Properties

Label 4767.2.a.g.1.8
Level $4767$
Weight $2$
Character 4767.1
Self dual yes
Analytic conductor $38.065$
Analytic rank $0$
Dimension $35$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4767,2,Mod(1,4767)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4767, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4767.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4767 = 3 \cdot 7 \cdot 227 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4767.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [35,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0646866435\)
Analytic rank: \(0\)
Dimension: \(35\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 4767.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.66837 q^{2} -1.00000 q^{3} +0.783461 q^{4} +3.62303 q^{5} +1.66837 q^{6} +1.00000 q^{7} +2.02964 q^{8} +1.00000 q^{9} -6.04455 q^{10} -1.55311 q^{11} -0.783461 q^{12} +5.76612 q^{13} -1.66837 q^{14} -3.62303 q^{15} -4.95311 q^{16} +4.02549 q^{17} -1.66837 q^{18} -3.81253 q^{19} +2.83850 q^{20} -1.00000 q^{21} +2.59117 q^{22} +4.52801 q^{23} -2.02964 q^{24} +8.12631 q^{25} -9.62002 q^{26} -1.00000 q^{27} +0.783461 q^{28} +0.231853 q^{29} +6.04455 q^{30} +5.76137 q^{31} +4.20435 q^{32} +1.55311 q^{33} -6.71601 q^{34} +3.62303 q^{35} +0.783461 q^{36} -5.74729 q^{37} +6.36072 q^{38} -5.76612 q^{39} +7.35343 q^{40} +6.56181 q^{41} +1.66837 q^{42} -4.05042 q^{43} -1.21680 q^{44} +3.62303 q^{45} -7.55439 q^{46} -4.05857 q^{47} +4.95311 q^{48} +1.00000 q^{49} -13.5577 q^{50} -4.02549 q^{51} +4.51753 q^{52} -8.83161 q^{53} +1.66837 q^{54} -5.62697 q^{55} +2.02964 q^{56} +3.81253 q^{57} -0.386817 q^{58} +0.709258 q^{59} -2.83850 q^{60} +12.1514 q^{61} -9.61209 q^{62} +1.00000 q^{63} +2.89181 q^{64} +20.8908 q^{65} -2.59117 q^{66} +6.36873 q^{67} +3.15381 q^{68} -4.52801 q^{69} -6.04455 q^{70} +16.6181 q^{71} +2.02964 q^{72} +0.636147 q^{73} +9.58861 q^{74} -8.12631 q^{75} -2.98697 q^{76} -1.55311 q^{77} +9.62002 q^{78} +2.87290 q^{79} -17.9452 q^{80} +1.00000 q^{81} -10.9475 q^{82} +6.19721 q^{83} -0.783461 q^{84} +14.5844 q^{85} +6.75761 q^{86} -0.231853 q^{87} -3.15226 q^{88} +15.8733 q^{89} -6.04455 q^{90} +5.76612 q^{91} +3.54752 q^{92} -5.76137 q^{93} +6.77121 q^{94} -13.8129 q^{95} -4.20435 q^{96} +9.40322 q^{97} -1.66837 q^{98} -1.55311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 35 q + 7 q^{2} - 35 q^{3} + 45 q^{4} - 4 q^{5} - 7 q^{6} + 35 q^{7} + 21 q^{8} + 35 q^{9} + 11 q^{10} - 3 q^{11} - 45 q^{12} + 19 q^{13} + 7 q^{14} + 4 q^{15} + 65 q^{16} + 20 q^{17} + 7 q^{18} + 9 q^{19}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.66837 −1.17972 −0.589858 0.807507i \(-0.700816\pi\)
−0.589858 + 0.807507i \(0.700816\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.783461 0.391730
\(5\) 3.62303 1.62027 0.810133 0.586246i \(-0.199395\pi\)
0.810133 + 0.586246i \(0.199395\pi\)
\(6\) 1.66837 0.681109
\(7\) 1.00000 0.377964
\(8\) 2.02964 0.717586
\(9\) 1.00000 0.333333
\(10\) −6.04455 −1.91145
\(11\) −1.55311 −0.468282 −0.234141 0.972203i \(-0.575228\pi\)
−0.234141 + 0.972203i \(0.575228\pi\)
\(12\) −0.783461 −0.226166
\(13\) 5.76612 1.59923 0.799616 0.600511i \(-0.205036\pi\)
0.799616 + 0.600511i \(0.205036\pi\)
\(14\) −1.66837 −0.445891
\(15\) −3.62303 −0.935461
\(16\) −4.95311 −1.23828
\(17\) 4.02549 0.976325 0.488162 0.872753i \(-0.337667\pi\)
0.488162 + 0.872753i \(0.337667\pi\)
\(18\) −1.66837 −0.393239
\(19\) −3.81253 −0.874655 −0.437327 0.899302i \(-0.644075\pi\)
−0.437327 + 0.899302i \(0.644075\pi\)
\(20\) 2.83850 0.634708
\(21\) −1.00000 −0.218218
\(22\) 2.59117 0.552440
\(23\) 4.52801 0.944155 0.472077 0.881557i \(-0.343504\pi\)
0.472077 + 0.881557i \(0.343504\pi\)
\(24\) −2.02964 −0.414298
\(25\) 8.12631 1.62526
\(26\) −9.62002 −1.88664
\(27\) −1.00000 −0.192450
\(28\) 0.783461 0.148060
\(29\) 0.231853 0.0430541 0.0215270 0.999768i \(-0.493147\pi\)
0.0215270 + 0.999768i \(0.493147\pi\)
\(30\) 6.04455 1.10358
\(31\) 5.76137 1.03477 0.517386 0.855752i \(-0.326905\pi\)
0.517386 + 0.855752i \(0.326905\pi\)
\(32\) 4.20435 0.743231
\(33\) 1.55311 0.270363
\(34\) −6.71601 −1.15179
\(35\) 3.62303 0.612403
\(36\) 0.783461 0.130577
\(37\) −5.74729 −0.944849 −0.472424 0.881371i \(-0.656621\pi\)
−0.472424 + 0.881371i \(0.656621\pi\)
\(38\) 6.36072 1.03184
\(39\) −5.76612 −0.923317
\(40\) 7.35343 1.16268
\(41\) 6.56181 1.02478 0.512391 0.858752i \(-0.328760\pi\)
0.512391 + 0.858752i \(0.328760\pi\)
\(42\) 1.66837 0.257435
\(43\) −4.05042 −0.617684 −0.308842 0.951113i \(-0.599941\pi\)
−0.308842 + 0.951113i \(0.599941\pi\)
\(44\) −1.21680 −0.183440
\(45\) 3.62303 0.540089
\(46\) −7.55439 −1.11383
\(47\) −4.05857 −0.592004 −0.296002 0.955187i \(-0.595653\pi\)
−0.296002 + 0.955187i \(0.595653\pi\)
\(48\) 4.95311 0.714920
\(49\) 1.00000 0.142857
\(50\) −13.5577 −1.91735
\(51\) −4.02549 −0.563681
\(52\) 4.51753 0.626468
