Properties

Label 48.4.k
Level $48$
Weight $4$
Character orbit 48.k
Rep. character $\chi_{48}(11,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $44$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 48.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 48 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(48, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44 q - 2 q^{3} - 4 q^{4} + 28 q^{6} - 8 q^{7} + 56 q^{10} - 80 q^{12} - 4 q^{13} - 112 q^{16} + 52 q^{18} + 20 q^{19} - 56 q^{21} - 40 q^{22} - 120 q^{24} - 134 q^{27} - 296 q^{28} - 332 q^{30} - 4 q^{33}+ \cdots + 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(48, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
48.4.k.a 48.k 48.k $44$ $2.832$ None 48.4.k.a \(0\) \(-2\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$