Properties

Label 48.4
Level 48
Weight 4
Dimension 77
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 512
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 7 \)
Sturm bound: \(512\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(48))\).

Total New Old
Modular forms 220 85 135
Cusp forms 164 77 87
Eisenstein series 56 8 48

Trace form

\( 77 q - 5 q^{3} - 24 q^{4} + 2 q^{5} + 28 q^{6} + 24 q^{7} + 84 q^{8} + 57 q^{9} + 128 q^{10} - 60 q^{11} - 104 q^{12} - 14 q^{13} - 348 q^{14} + 150 q^{15} - 304 q^{16} - 26 q^{17} + 16 q^{18} + 32 q^{19}+ \cdots + 656 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
48.4.a \(\chi_{48}(1, \cdot)\) 48.4.a.a 1 1
48.4.a.b 1
48.4.a.c 1
48.4.c \(\chi_{48}(47, \cdot)\) 48.4.c.a 2 1
48.4.c.b 4
48.4.d \(\chi_{48}(25, \cdot)\) None 0 1
48.4.f \(\chi_{48}(23, \cdot)\) None 0 1
48.4.j \(\chi_{48}(13, \cdot)\) 48.4.j.a 24 2
48.4.k \(\chi_{48}(11, \cdot)\) 48.4.k.a 44 2

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(48))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(48)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 1}\)