\(53\) −8.83161 −1.21311 −0.606557 0.795040i \(-0.707450\pi\)
−0.606557 + 0.795040i \(0.707450\pi\)
\(54\) 1.66837 0.227036
\(55\) −5.62697 −0.758741
\(56\) 2.02964 0.271222
\(57\) 3.81253 0.504982
\(58\) −0.386817 −0.0507916
\(59\) 0.709258 0.0923376 0.0461688 0.998934i \(-0.485299\pi\)
0.0461688 + 0.998934i \(0.485299\pi\)
\(60\) −2.83850 −0.366449
\(61\) 12.1514 1.55583 0.777913 0.628371i \(-0.216278\pi\)
0.777913 + 0.628371i \(0.216278\pi\)
\(62\) −9.61209 −1.22074
\(63\) 1.00000 0.125988
\(64\) 2.89181 0.361476
\(65\) 20.8908 2.59118
\(66\) −2.59117 −0.318951
\(67\) 6.36873 0.778064 0.389032 0.921224i \(-0.372810\pi\)
0.389032 + 0.921224i \(0.372810\pi\)
\(68\) 3.15381 0.382456
\(69\) −4.52801 −0.545108
\(70\) −6.04455 −0.722462
\(71\) 16.6181 1.97220 0.986102 0.166142i \(-0.0531310\pi\)
0.986102 + 0.166142i \(0.0531310\pi\)
\(72\) 2.02964 0.239195
\(73\) 0.636147 0.0744554 0.0372277 0.999307i \(-0.488147\pi\)
0.0372277 + 0.999307i \(0.488147\pi\)
\(74\) 9.58861 1.11465
\(75\) −8.12631 −0.938346
\(76\) −2.98697 −0.342629
\(77\) −1.55311 −0.176994
\(78\) 9.62002 1.08925
\(79\) 2.87290 0.323227 0.161613 0.986854i \(-0.448330\pi\)
0.161613 + 0.986854i \(0.448330\pi\)
\(80\) −17.9452 −2.00634
\(81\) 1.00000 0.111111
\(82\) −10.9475 −1.20895
\(83\) 6.19721 0.680232 0.340116 0.940383i \(-0.389534\pi\)
0.340116 + 0.940383i \(0.389534\pi\)
\(84\) −0.783461 −0.0854826
\(85\) 14.5844 1.58191
\(86\) 6.75761 0.728692
\(87\) −0.231853 −0.0248573
\(88\) −3.15226 −0.336032
\(89\) 15.8733 1.68256 0.841282 0.540597i \(-0.181802\pi\)
0.841282 + 0.540597i \(0.181802\pi\)
\(90\) −6.04455 −0.637151
\(91\) 5.76612 0.604453
\(92\) 3.54752 0.369854
\(93\) −5.76137 −0.597426
\(94\) 6.77121 0.698396
\(95\) −13.8129 −1.41717
\(96\) −4.20435 −0.429105
\(97\) 9.40322 0.954752 0.477376 0.878699i \(-0.341588\pi\)
0.477376 + 0.878699i \(0.341588\pi\)
\(98\) −1.66837 −0.168531
\(99\) −1.55311 −0.156094
\(100\) 6.36665 0.636665
\(101\) 6.93091 0.689651 0.344826 0.938667i \(-0.387938\pi\)
0.344826 + 0.938667i \(0.387938\pi\)
\(102\) 6.71601 0.664984
\(103\) −15.2460 −1.50224 −0.751119 0.660167i \(-0.770485\pi\)
−0.751119 + 0.660167i \(0.770485\pi\)
\(104\) 11.7031 1.14759
\(105\) −3.62303 −0.353571
\(106\) 14.7344 1.43113
\(107\) −9.98708 −0.965488 −0.482744 0.875762i \(-0.660360\pi\)
−0.482744 + 0.875762i \(0.660360\pi\)
\(108\) −0.783461 −0.0753886
\(109\) −15.3367 −1.46899 −0.734493 0.678617i \(-0.762580\pi\)
−0.734493 + 0.678617i \(0.762580\pi\)
\(110\) 9.38788 0.895099
\(111\) 5.74729 0.545509
\(112\) −4.95311 −0.468025
\(113\) −17.6956 −1.66467 −0.832333 0.554275i \(-0.812995\pi\)
−0.832333 + 0.554275i \(0.812995\pi\)
\(114\) −6.36072 −0.595736
\(115\) 16.4051 1.52978
\(116\) 0.181648 0.0168656
\(117\) 5.76612 0.533078
\(118\) −1.18331 −0.108932
\(119\) 4.02549 0.369016
\(120\) −7.35343 −0.671273
\(121\) −8.58783 −0.780712
\(122\) −20.2730 −1.83543
\(123\) −6.56181 −0.591658
\(124\) 4.51380 0.405352
\(125\) 11.3267 1.01309
\(126\) −1.66837 −0.148630
\(127\) 20.3929 1.80958 0.904789 0.425860i \(-0.140028\pi\)
0.904789 + 0.425860i \(0.140028\pi\)
\(128\) −13.2333 −1.16967
\(129\) 4.05042 0.356620
\(130\) −34.8536 −3.05686
\(131\) −15.8074 −1.38110 −0.690548 0.723287i \(-0.742630\pi\)
−0.690548 + 0.723287i \(0.742630\pi\)
\(132\) 1.21680 0.105909
\(133\) −3.81253 −0.330589
\(134\) −10.6254 −0.917895
\(135\) −3.62303 −0.311820
\(136\) 8.17029 0.700596
\(137\) 9.49883 0.811539 0.405770 0.913975i \(-0.367003\pi\)
0.405770 + 0.913975i \(0.367003\pi\)
\(138\) 7.55439 0.643073
\(139\) −6.57503 −0.557687 −0.278843 0.960337i \(-0.589951\pi\)
−0.278843 + 0.960337i \(0.589951\pi\)
\(140\) 2.83850 0.239897
\(141\) 4.05857 0.341794
\(142\) −27.7251 −2.32664
\(143\) −8.95544 −0.748891
\(144\) −4.95311 −0.412759
\(145\) 0.840010 0.0697591
\(146\) −1.06133 −0.0878362
\(147\) −1.00000 −0.0824786
\(148\) −4.50278 −0.370126
\(149\) −18.2360 −1.49395 −0.746977 0.664850i \(-0.768496\pi\)
−0.746977 + 0.664850i \(0.768496\pi\)
\(150\) 13.5577 1.10698
\(151\) −11.9222 −0.970215 −0.485108 0.874454i \(-0.661220\pi\)
−0.485108 + 0.874454i \(0.661220\pi\)
\(152\) −7.73806 −0.627640
\(153\) 4.02549 0.325442
\(154\) 2.59117 0.208803
\(155\) 20.8736 1.67661
\(156\) −4.51753 −0.361692
\(157\) 8.91593 0.711569 0.355784 0.934568i \(-0.384214\pi\)
0.355784 + 0.934568i \(0.384214\pi\)
\(158\) −4.79306 −0.381316
\(159\) 8.83161 0.700392
\(160\) 15.2325 1.20423
\(161\) 4.52801 0.356857
\(162\) −1.66837 −0.131080
\(163\) −13.8308 −1.08331 −0.541656 0.840600i \(-0.682203\pi\)
−0.541656 + 0.840600i \(0.682203\pi\)
\(164\) 5.14092 0.401438
\(165\) 5.62697 0.438059
\(166\) −10.3392 −0.802481
\(167\) −10.9306 −0.845836 −0.422918 0.906168i \(-0.638994\pi\)
−0.422918 + 0.906168i \(0.638994\pi\)
\(168\) −2.02964 −0.156590
\(169\) 20.2481 1.55755
\(170\) −24.3323 −1.86620
\(171\) −3.81253 −0.291552
\(172\) −3.17335 −0.241966
