546 −0.106273 0.994337i \(-0.533892\pi\)
−0.106273 + 0.994337i \(0.533892\pi\)
\(684\) 0 0
\(685\) 416.058i 0.607384i
\(686\) −726.341 165.729i −1.05881 0.241588i
\(687\) 0 0
\(688\) −571.543 716.282i −0.830731 1.04111i
\(689\) −688.929 −0.999896
\(690\) 0 0
\(691\) −104.860 −0.151751 −0.0758757 0.997117i \(-0.524175\pi\)
−0.0758757 + 0.997117i \(0.524175\pi\)
\(692\) 19.0725 39.6186i 0.0275614 0.0572523i
\(693\) 0 0
\(694\) 9.62126 42.1671i 0.0138635 0.0607595i
\(695\) 13.2434i 0.0190552i
\(696\) 0 0
\(697\) −149.553 −0.214567
\(698\) −471.108 107.493i −0.674940 0.154001i
\(699\) 0 0
\(700\) 47.5741 98.8239i 0.0679630 0.141177i
\(701\) 88.5728i 0.126352i 0.998002 + 0.0631760i \(0.0201229\pi\)
−0.998002 + 0.0631760i \(0.979877\pi\)
\(702\) 0 0
\(703\) 1476.80i 2.10071i
\(704\) 23.1938 + 101.423i 0.0329458 + 0.144067i
\(705\) 0 0
\(706\) 44.8852 196.718i 0.0635768 0.278638i
\(707\) −369.235 −0.522256
\(708\) 0 0
\(709\) 295.500i 0.416784i 0.978045 + 0.208392i \(0.0668230\pi\)
−0.978045 + 0.208392i \(0.933177\pi\)
\(710\) 48.2128 211.302i 0.0679054 0.297609i
\(711\) 0 0
\(712\) 244.865 307.183i 0.343912 0.431437i
\(713\) −168.527 −0.236363
\(714\) 0 0
\(715\) −65.6140 −0.0917678
\(716\) 638.152 + 307.208i 0.891274 + 0.429062i
\(717\) 0 0
\(718\) 314.650 + 71.7937i 0.438231 + 0.0999913i
\(719\) 464.090i 0.645467i 0.946490 + 0.322733i \(0.104602\pi\)
−0.946490 + 0.322733i \(0.895398\pi\)
\(720\) 0 0
\(721\) −402.175 −0.557802
\(722\) 366.736 1607.29i 0.507945 2.22617i
\(723\) 0 0
\(724\) 336.633 699.274i 0.464962 0.965849i
\(725\) 41.6519i 0.0574509i
\(726\) 0 0
\(727\) 1052.48i 1.44771i −0.689952 0.723855i \(-0.742369\pi\)
0.689952 0.723855i \(-0.257631\pi\)
\(728\) 493.611 619.234i 0.678036 0.850596i
\(729\) 0 0
\(730\) 406.087 + 92.6568i 0.556283 + 0.126927i
\(731\) 1375.58 1.88177
\(732\) 0 0
\(733\) 82.5148i 0.112571i −0.998415 0.0562857i \(-0.982074\pi\)
0.998415 0.0562857i \(-0.0179258\pi\)
\(734\) 588.343 + 134.242i 0.801557 + 0.182891i
\(735\) 0 0
\(736\) 426.911 + 885.699i 0.580043 + 1.20340i
\(737\) −96.6614 −0.131155
\(738\) 0 0
\(739\) 214.733 0.290572 0.145286 0.989390i \(-0.453590\pi\)
0.145286 + 0.989390i \(0.453590\pi\)
\(740\) −345.694 166.418i −0.467154 0.224889i
\(741\) 0 0
\(742\) −93.1214 + 408.123i −0.125501 + 0.550031i
\(743\) 96.3747i 0.129710i −0.997895 0.0648551i \(-0.979341\pi\)
0.997895 0.0648551i \(-0.0206585\pi\)
\(744\) 0 0
\(745\) 527.457 0.707996
\(746\) −512.822 117.011i −0.687429 0.156851i
\(747\) 0 0
\(748\) −140.722 67.7439i −0.188131 0.0905668i
\(749\) 845.592i 1.12896i
\(750\) 0 0
\(751\) 547.767i 0.729384i 0.931128 + 0.364692i \(0.118826\pi\)
−0.931128 + 0.364692i \(0.881174\pi\)
\(752\) 519.677 414.666i 0.691060 0.551417i
\(753\) 0 0
