Properties

Label 48.4
Level 48
Weight 4
Dimension 77
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 512
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 48=243 48 = 2^{4} \cdot 3
Weight: k k = 4 4
Nonzero newspaces: 4 4
Newform subspaces: 7 7
Sturm bound: 512512
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(48))M_{4}(\Gamma_1(48)).

Total New Old
Modular forms 220 85 135
Cusp forms 164 77 87
Eisenstein series 56 8 48

Trace form

77q5q324q4+2q5+28q6+24q7+84q8+57q9+128q1060q11104q1214q13348q14+150q15304q1626q17+16q18+32q19++656q99+O(q100) 77 q - 5 q^{3} - 24 q^{4} + 2 q^{5} + 28 q^{6} + 24 q^{7} + 84 q^{8} + 57 q^{9} + 128 q^{10} - 60 q^{11} - 104 q^{12} - 14 q^{13} - 348 q^{14} + 150 q^{15} - 304 q^{16} - 26 q^{17} + 16 q^{18} + 32 q^{19}+ \cdots + 656 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(48))S_{4}^{\mathrm{new}}(\Gamma_1(48))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
48.4.a χ48(1,)\chi_{48}(1, \cdot) 48.4.a.a 1 1
48.4.a.b 1
48.4.a.c 1
48.4.c χ48(47,)\chi_{48}(47, \cdot) 48.4.c.a 2 1
48.4.c.b 4
48.4.d χ48(25,)\chi_{48}(25, \cdot) None 0 1
48.4.f χ48(23,)\chi_{48}(23, \cdot) None 0 1
48.4.j χ48(13,)\chi_{48}(13, \cdot) 48.4.j.a 24 2
48.4.k χ48(11,)\chi_{48}(11, \cdot) 48.4.k.a 44 2

Decomposition of S4old(Γ1(48))S_{4}^{\mathrm{old}}(\Gamma_1(48)) into lower level spaces