\(173\) 3.74622 0.284820 0.142410 0.989808i \(-0.454515\pi\)
0.142410 + 0.989808i \(0.454515\pi\)
\(174\) 0.386817 0.0293245
\(175\) 8.12631 0.614291
\(176\) 7.69275 0.579863
\(177\) −0.709258 −0.0533111
\(178\) −26.4825 −1.98495
\(179\) −20.7284 −1.54931 −0.774656 0.632383i \(-0.782077\pi\)
−0.774656 + 0.632383i \(0.782077\pi\)
\(180\) 2.83850 0.211569
\(181\) −19.4073 −1.44253 −0.721266 0.692658i \(-0.756439\pi\)
−0.721266 + 0.692658i \(0.756439\pi\)
\(182\) −9.62002 −0.713083
\(183\) −12.1514 −0.898257
\(184\) 9.19022 0.677512
\(185\) −20.8226 −1.53091
\(186\) 9.61209 0.704793
\(187\) −6.25205 −0.457195
\(188\) −3.17973 −0.231906
\(189\) −1.00000 −0.0727393
\(190\) 23.0450 1.67186
\(191\) −9.18747 −0.664782 −0.332391 0.943142i \(-0.607855\pi\)
−0.332391 + 0.943142i \(0.607855\pi\)
\(192\) −2.89181 −0.208698
\(193\) 21.7611 1.56640 0.783198 0.621773i \(-0.213587\pi\)
0.783198 + 0.621773i \(0.213587\pi\)
\(194\) −15.6881 −1.12634
\(195\) −20.8908 −1.49602
\(196\) 0.783461 0.0559615
\(197\) 10.4454 0.744207 0.372103 0.928191i \(-0.378637\pi\)
0.372103 + 0.928191i \(0.378637\pi\)
\(198\) 2.59117 0.184147
\(199\) 16.1117 1.14213 0.571064 0.820905i \(-0.306531\pi\)
0.571064 + 0.820905i \(0.306531\pi\)
\(200\) 16.4935 1.16626
\(201\) −6.36873 −0.449215
\(202\) −11.5633 −0.813593
\(203\) 0.231853 0.0162729
\(204\) −3.15381 −0.220811
\(205\) 23.7736 1.66042
\(206\) 25.4361 1.77221
\(207\) 4.52801 0.314718
\(208\) −28.5602 −1.98029
\(209\) 5.92130 0.409585
\(210\) 6.04455 0.417114
\(211\) −11.7685 −0.810180 −0.405090 0.914277i \(-0.632760\pi\)
−0.405090 + 0.914277i \(0.632760\pi\)
\(212\) −6.91922 −0.475214
\(213\) −16.6181 −1.13865
\(214\) 16.6622 1.13900
\(215\) −14.6748 −1.00081
\(216\) −2.02964 −0.138099
\(217\) 5.76137 0.391107
\(218\) 25.5872 1.73299
\(219\) −0.636147 −0.0429868
\(220\) −4.40851 −0.297222
\(221\) 23.2114 1.56137
\(222\) −9.58861 −0.643546
\(223\) 16.4412 1.10098 0.550491 0.834841i \(-0.314441\pi\)
0.550491 + 0.834841i \(0.314441\pi\)
\(224\) 4.20435 0.280915
\(225\) 8.12631 0.541754
\(226\) 29.5229 1.96383
\(227\) −1.00000 −0.0663723
\(228\) 2.98697 0.197817
\(229\) 24.2066 1.59962 0.799808 0.600255i \(-0.204934\pi\)
0.799808 + 0.600255i \(0.204934\pi\)
\(230\) −27.3698 −1.80471
\(231\) 1.55311 0.102187
\(232\) 0.470578 0.0308950
\(233\) −17.6159 −1.15405 −0.577027 0.816725i \(-0.695787\pi\)
−0.577027 + 0.816725i \(0.695787\pi\)
\(234\) −9.62002 −0.628880
\(235\) −14.7043 −0.959204
\(236\) 0.555676 0.0361714
\(237\) −2.87290 −0.186615
\(238\) −6.71601 −0.435334
\(239\) −2.39752 −0.155083 −0.0775414 0.996989i \(-0.524707\pi\)
−0.0775414 + 0.996989i \(0.524707\pi\)
\(240\) 17.9452 1.15836
\(241\) 30.3512 1.95509 0.977546 0.210723i \(-0.0675819\pi\)
0.977546 + 0.210723i \(0.0675819\pi\)
\(242\) 14.3277 0.921019
\(243\) −1.00000 −0.0641500
\(244\) 9.52014 0.609465
\(245\) 3.62303 0.231467
\(246\) 10.9475 0.697989
\(247\) −21.9835 −1.39878
\(248\) 11.6935 0.742537
\(249\) −6.19721 −0.392732
\(250\) −18.8971 −1.19516
\(251\) 19.6038 1.23738 0.618691 0.785635i \(-0.287663\pi\)
0.618691 + 0.785635i \(0.287663\pi\)
\(252\) 0.783461 0.0493534
\(253\) −7.03251 −0.442130
\(254\) −34.0229 −2.13479
\(255\) −14.5844 −0.913314
\(256\) 16.2944 1.01840
\(257\) −8.75027 −0.545827 −0.272913 0.962039i \(-0.587987\pi\)
−0.272913 + 0.962039i \(0.587987\pi\)
\(258\) −6.75761 −0.420710
\(259\) −5.74729 −0.357119
\(260\) 16.3671 1.01505
\(261\) 0.231853 0.0143514
\(262\) 26.3725 1.62930
\(263\) −14.5412 −0.896647 −0.448323 0.893871i \(-0.647979\pi\)
−0.448323 + 0.893871i \(0.647979\pi\)
\(264\) 3.15226 0.194008
\(265\) −31.9971 −1.96557
\(266\) 6.36072 0.390001
\(267\) −15.8733 −0.971428
\(268\) 4.98965 0.304791
\(269\) −28.5216 −1.73899 −0.869497 0.493937i \(-0.835557\pi\)
−0.869497 + 0.493937i \(0.835557\pi\)
\(270\) 6.04455 0.367860
\(271\) 11.6579 0.708169 0.354085 0.935213i \(-0.384792\pi\)
0.354085 + 0.935213i \(0.384792\pi\)
\(272\) −19.9387 −1.20896
\(273\) −5.76612 −0.348981
\(274\) −15.8476 −0.957386
\(275\) −12.6211 −0.761081
\(276\) −3.54752 −0.213535
\(277\) −17.8048 −1.06979 −0.534894 0.844919i \(-0.679649\pi\)
−0.534894 + 0.844919i \(0.679649\pi\)
\(278\) 10.9696 0.657912
\(279\) 5.76137 0.344924
\(280\) 7.35343 0.439452
\(281\) 22.2993 1.33027 0.665133 0.746725i \(-0.268375\pi\)
0.665133 + 0.746725i \(0.268375\pi\)
\(282\) −6.77121 −0.403219
\(283\) −4.36001 −0.259176 −0.129588 0.991568i \(-0.541365\pi\)
−0.129588 + 0.991568i \(0.541365\pi\)
\(284\) 13.0196 0.772572
\(285\) 13.8129 0.818206
\(286\) 14.9410 0.883479
\(287\) 6.56181 0.387331
\(288\) 4.20435 0.247744
\(289\) −0.795434 −0.0467903
\(290\) −1.40145 −0.0822959
\(291\) −9.40322 −0.551227
\(292\) 0.498396 0.0291664
\(293\) −29.9225 −1.74809 −0.874045 0.485845i \(-0.838512\pi\)
−0.874045 + 0.485845i \(0.838512\pi\)
\(294\) 1.66837 0.0973014
\(295\) 2.56966 0.149611
\(296\) −11.6649 −0.678010
\(297\) 1.55311 0.0901209