\(754\) 66.8989 293.198i 0.0887254 0.388856i
\(755\) 127.318 0.168633
\(756\) 0 0
\(757\) 516.109i 0.681782i −0.940103 0.340891i \(-0.889271\pi\)
0.940103 0.340891i \(-0.110729\pi\)
\(758\) −4.25017 + 18.6272i −0.00560709 + 0.0245742i
\(759\) 0 0
\(760\) 481.587 + 383.888i 0.633667 + 0.505116i
\(761\) 446.601 0.586861 0.293430 0.955980i \(-0.405203\pi\)
0.293430 + 0.955980i \(0.405203\pi\)
\(762\) 0 0
\(763\) −662.202 −0.867893
\(764\) 567.023 1177.86i 0.742176 1.54170i
\(765\) 0 0
\(766\) −622.066 141.937i −0.812097 0.185296i
\(767\) 1276.78i 1.66464i
\(768\) 0 0
\(769\) −253.980 −0.330273 −0.165136 0.986271i \(-0.552806\pi\)
−0.165136 + 0.986271i \(0.552806\pi\)
\(770\) −8.86894 + 38.8699i −0.0115181 + 0.0504804i
\(771\) 0 0
\(772\) −921.081 443.411i −1.19311 0.574367i
\(773\) 226.748i 0.293335i −0.989186 0.146667i \(-0.953145\pi\)
0.989186 0.146667i \(-0.0468547\pi\)
\(774\) 0 0
\(775\) 27.4246i 0.0353865i
\(776\) −179.134 + 224.723i −0.230842 + 0.289591i
\(777\) 0 0
\(778\) 211.015 + 48.1473i 0.271227 + 0.0618860i
\(779\) −214.374 −0.275192
\(780\) 0 0
\(781\) 78.7835i 0.100875i
\(782\) −1438.95 328.326i −1.84009 0.419854i
\(783\) 0 0
\(784\) 188.872 + 236.703i 0.240908 + 0.301917i
\(785\) 680.128 0.866405
\(786\) 0 0
\(787\) −86.1883 −0.109515 −0.0547575 0.998500i \(-0.517439\pi\)
−0.0547575 + 0.998500i \(0.517439\pi\)
\(788\) 461.611 958.888i 0.585801 1.21686i
\(789\) 0 0
\(790\) 59.9315 262.662i 0.0758627 0.332483i
\(791\) 1148.40i 1.45183i
\(792\) 0 0
\(793\) 1147.64 1.44721
\(794\) −1039.61 237.208i −1.30933 0.298751i
\(795\) 0 0
\(796\) −462.541 + 960.819i −0.581082 + 1.20706i
\(797\) 661.678i 0.830211i −0.909773 0.415105i \(-0.863745\pi\)
0.909773 0.415105i \(-0.136255\pi\)
\(798\) 0 0
\(799\) 998.009i 1.24907i
\(800\) −144.131 + 69.4717i −0.180163 + 0.0868397i
\(801\) 0 0
\(802\) −271.581 + 1190.26i −0.338629 + 1.48411i
\(803\) −151.408 −0.188553
\(804\) 0 0
\(805\) 376.771i 0.468039i
\(806\) 44.0477 193.048i 0.0546498 0.239514i
\(807\) 0 0
\(808\) 421.197 + 335.749i 0.521283 + 0.415531i
\(809\) 1095.50 1.35414 0.677070 0.735919i \(-0.263250\pi\)
0.677070 + 0.735919i \(0.263250\pi\)
\(810\) 0 0
\(811\) −743.013 −0.916169 −0.458084 0.888909i \(-0.651464\pi\)
−0.458084 + 0.888909i \(0.651464\pi\)
\(812\) −164.648 79.2621i −0.202769 0.0976135i
\(813\) 0 0
\(814\) 135.970 + 31.0243i 0.167039 + 0.0381134i
\(815\) 556.046i 0.682265i
\(816\) 0 0
\(817\) 1971.79 2.41346
\(818\) −77.6301 + 340.229i −0.0949023 + 0.415928i
\(819\) 0 0
\(820\) 24.1574 50.1813i 0.0294603 0.0611968i
\(821\) 1269.96i 1.54685i 0.633888 + 0.773425i \(0.281458\pi\)
−0.633888 + 0.773425i \(0.718542\pi\)
\(822\) 0 0
\(823\) 297.950i 0.362029i 0.983480 + 0.181015i \(0.0579381\pi\)
−0.983480 + 0.181015i \(0.942062\pi\)
\(824\) 458.773 + 365.702i 0.556763 + 0.443813i
\(825\) 0 0
\(826\) 756.367 + 172.580i 0.915698 + 0.208935i
\(827\) 386.605 0.467478 0.233739 0.972299i \(-0.424904\pi\)
0.233739 + 0.972299i \(0.424904\pi\)
\(828\) 0 0
\(829\) 606.395i 0.731478i −0.930717 0.365739i \(-0.880816\pi\)
0.930717 0.365739i \(-0.119184\pi\)
\(830\) −24.8182 5.66276i −0.0299014 0.00682261i
\(831\) 0 0
\(832\) −1126.15 + 257.533i −1.35355 + 0.309535i
\(833\) −454.573 −0.545706
\(834\) 0 0
\(835\) −45.7855 −0.0548329
\(836\) −201.715 97.1063i −0.241286 0.116156i
\(837\) 0 0
\(838\) −15.9688 + 69.9863i −0.0190558 + 0.0835158i
\(839\) 634.313i 0.756035i 0.925799 + 0.378017i \(0.123394\pi\)
−0.925799 + 0.378017i \(0.876606\pi\)
\(840\) 0 0
\(841\) 771.605 0.917485
\(842\) 461.649 + 105.334i 0.548277 + 0.125100i
\(843\) 0 0
\(844\) 182.459 + 87.8365i 0.216184 + 0.104072i
\(845\) 350.651i 0.414971i
\(846\) 0 0
\(847\) 649.065i 0.766310i
\(848\) 477.336 380.881i 0.562897 0.449152i
\(849\) 0 0
\(850\) 53.4288 234.162i 0.0628574 0.275485i
\(851\) 1317.98 1.54874
\(852\) 0 0
\(853\) 350.351i 0.410728i −0.978686 0.205364i \(-0.934162\pi\)
0.978686 0.205364i \(-0.0658379\pi\)
\(854\) 155.125 679.864i 0.181645 0.796094i
\(855\) 0 0
\(856\) 768.905 964.591i 0.898254 1.12686i
\(857\) 582.739 0.679976 0.339988 0.940430i \(-0.389577\pi\)
0.339988 + 0.940430i \(0.389577\pi\)
\(858\) 0 0
\(859\) −91.0452 −0.105990 −0.0529948 0.998595i \(-0.516877\pi\)
−0.0529948 + 0.998595i \(0.516877\pi\)
\(860\) −222.198 + 461.563i −0.258370 + 0.536702i
\(861\) 0 0
\(862\) 381.880 + 87.1337i 0.443017 + 0.101083i
\(863\) 311.660i 0.361135i 0.983563 + 0.180568i \(0.0577935\pi\)
−0.983563 + 0.180568i \(0.942207\pi\)
\(864\) 0 0
\(865\) −24.5802 −0.0284164
\(866\) −29.4557 + 129.096i −0.0340136 + 0.149071i
\(867\) 0 0
\(868\) −108.408 52.1880i −0.124894 0.0601244i
\(869\) 97.9328i 0.112696i
\(870\) 0 0
\(871\) 1073.28i 1.23224i
\(872\) 755.393 + 602.147i 0.866277 + 0.690536i
\(873\) 0 0
\(874\) −2062.64 470.633i −2.36000 0.538481i
\(875\) −61.3124 −0.0700713
\(876\) 0 0
\(877\) 1264.84i 1.44223i 0.692815 + 0.721115i \(0.256370\pi\)
−0.692815 + 0.721115i \(0.743630\pi\)
\(878\) 1075.94 + 245.498i 1.22545 + 0.279610i
\(879\) 0 0
\(880\) 45.4618 36.2754i 0.0516612 0.0412220i
\(881\) 1185.61 1.34576 0.672880 0.739752i \(-0.265057\pi\)
0.672880 + 0.739752i \(0.265057\pi\)
\(882\) 0 0
\(883\) −1734.26 −1.96405 −0.982026 0.188745i \(-0.939558\pi\)
−0.982026 + 0.188745i \(0.939558\pi\)
\(884\) 752.196 1562.51i 0.850900 1.76754i
\(885\) 0 0
\(886\) 123.665 541.988i 0.139577 0.611725i
\(887\) 780.604i 0.880050i −0.897986 0.440025i \(-0.854970\pi\)
0.897986 0.440025i \(-0.145030\pi\)
\(888\) 0 0
\(889\) 754.937 0.849198
\(890\) −214.100 48.8512i −0.240562 0.0548889i
\(891\) 0 0