\(298\) 30.4245 1.76244
\(299\) 26.1090 1.50992
\(300\) −6.36665 −0.367579
\(301\) −4.05042 −0.233463
\(302\) 19.8907 1.14458
\(303\) −6.93091 −0.398170
\(304\) 18.8839 1.08307
\(305\) 44.0248 2.52085
\(306\) −6.71601 −0.383929
\(307\) 28.4143 1.62169 0.810845 0.585262i \(-0.199008\pi\)
0.810845 + 0.585262i \(0.199008\pi\)
\(308\) −1.21680 −0.0693339
\(309\) 15.2460 0.867317
\(310\) −34.8249 −1.97792
\(311\) −34.4140 −1.95144 −0.975718 0.219028i \(-0.929711\pi\)
−0.975718 + 0.219028i \(0.929711\pi\)
\(312\) −11.7031 −0.662559
\(313\) 17.5107 0.989763 0.494881 0.868961i \(-0.335212\pi\)
0.494881 + 0.868961i \(0.335212\pi\)
\(314\) −14.8751 −0.839449
\(315\) 3.62303 0.204134
\(316\) 2.25081 0.126618
\(317\) −3.92038 −0.220190 −0.110095 0.993921i \(-0.535116\pi\)
−0.110095 + 0.993921i \(0.535116\pi\)
\(318\) −14.7344 −0.826264
\(319\) −0.360095 −0.0201614
\(320\) 10.4771 0.585688
\(321\) 9.98708 0.557425
\(322\) −7.55439 −0.420990
\(323\) −15.3473 −0.853947
\(324\) 0.783461 0.0435256
\(325\) 46.8573 2.59917
\(326\) 23.0749 1.27800
\(327\) 15.3367 0.848119
\(328\) 13.3181 0.735369
\(329\) −4.05857 −0.223756
\(330\) −9.38788 −0.516786
\(331\) −22.1304 −1.21640 −0.608198 0.793785i \(-0.708107\pi\)
−0.608198 + 0.793785i \(0.708107\pi\)
\(332\) 4.85527 0.266468
\(333\) −5.74729 −0.314950
\(334\) 18.2363 0.997846
\(335\) 23.0741 1.26067
\(336\) 4.95311 0.270214
\(337\) 16.7306 0.911374 0.455687 0.890140i \(-0.349394\pi\)
0.455687 + 0.890140i \(0.349394\pi\)
\(338\) −33.7813 −1.83746
\(339\) 17.6956 0.961096
\(340\) 11.4263 0.619681
\(341\) −8.94806 −0.484565
\(342\) 6.36072 0.343948
\(343\) 1.00000 0.0539949
\(344\) −8.22089 −0.443241
\(345\) −16.4051 −0.883220
\(346\) −6.25008 −0.336006
\(347\) 6.01078 0.322675 0.161338 0.986899i \(-0.448419\pi\)
0.161338 + 0.986899i \(0.448419\pi\)
\(348\) −0.181648 −0.00973736
\(349\) −23.6460 −1.26574 −0.632870 0.774258i \(-0.718123\pi\)
−0.632870 + 0.774258i \(0.718123\pi\)
\(350\) −13.5577 −0.724690
\(351\) −5.76612 −0.307772
\(352\) −6.52984 −0.348041
\(353\) 16.4845 0.877379 0.438690 0.898639i \(-0.355443\pi\)
0.438690 + 0.898639i \(0.355443\pi\)
\(354\) 1.18331 0.0628920
\(355\) 60.2077 3.19549
\(356\) 12.4361 0.659111
\(357\) −4.02549 −0.213051
\(358\) 34.5826 1.82775
\(359\) 14.8673 0.784664 0.392332 0.919824i \(-0.371668\pi\)
0.392332 + 0.919824i \(0.371668\pi\)
\(360\) 7.35343 0.387560
\(361\) −4.46459 −0.234979
\(362\) 32.3785 1.70178
\(363\) 8.58783 0.450744
\(364\) 4.51753 0.236783
\(365\) 2.30478 0.120638
\(366\) 20.2730 1.05969
\(367\) 33.4289 1.74498 0.872488 0.488635i \(-0.162505\pi\)
0.872488 + 0.488635i \(0.162505\pi\)
\(368\) −22.4277 −1.16913
\(369\) 6.56181 0.341594
\(370\) 34.7398 1.80604
\(371\) −8.83161 −0.458514
\(372\) −4.51380 −0.234030
\(373\) −2.97643 −0.154113 −0.0770567 0.997027i \(-0.524552\pi\)
−0.0770567 + 0.997027i \(0.524552\pi\)
\(374\) 10.4307 0.539360
\(375\) −11.3267 −0.584909
\(376\) −8.23744 −0.424813
\(377\) 1.33689 0.0688535
\(378\) 1.66837 0.0858117
\(379\) −1.78355 −0.0916150 −0.0458075 0.998950i \(-0.514586\pi\)
−0.0458075 + 0.998950i \(0.514586\pi\)
\(380\) −10.8219 −0.555150
\(381\) −20.3929 −1.04476
\(382\) 15.3281 0.784254
\(383\) −17.0108 −0.869212 −0.434606 0.900621i \(-0.643112\pi\)
−0.434606 + 0.900621i \(0.643112\pi\)
\(384\) 13.2333 0.675309
\(385\) −5.62697 −0.286777
\(386\) −36.3055 −1.84790
\(387\) −4.05042 −0.205895
\(388\) 7.36706 0.374006
\(389\) −16.8950 −0.856612 −0.428306 0.903634i \(-0.640889\pi\)
−0.428306 + 0.903634i \(0.640889\pi\)
\(390\) 34.8536 1.76488
\(391\) 18.2274 0.921801
\(392\) 2.02964 0.102512
\(393\) 15.8074 0.797376
\(394\) −17.4269 −0.877953
\(395\) 10.4086 0.523713
\(396\) −1.21680 −0.0611467
\(397\) 31.3846 1.57515 0.787575 0.616219i \(-0.211336\pi\)
0.787575 + 0.616219i \(0.211336\pi\)
\(398\) −26.8803 −1.34739
\(399\) 3.81253 0.190865
\(400\) −40.2505 −2.01253
\(401\) 27.2652 1.36156 0.680780 0.732488i \(-0.261641\pi\)
0.680780 + 0.732488i \(0.261641\pi\)
\(402\) 10.6254 0.529947
\(403\) 33.2207 1.65484
\(404\) 5.43010 0.270157
\(405\) 3.62303 0.180030
\(406\) −0.386817 −0.0191974
\(407\) 8.92620 0.442455
\(408\) −8.17029 −0.404490
\(409\) 19.2371 0.951215 0.475608 0.879657i \(-0.342228\pi\)
0.475608 + 0.879657i \(0.342228\pi\)
\(410\) −39.6632 −1.95882
\(411\) −9.49883 −0.468543
\(412\) −11.9447 −0.588472
\(413\) 0.709258 0.0349003
\(414\) −7.55439 −0.371278
\(415\) 22.4527 1.10216
\(416\) 24.2428 1.18860
\(417\) 6.57503 0.321981
\(418\) −9.87892 −0.483194
\(419\) 29.7182 1.45183 0.725914 0.687786i \(-0.241417\pi\)
0.725914 + 0.687786i \(0.241417\pi\)
\(420\) −2.83850 −0.138505
\(421\) 5.34168 0.260337 0.130169 0.991492i \(-0.458448\pi\)
0.130169 + 0.991492i \(0.458448\pi\)
\(422\) 19.6343 0.955782
\(423\) −4.05857 −0.197335
\(424\) −17.9250 −0.870513
\(425\) 32.7124 1.58678
\(426\) 27.7251 1.34329
\(427\) 12.1514 0.588047
\(428\) −7.82449 −0.378211