\(892\) 619.740 1287.36i 0.694776 1.44323i
\(893\) 1430.58i 1.60199i
\(894\) 0 0
\(895\) 395.923i 0.442372i
\(896\) 0.343084 + 701.945i 0.000382907 + 0.783421i
\(897\) 0 0
\(898\) 65.6723 287.822i 0.0731317 0.320514i
\(899\) −45.6914 −0.0508247
\(900\) 0 0
\(901\) 916.697i 1.01742i
\(902\) −4.50352 + 19.7376i −0.00499281 + 0.0218820i
\(903\) 0 0
\(904\) −1044.25 + 1310.01i −1.15515 + 1.44913i
\(905\) −433.844 −0.479386
\(906\) 0 0
\(907\) 1546.71 1.70531 0.852654 0.522476i \(-0.174992\pi\)
0.852654 + 0.522476i \(0.174992\pi\)
\(908\) 489.801 + 235.792i 0.539429 + 0.259682i
\(909\) 0 0
\(910\) −431.592 98.4764i −0.474277 0.108216i
\(911\) 739.818i 0.812094i −0.913852 0.406047i \(-0.866907\pi\)
0.913852 0.406047i \(-0.133093\pi\)
\(912\) 0 0
\(913\) 9.25339 0.0101352
\(914\) −216.073 + 946.984i −0.236404 + 1.03609i
\(915\) 0 0
\(916\) 687.903 1428.96i 0.750986 1.56000i
\(917\) 166.174i 0.181215i
\(918\) 0 0
\(919\) 334.138i 0.363589i 0.983337 + 0.181795i \(0.0581906\pi\)
−0.983337 + 0.181795i \(0.941809\pi\)
\(920\) 342.602 429.794i 0.372394 0.467167i
\(921\) 0 0
\(922\) 873.478 + 199.302i 0.947373 + 0.216162i
\(923\) −874.773 −0.947750
\(924\) 0 0
\(925\) 214.476i 0.231866i
\(926\) −1487.20 339.335i −1.60605 0.366452i
\(927\) 0 0
\(928\) 115.745 + 240.133i 0.124725 + 0.258764i
\(929\) −668.207 −0.719276 −0.359638 0.933092i \(-0.617100\pi\)
−0.359638 + 0.933092i \(0.617100\pi\)
\(930\) 0 0
\(931\) −651.600 −0.699892
\(932\) −343.101 165.170i −0.368134 0.177221i
\(933\) 0 0
\(934\) 372.930 1634.44i 0.399283 1.74994i
\(935\) 87.3068i 0.0933762i
\(936\) 0 0
\(937\) −1204.35 −1.28532 −0.642661 0.766151i \(-0.722170\pi\)
−0.642661 + 0.766151i \(0.722170\pi\)
\(938\) −635.814 145.074i −0.677840 0.154663i
\(939\) 0 0
\(940\) −334.874 161.209i −0.356248 0.171499i
\(941\) 794.818i 0.844653i −0.906444 0.422326i \(-0.861214\pi\)
0.906444 0.422326i \(-0.138786\pi\)
\(942\) 0 0
\(943\) 191.319i 0.202883i
\(944\) −705.880 884.639i −0.747755 0.937118i
\(945\) 0 0
\(946\) 41.4229 181.544i 0.0437875 0.191907i
\(947\) −505.479 −0.533769 −0.266884 0.963729i \(-0.585994\pi\)
−0.266884 + 0.963729i \(0.585994\pi\)
\(948\) 0 0
\(949\) 1681.17i 1.77151i
\(950\) 76.5865 335.655i 0.0806174 0.353322i
\(951\) 0 0
\(952\) −823.960 656.804i −0.865504 0.689920i
\(953\) 586.218 0.615129 0.307564 0.951527i \(-0.400486\pi\)
0.307564 + 0.951527i \(0.400486\pi\)
\(954\) 0 0
\(955\) −730.765 −0.765199
\(956\) 168.283 349.568i 0.176028 0.365657i
\(957\) 0 0
\(958\) 294.033 + 67.0895i 0.306924 + 0.0700308i
\(959\) 1020.38i 1.06400i
\(960\) 0 0
\(961\) 930.916 0.968695
\(962\) −344.478 + 1509.74i −0.358086 + 1.56938i
\(963\) 0 0
\(964\) −130.674 62.9070i −0.135554 0.0652562i
\(965\) 571.458i 0.592184i
\(966\) 0 0
\(967\) 598.983i 0.619424i −0.950830 0.309712i \(-0.899767\pi\)
0.950830 0.309712i \(-0.100233\pi\)
\(968\) 590.201 740.407i 0.609712 0.764883i
\(969\) 0 0
\(970\) 156.627 + 35.7375i 0.161471 + 0.0368428i
\(971\) −335.550 −0.345571 −0.172786 0.984959i \(-0.555277\pi\)
−0.172786 + 0.984959i \(0.555277\pi\)
\(972\) 0 0
\(973\) 32.4793i 0.0333806i
\(974\) −289.488 66.0526i −0.297216 0.0678158i
\(975\) 0 0
\(976\) −795.163 + 634.485i −0.814716 + 0.650087i
\(977\) −1009.81 −1.03359 −0.516794 0.856110i \(-0.672875\pi\)
−0.516794 + 0.856110i \(0.672875\pi\)
\(978\) 0 0
\(979\) 79.8266 0.0815389
\(980\) 73.4275 152.528i 0.0749261 0.155641i
\(981\) 0 0
\(982\) −34.1739 + 149.774i −0.0348003 + 0.152519i
\(983\) 1449.61i 1.47468i −0.675521 0.737340i \(-0.736081\pi\)
0.675521 0.737340i \(-0.263919\pi\)
\(984\) 0 0
\(985\) −594.914 −0.603973
\(986\) −390.132 89.0165i −0.395672 0.0902804i
\(987\) 0 0
\(988\) 1078.22 2239.75i 1.09132 2.26695i
\(989\) 1759.73i 1.77931i
\(990\) 0 0
\(991\) 1085.11i 1.09497i 0.836816 + 0.547485i \(0.184415\pi\)
−0.836816 + 0.547485i \(0.815585\pi\)
\(992\) 76.2093 + 158.109i 0.0768239 + 0.159384i
\(993\) 0 0
\(994\) −118.242 + 518.217i −0.118955 + 0.521345i
\(995\) 596.112 0.599107
\(996\) 0 0
\(997\) 1471.19i 1.47561i −0.675011 0.737807i \(-0.735861\pi\)
0.675011 0.737807i \(-0.264139\pi\)
\(998\) 251.037 1100.22i 0.251540 1.10242i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.3.g.c.91.7 16
3.2 odd 2 120.3.g.a.91.10 yes 16
4.3 odd 2 1440.3.g.c.271.14 16
8.3 odd 2 inner 360.3.g.c.91.8 16
8.5 even 2 1440.3.g.c.271.3 16
12.11 even 2 480.3.g.a.271.11 16
15.2 even 4 600.3.p.b.499.1 32
15.8 even 4 600.3.p.b.499.32 32
15.14 odd 2 600.3.g.d.451.7 16
24.5 odd 2 480.3.g.a.271.14 16
24.11 even 2 120.3.g.a.91.9 16
60.23 odd 4 2400.3.p.b.1999.28 32
60.47 odd 4 2400.3.p.b.1999.5 32
60.59 even 2 2400.3.g.b.751.4 16
120.29 odd 2 2400.3.g.b.751.5 16
120.53 even 4 2400.3.p.b.1999.6 32
120.59 even 2 600.3.g.d.451.8 16
120.77 even 4 2400.3.p.b.1999.27 32
120.83 odd 4 600.3.p.b.499.2 32
120.107 odd 4 600.3.p.b.499.31 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.9 16 24.11 even 2
120.3.g.a.91.10 yes 16 3.2 odd 2
360.3.g.c.91.7 16 1.1 even 1 trivial
360.3.g.c.91.8 16 8.3 odd 2 inner
480.3.g.a.271.11 16 12.11 even 2
480.3.g.a.271.14 16 24.5 odd 2
600.3.g.d.451.7 16 15.14 odd 2
600.3.g.d.451.8 16 120.59 even 2
600.3.p.b.499.1 32 15.2 even 4
600.3.p.b.499.2 32 120.83 odd 4
600.3.p.b.499.31 32 120.107 odd 4
600.3.p.b.499.32 32 15.8 even 4
1440.3.g.c.271.3 16 8.5 even 2
1440.3.g.c.271.14 16 4.3 odd 2
2400.3.g.b.751.4 16 60.59 even 2
2400.3.g.b.751.5 16 120.29 odd 2
2400.3.p.b.1999.5 32 60.47 odd 4
2400.3.p.b.1999.6 32 120.53 even 4
2400.3.p.b.1999.27 32 120.77 even 4
2400.3.p.b.1999.28 32 60.23 odd 4