\(429\) 8.95544 0.432373
\(430\) 24.4830 1.18067
\(431\) −23.3525 −1.12485 −0.562426 0.826847i \(-0.690132\pi\)
−0.562426 + 0.826847i \(0.690132\pi\)
\(432\) 4.95311 0.238307
\(433\) 27.0077 1.29791 0.648953 0.760828i \(-0.275207\pi\)
0.648953 + 0.760828i \(0.275207\pi\)
\(434\) −9.61209 −0.461395
\(435\) −0.840010 −0.0402754
\(436\) −12.0157 −0.575446
\(437\) −17.2632 −0.825810
\(438\) 1.06133 0.0507123
\(439\) 17.5089 0.835654 0.417827 0.908527i \(-0.362792\pi\)
0.417827 + 0.908527i \(0.362792\pi\)
\(440\) −11.4207 −0.544462
\(441\) 1.00000 0.0476190
\(442\) −38.7253 −1.84197
\(443\) −35.0550 −1.66551 −0.832756 0.553640i \(-0.813238\pi\)
−0.832756 + 0.553640i \(0.813238\pi\)
\(444\) 4.50278 0.213692
\(445\) 57.5093 2.72620
\(446\) −27.4299 −1.29885
\(447\) 18.2360 0.862535
\(448\) 2.89181 0.136625
\(449\) 30.1024 1.42062 0.710311 0.703888i \(-0.248554\pi\)
0.710311 + 0.703888i \(0.248554\pi\)
\(450\) −13.5577 −0.639116
\(451\) −10.1912 −0.479887
\(452\) −13.8638 −0.652101
\(453\) 11.9222 0.560154
\(454\) 1.66837 0.0783005
\(455\) 20.8908 0.979375
\(456\) 7.73806 0.362368
\(457\) −9.31357 −0.435670 −0.217835 0.975986i \(-0.569900\pi\)
−0.217835 + 0.975986i \(0.569900\pi\)
\(458\) −40.3856 −1.88709
\(459\) −4.02549 −0.187894
\(460\) 12.8527 0.599262
\(461\) 16.6791 0.776825 0.388412 0.921486i \(-0.373024\pi\)
0.388412 + 0.921486i \(0.373024\pi\)
\(462\) −2.59117 −0.120552
\(463\) −22.8075 −1.05995 −0.529976 0.848012i \(-0.677799\pi\)
−0.529976 + 0.848012i \(0.677799\pi\)
\(464\) −1.14840 −0.0533129
\(465\) −20.8736 −0.967989
\(466\) 29.3898 1.36146
\(467\) −26.9195 −1.24569 −0.622843 0.782347i \(-0.714023\pi\)
−0.622843 + 0.782347i \(0.714023\pi\)
\(468\) 4.51753 0.208823
\(469\) 6.36873 0.294081
\(470\) 24.5322 1.13159
\(471\) −8.91593 −0.410824
\(472\) 1.43954 0.0662601
\(473\) 6.29077 0.289250
\(474\) 4.79306 0.220153
\(475\) −30.9818 −1.42154
\(476\) 3.15381 0.144555
\(477\) −8.83161 −0.404372
\(478\) 3.99996 0.182954
\(479\) 5.32505 0.243308 0.121654 0.992573i \(-0.461180\pi\)
0.121654 + 0.992573i \(0.461180\pi\)
\(480\) −15.2325 −0.695263
\(481\) −33.1395 −1.51103
\(482\) −50.6370 −2.30645
\(483\) −4.52801 −0.206031
\(484\) −6.72823 −0.305829
\(485\) 34.0681 1.54695
\(486\) 1.66837 0.0756788
\(487\) −28.5646 −1.29438 −0.647192 0.762327i \(-0.724057\pi\)
−0.647192 + 0.762327i \(0.724057\pi\)
\(488\) 24.6629 1.11644
\(489\) 13.8308 0.625451
\(490\) −6.04455 −0.273065
\(491\) 9.57255 0.432003 0.216001 0.976393i \(-0.430698\pi\)
0.216001 + 0.976393i \(0.430698\pi\)
\(492\) −5.14092 −0.231771
\(493\) 0.933323 0.0420348
\(494\) 36.6766 1.65016
\(495\) −5.62697 −0.252914
\(496\) −28.5367 −1.28133
\(497\) 16.6181 0.745423
\(498\) 10.3392 0.463313
\(499\) 28.3713 1.27007 0.635037 0.772482i \(-0.280985\pi\)
0.635037 + 0.772482i \(0.280985\pi\)
\(500\) 8.87403 0.396859
\(501\) 10.9306 0.488344
\(502\) −32.7064 −1.45976
\(503\) −24.9537 −1.11263 −0.556314 0.830972i \(-0.687785\pi\)
−0.556314 + 0.830972i \(0.687785\pi\)
\(504\) 2.02964 0.0904073
\(505\) 25.1109 1.11742
\(506\) 11.7328 0.521588
\(507\) −20.2481 −0.899249
\(508\) 15.9770 0.708867
\(509\) 40.5062 1.79541 0.897703 0.440602i \(-0.145235\pi\)
0.897703 + 0.440602i \(0.145235\pi\)
\(510\) 24.3323 1.07745
\(511\) 0.636147 0.0281415
\(512\) −0.718557 −0.0317560
\(513\) 3.81253 0.168327
\(514\) 14.5987 0.643921
\(515\) −55.2368 −2.43402
\(516\) 3.17335 0.139699
\(517\) 6.30343 0.277225
\(518\) 9.58861 0.421299
\(519\) −3.74622 −0.164441
\(520\) 42.4007 1.85940
\(521\) −11.1658 −0.489181 −0.244591 0.969626i \(-0.578654\pi\)
−0.244591 + 0.969626i \(0.578654\pi\)
\(522\) −0.386817 −0.0169305
\(523\) 8.53789 0.373336 0.186668 0.982423i \(-0.440231\pi\)
0.186668 + 0.982423i \(0.440231\pi\)
\(524\) −12.3844 −0.541017
\(525\) −8.12631 −0.354661
\(526\) 24.2601 1.05779
\(527\) 23.1923 1.01027
\(528\) −7.69275 −0.334784
\(529\) −2.49716 −0.108572
\(530\) 53.3831 2.31881
\(531\) 0.709258 0.0307792
\(532\) −2.98697 −0.129502
\(533\) 37.8362 1.63887
\(534\) 26.4825 1.14601
\(535\) −36.1835 −1.56435
\(536\) 12.9262 0.558327
\(537\) 20.7284 0.894496
\(538\) 47.5847 2.05152
\(539\) −1.55311 −0.0668974
\(540\) −2.83850 −0.122150
\(541\) −38.3960 −1.65078 −0.825388 0.564567i \(-0.809043\pi\)
−0.825388 + 0.564567i \(0.809043\pi\)
\(542\) −19.4498 −0.835439
\(543\) 19.4073 0.832846
\(544\) 16.9246 0.725635
\(545\) −55.5651 −2.38015
\(546\) 9.62002 0.411699
\(547\) 8.26349 0.353321 0.176661 0.984272i \(-0.443471\pi\)
0.176661 + 0.984272i \(0.443471\pi\)
\(548\) 7.44196 0.317905
\(549\) 12.1514 0.518609
\(550\) 21.0567 0.897859
\(551\) −0.883948 −0.0376575
\(552\) −9.19022 −0.391162
\(553\) 2.87290 0.122168
\(554\) 29.7051 1.26205
\(555\) 20.8226 0.883869
\(556\) −5.15128 −0.218463
\(557\) 11.9348 0.505695 0.252847 0.967506i \(-0.418633\pi\)
0.252847 + 0.967506i \(0.418633\pi\)
\(558\) −9.61209 −0.406912
\(559\) −23.3552 −0.987820
\(560\) −17.9452 −0.758325
\(561\) 6.25205 0.263962
\(562\) −37.2035 −1.56934
\(563\) −6.17373 −0.260192 −0.130096 0.991501i \(-0.541528\pi\)
−0.130096 + 0.991501i \(0.541528\pi\)
\(564\) 3.17973 0.133891
\(565\) −64.1118 −2.69720
\(566\) 7.27411 0.305754
\(567\) 1.00000 0.0419961
\(568\) 33.7287 1.41522
\(569\) −2.90390 −0.121738 −0.0608689 0.998146i \(-0.519387\pi\)
−0.0608689 + 0.998146i \(0.519387\pi\)
\(570\) −23.0450 −0.965251
\(571\) 7.31841 0.306266 0.153133 0.988206i \(-0.451064\pi\)
0.153133 + 0.988206i \(0.451064\pi\)
\(572\) −7.01624 −0.293364
\(573\) 9.18747 0.383812
\(574\) −10.9475 −0.456941
\(575\) 36.7960 1.53450
\(576\) 2.89181 0.120492
\(577\) 10.7624 0.448043 0.224022 0.974584i \(-0.428081\pi\)
0.224022 + 0.974584i \(0.428081\pi\)
\(578\) 1.32708 0.0551992
\(579\) −21.7611 −0.904359
\(580\) 0.658115 0.0273268
\(581\) 6.19721 0.257104
\(582\) 15.6881 0.650291
\(583\) 13.7165 0.568079
\(584\) 1.29115 0.0534281
\(585\) 20.8908 0.863728
\(586\) 49.9218 2.06225
\(587\) −2.73295 −0.112801 −0.0564005 0.998408i \(-0.517962\pi\)
−0.0564005 + 0.998408i \(0.517962\pi\)
\(588\) −0.783461 −0.0323094
\(589\) −21.9654 −0.905068
\(590\) −4.28715 −0.176499
\(591\) −10.4454 −0.429668
\(592\) 28.4670 1.16999
\(593\) 9.85793 0.404816 0.202408 0.979301i \(-0.435123\pi\)
0.202408 + 0.979301i \(0.435123\pi\)
\(594\) −2.59117 −0.106317
\(595\) 14.5844 0.597904
\(596\) −14.2872 −0.585227
\(597\) −16.1117 −0.659408
\(598\) −43.5595 −1.78128
\(599\) −30.9205 −1.26338 −0.631689 0.775222i \(-0.717638\pi\)
−0.631689 + 0.775222i \(0.717638\pi\)
\(600\) −16.4935 −0.673343
\(601\) 27.2819 1.11285 0.556426 0.830897i \(-0.312172\pi\)
0.556426 + 0.830897i \(0.312172\pi\)
\(602\) 6.75761 0.275420
\(603\) 6.36873 0.259355
\(604\) −9.34058 −0.380063
\(605\) −31.1139 −1.26496
\(606\) 11.5633 0.469728
\(607\) 25.6092 1.03945 0.519723 0.854335i \(-0.326035\pi\)
0.519723 + 0.854335i \(0.326035\pi\)
\(608\) −16.0292 −0.650071
\(609\) −0.231853 −0.00939517
\(610\) −73.4497 −2.97389
\(611\) −23.4022 −0.946752
\(612\) 3.15381 0.127485
\(613\) −0.630638 −0.0254712 −0.0127356 0.999919i \(-0.504054\pi\)
−0.0127356 + 0.999919i \(0.504054\pi\)
\(614\) −47.4056 −1.91313
\(615\) −23.7736 −0.958644
\(616\) −3.15226 −0.127008
\(617\) 26.9039 1.08311 0.541556 0.840665i \(-0.317836\pi\)
0.541556 + 0.840665i \(0.317836\pi\)
\(618\) −25.4361 −1.02319
\(619\) −24.6918 −0.992446 −0.496223 0.868195i \(-0.665280\pi\)
−0.496223 + 0.868195i \(0.665280\pi\)
\(620\) 16.3536 0.656777
\(621\) −4.52801 −0.181703
\(622\) 57.4153 2.30214
\(623\) 15.8733 0.635949
\(624\) 28.5602 1.14332
\(625\) 0.405380 0.0162152
\(626\) −29.2143 −1.16764
\(627\) −5.92130 −0.236474
\(628\) 6.98528 0.278743
\(629\) −23.1357 −0.922479
\(630\) −6.04455 −0.240821
\(631\) 28.4766 1.13363 0.566817 0.823843i \(-0.308175\pi\)
0.566817 + 0.823843i \(0.308175\pi\)
\(632\) 5.83095 0.231943
\(633\) 11.7685 0.467758
\(634\) 6.54065 0.259762
\(635\) 73.8840 2.93200
\(636\) 6.91922 0.274365
\(637\) 5.76612 0.228462
\(638\) 0.600772 0.0237848
\(639\) 16.6181 0.657401
\(640\) −47.9446 −1.89518
\(641\) −6.38759 −0.252295 −0.126147 0.992012i \(-0.540261\pi\)
−0.126147 + 0.992012i \(0.540261\pi\)
\(642\) −16.6622 −0.657603
\(643\) −10.2841 −0.405564 −0.202782 0.979224i \(-0.564998\pi\)
−0.202782 + 0.979224i \(0.564998\pi\)
\(644\) 3.54752 0.139792
\(645\) 14.6748 0.577819
\(646\) 25.6050 1.00742
\(647\) 36.4749 1.43398 0.716988 0.697086i \(-0.245520\pi\)
0.716988 + 0.697086i \(0.245520\pi\)
\(648\) 2.02964 0.0797317
\(649\) −1.10156 −0.0432400
\(650\) −78.1753 −3.06629
\(651\) −5.76137 −0.225806
\(652\) −10.8359 −0.424366
\(653\) 37.9792 1.48624 0.743120 0.669158i \(-0.233345\pi\)
0.743120 + 0.669158i \(0.233345\pi\)
\(654\) −25.5872 −1.00054
\(655\) −57.2704 −2.23774
\(656\) −32.5014 −1.26897
\(657\) 0.636147 0.0248185
\(658\) 6.77121 0.263969
\(659\) −14.9491 −0.582333 −0.291167 0.956672i \(-0.594043\pi\)
−0.291167 + 0.956672i \(0.594043\pi\)
\(660\) 4.40851 0.171601
\(661\) 14.9419 0.581174 0.290587 0.956849i \(-0.406149\pi\)
0.290587 + 0.956849i \(0.406149\pi\)
\(662\) 36.9217 1.43500
\(663\) −23.2114 −0.901458
\(664\) 12.5781 0.488125
\(665\) −13.8129 −0.535641
\(666\) 9.58861 0.371551
\(667\) 1.04983 0.0406497
\(668\) −8.56370 −0.331340
\(669\) −16.4412 −0.635652
\(670\) −38.4961 −1.48723
\(671\) −18.8725 −0.728565
\(672\) −4.20435 −0.162186
\(673\) −13.8003 −0.531962 −0.265981 0.963978i \(-0.585696\pi\)
−0.265981 + 0.963978i \(0.585696\pi\)
\(674\) −27.9129 −1.07516
\(675\) −8.12631 −0.312782
\(676\) 15.8636 0.610138
\(677\) 25.0718 0.963587 0.481793 0.876285i \(-0.339986\pi\)
0.481793 + 0.876285i \(0.339986\pi\)
\(678\) −29.5229 −1.13382
\(679\) 9.40322 0.360862
\(680\) 29.6012 1.13515
\(681\) 1.00000 0.0383201
\(682\) 14.9287 0.571649
\(683\) 16.0738 0.615048 0.307524 0.951540i \(-0.400500\pi\)
0.307524 + 0.951540i \(0.400500\pi\)
\(684\) −2.98697 −0.114210
\(685\) 34.4145 1.31491
\(686\) −1.66837 −0.0636987
\(687\) −24.2066 −0.923539
\(688\) 20.0622 0.764864
\(689\) −50.9241 −1.94005
\(690\) 27.3698 1.04195
\(691\) −30.2127 −1.14935 −0.574673 0.818383i \(-0.694871\pi\)
−0.574673 + 0.818383i \(0.694871\pi\)
\(692\) 2.93501 0.111572
\(693\) −1.55311 −0.0589979
\(694\) −10.0282 −0.380665
\(695\) −23.8215 −0.903601
\(696\) −0.470578 −0.0178372
\(697\) 26.4145 1.00052
\(698\) 39.4503 1.49321
\(699\) 17.6159 0.666294
\(700\) 6.36665 0.240637
\(701\) −27.4489 −1.03673 −0.518365 0.855159i \(-0.673459\pi\)
−0.518365 + 0.855159i \(0.673459\pi\)
\(702\) 9.62002 0.363084
\(703\) 21.9117 0.826417
\(704\) −4.49131 −0.169273
\(705\) 14.7043 0.553796
\(706\) −27.5022 −1.03506
\(707\) 6.93091 0.260664
\(708\) −0.555676 −0.0208836
\(709\) 32.3245 1.21397 0.606986 0.794713i \(-0.292378\pi\)
0.606986 + 0.794713i \(0.292378\pi\)
\(710\) −100.449 −3.76978
\(711\) 2.87290 0.107742
\(712\) 32.2170 1.20738
\(713\) 26.0875 0.976985
\(714\) 6.71601 0.251340
\(715\) −32.4458 −1.21340
\(716\) −16.2399 −0.606913
\(717\) 2.39752 0.0895371
\(718\) −24.8041 −0.925681
\(719\) −16.3930 −0.611354 −0.305677 0.952135i \(-0.598883\pi\)
−0.305677 + 0.952135i \(0.598883\pi\)
\(720\) −17.9452 −0.668780
\(721\) −15.2460 −0.567792
\(722\) 7.44860 0.277208
\(723\) −30.3512 −1.12877
\(724\) −15.2048 −0.565084
\(725\) 1.88411 0.0699742
\(726\) −14.3277 −0.531751
\(727\) 11.1181 0.412346 0.206173 0.978516i \(-0.433899\pi\)
0.206173 + 0.978516i \(0.433899\pi\)
\(728\) 11.7031 0.433747
\(729\) 1.00000 0.0370370
\(730\) −3.84522 −0.142318
\(731\) −16.3049 −0.603060
\(732\) −9.52014 −0.351875
\(733\) −4.24615 −0.156835 −0.0784176 0.996921i \(-0.524987\pi\)
−0.0784176 + 0.996921i \(0.524987\pi\)
\(734\) −55.7719 −2.05858
\(735\) −3.62303 −0.133637
\(736\) 19.0373 0.701725
\(737\) −9.89137 −0.364353
\(738\) −10.9475 −0.402984
\(739\) −13.4932 −0.496354 −0.248177 0.968715i \(-0.579832\pi\)
−0.248177 + 0.968715i \(0.579832\pi\)
\(740\) −16.3137 −0.599703
\(741\) 21.9835 0.807584
\(742\) 14.7344 0.540917
\(743\) 32.9523 1.20890 0.604452 0.796642i \(-0.293392\pi\)
0.604452 + 0.796642i \(0.293392\pi\)
\(744\) −11.6935 −0.428704
\(745\) −66.0696 −2.42060
\(746\) 4.96578 0.181810
\(747\) 6.19721 0.226744
\(748\) −4.89823 −0.179097
\(749\) −9.98708 −0.364920
\(750\) 18.8971 0.690026
\(751\) 48.1661 1.75761 0.878804 0.477184i \(-0.158342\pi\)
0.878804 + 0.477184i \(0.158342\pi\)
\(752\) 20.1026 0.733065
\(753\) −19.6038 −0.714403
\(754\) −2.23043 −0.0812276
\(755\) −43.1944 −1.57201
\(756\) −0.783461 −0.0284942
\(757\) 0.335144 0.0121810 0.00609051 0.999981i \(-0.498061\pi\)
0.00609051 + 0.999981i \(0.498061\pi\)
\(758\) 2.97563 0.108080
\(759\) 7.03251 0.255264
\(760\) −28.0352 −1.01694
\(761\) −32.3557 −1.17289 −0.586446 0.809988i \(-0.699473\pi\)
−0.586446 + 0.809988i \(0.699473\pi\)
\(762\) 34.0229 1.23252
\(763\) −15.3367 −0.555224
\(764\) −7.19802 −0.260415
\(765\) 14.5844 0.527302
\(766\) 28.3804 1.02542
\(767\) 4.08966 0.147669
\(768\) −16.2944 −0.587975
\(769\) −15.0459 −0.542569 −0.271284 0.962499i \(-0.587448\pi\)
−0.271284 + 0.962499i \(0.587448\pi\)
\(770\) 9.38788 0.338316
\(771\) 8.75027 0.315133
\(772\) 17.0489 0.613605
\(773\) −13.2889 −0.477967 −0.238984 0.971024i \(-0.576814\pi\)
−0.238984 + 0.971024i \(0.576814\pi\)
\(774\) 6.75761 0.242897
\(775\) 46.8187 1.68178
\(776\) 19.0851 0.685116
\(777\) 5.74729 0.206183
\(778\) 28.1872 1.01056
\(779\) −25.0171 −0.896331
\(780\) −16.3671 −0.586037
\(781\) −25.8098 −0.923547
\(782\) −30.4101 −1.08746
\(783\) −0.231853 −0.00828576
\(784\) −4.95311 −0.176897
\(785\) 32.3026 1.15293
\(786\) −26.3725 −0.940677
\(787\) 29.9311 1.06693 0.533464 0.845823i \(-0.320890\pi\)
0.533464 + 0.845823i \(0.320890\pi\)
\(788\) 8.18359 0.291528
\(789\) 14.5412 0.517679
\(790\) −17.3654 −0.617833
\(791\) −17.6956 −0.629185
\(792\) −3.15226 −0.112011
\(793\) 70.0664 2.48813
\(794\) −52.3612 −1.85823
\(795\) 31.9971 1.13482
\(796\) 12.6229 0.447406
\(797\) −20.5276 −0.727126 −0.363563 0.931570i \(-0.618440\pi\)
−0.363563 + 0.931570i \(0.618440\pi\)
\(798\) −6.36072 −0.225167
\(799\) −16.3377 −0.577988
\(800\) 34.1658 1.20795
\(801\) 15.8733 0.560854
\(802\) −45.4885 −1.60625
\(803\) −0.988009 −0.0348661
\(804\) −4.98965 −0.175971
\(805\) 16.4051 0.578203
\(806\) −55.4244 −1.95224
\(807\) 28.5216 1.00401
\(808\) 14.0672 0.494884
\(809\) −33.8324 −1.18948 −0.594742 0.803917i \(-0.702746\pi\)
−0.594742 + 0.803917i \(0.702746\pi\)
\(810\) −6.04455 −0.212384
\(811\) −37.3889 −1.31290 −0.656451 0.754369i \(-0.727943\pi\)
−0.656451 + 0.754369i \(0.727943\pi\)
\(812\) 0.181648 0.00637460
\(813\) −11.6579 −0.408862
\(814\) −14.8922 −0.521972
\(815\) −50.1094 −1.75525
\(816\) 19.9387 0.697994
\(817\) 15.4424 0.540260
\(818\) −32.0947 −1.12216
\(819\) 5.76612 0.201484
\(820\) 18.6257 0.650437
\(821\) −13.5911 −0.474332 −0.237166 0.971469i \(-0.576219\pi\)
−0.237166 + 0.971469i \(0.576219\pi\)
\(822\) 15.8476 0.552747
\(823\) 2.38065 0.0829843 0.0414922 0.999139i \(-0.486789\pi\)
0.0414922 + 0.999139i \(0.486789\pi\)
\(824\) −30.9440 −1.07798
\(825\) 12.6211 0.439410
\(826\) −1.18331 −0.0411725
\(827\) −12.4974 −0.434578 −0.217289 0.976107i \(-0.569721\pi\)
−0.217289 + 0.976107i \(0.569721\pi\)
\(828\) 3.54752 0.123285
\(829\) 45.5222 1.58105 0.790525 0.612430i \(-0.209808\pi\)
0.790525 + 0.612430i \(0.209808\pi\)
\(830\) −37.4593 −1.30023
\(831\) 17.8048 0.617643
\(832\) 16.6745 0.578085
\(833\) 4.02549 0.139475
\(834\) −10.9696 −0.379846
\(835\) −39.6019 −1.37048
\(836\) 4.63911 0.160447
\(837\) −5.76137 −0.199142
\(838\) −49.5809 −1.71275
\(839\) −30.3796 −1.04882 −0.524409 0.851466i \(-0.675714\pi\)
−0.524409 + 0.851466i \(0.675714\pi\)
\(840\) −7.35343 −0.253717
\(841\) −28.9462 −0.998146
\(842\) −8.91190 −0.307124
\(843\) −22.2993 −0.768029
\(844\) −9.22019 −0.317372
\(845\) 73.3593 2.52364
\(846\) 6.77121 0.232799
\(847\) −8.58783 −0.295081
\(848\) 43.7439 1.50217
\(849\) 4.36001 0.149635
\(850\) −54.5764 −1.87195
\(851\) −26.0238 −0.892083
\(852\) −13.0196 −0.446045
\(853\) 19.4387 0.665569 0.332784 0.943003i \(-0.392012\pi\)
0.332784 + 0.943003i \(0.392012\pi\)
\(854\) −20.2730 −0.693729
\(855\) −13.8129 −0.472391
\(856\) −20.2702 −0.692820
\(857\) −4.72322 −0.161342 −0.0806711 0.996741i \(-0.525706\pi\)
−0.0806711 + 0.996741i \(0.525706\pi\)
\(858\) −14.9410 −0.510077
\(859\) −4.57910 −0.156237 −0.0781185 0.996944i \(-0.524891\pi\)
−0.0781185 + 0.996944i \(0.524891\pi\)
\(860\) −11.4971 −0.392049
\(861\) −6.56181 −0.223626
\(862\) 38.9607 1.32701
\(863\) 26.2851 0.894755 0.447377 0.894345i \(-0.352358\pi\)
0.447377 + 0.894345i \(0.352358\pi\)
\(864\) −4.20435 −0.143035
\(865\) 13.5726 0.461483
\(866\) −45.0588 −1.53116
\(867\) 0.795434 0.0270144
\(868\) 4.51380 0.153209
\(869\) −4.46195 −0.151361
\(870\) 1.40145 0.0475136
\(871\) 36.7228 1.24431
\(872\) −31.1279 −1.05412
\(873\) 9.40322 0.318251
\(874\) 28.8014 0.974221
\(875\) 11.3267 0.382913
\(876\) −0.498396 −0.0168393
\(877\) −27.6912 −0.935066 −0.467533 0.883976i \(-0.654857\pi\)
−0.467533 + 0.883976i \(0.654857\pi\)
\(878\) −29.2113 −0.985835
\(879\) 29.9225 1.00926
\(880\) 27.8710 0.939532
\(881\) −32.1347 −1.08265 −0.541323 0.840815i \(-0.682076\pi\)
−0.541323 + 0.840815i \(0.682076\pi\)
\(882\) −1.66837 −0.0561770
\(883\) 17.4521 0.587311 0.293655 0.955911i \(-0.405128\pi\)
0.293655 + 0.955911i \(0.405128\pi\)
\(884\) 18.1853 0.611636
\(885\) −2.56966 −0.0863782
\(886\) 58.4847 1.96483
\(887\) 18.6112 0.624902 0.312451 0.949934i \(-0.398850\pi\)
0.312451 + 0.949934i \(0.398850\pi\)
\(888\) 11.6649 0.391449
\(889\) 20.3929 0.683956
\(890\) −95.9468 −3.21614
\(891\) −1.55311 −0.0520313
\(892\) 12.8810 0.431288
\(893\) 15.4734 0.517799
\(894\) −30.4245 −1.01755
\(895\) −75.0995 −2.51030
\(896\) −13.2333 −0.442094
\(897\) −26.1090 −0.871754
\(898\) −50.2220 −1.67593
\(899\) 1.33579 0.0445512
\(900\) 6.36665 0.212222
\(901\) −35.5515 −1.18439
\(902\) 17.0028 0.566130
\(903\) 4.05042 0.134790
\(904\) −35.9158 −1.19454
\(905\) −70.3131 −2.33729
\(906\) −19.8907 −0.660823
\(907\) −0.509175 −0.0169069 −0.00845344 0.999964i \(-0.502691\pi\)
−0.00845344 + 0.999964i \(0.502691\pi\)
\(908\) −0.783461 −0.0260001
\(909\) 6.93091 0.229884
\(910\) −34.8536 −1.15538
\(911\) 13.0788 0.433321 0.216660 0.976247i \(-0.430484\pi\)
0.216660 + 0.976247i \(0.430484\pi\)
\(912\) −18.8839 −0.625308
\(913\) −9.62498 −0.318540
\(914\) 15.5385 0.513967
\(915\) −44.0248 −1.45542
\(916\) 18.9649 0.626619
\(917\) −15.8074 −0.522005
\(918\) 6.71601 0.221661
\(919\) 12.0563 0.397700 0.198850 0.980030i \(-0.436279\pi\)
0.198850 + 0.980030i \(0.436279\pi\)
\(920\) 33.2964 1.09775
\(921\) −28.4143 −0.936283
\(922\) −27.8270 −0.916432
\(923\) 95.8218 3.15401
\(924\) 1.21680 0.0400299
\(925\) −46.7043 −1.53563
\(926\) 38.0513 1.25044
\(927\) −15.2460 −0.500746
\(928\) 0.974792 0.0319991
\(929\) −31.4697 −1.03249 −0.516244 0.856442i \(-0.672670\pi\)
−0.516244 + 0.856442i \(0.672670\pi\)
\(930\) 34.8249 1.14195
\(931\) −3.81253 −0.124951
\(932\) −13.8013 −0.452078
\(933\) 34.4140 1.12666
\(934\) 44.9117 1.46956
\(935\) −22.6513 −0.740777
\(936\) 11.7031 0.382529
\(937\) −5.61312 −0.183373 −0.0916864 0.995788i \(-0.529226\pi\)
−0.0916864 + 0.995788i \(0.529226\pi\)
\(938\) −10.6254 −0.346932
\(939\) −17.5107 −0.571440
\(940\) −11.5203 −0.375749
\(941\) −34.3491 −1.11975 −0.559875 0.828577i \(-0.689151\pi\)
−0.559875 + 0.828577i \(0.689151\pi\)
\(942\) 14.8751 0.484656
\(943\) 29.7119 0.967553
\(944\) −3.51303 −0.114340
\(945\) −3.62303 −0.117857
\(946\) −10.4953 −0.341233
\(947\) −6.67661 −0.216961 −0.108480 0.994099i \(-0.534598\pi\)
−0.108480 + 0.994099i \(0.534598\pi\)
\(948\) −2.25081 −0.0731028
\(949\) 3.66810 0.119071
\(950\) 51.6892 1.67702
\(951\) 3.92038 0.127127
\(952\) 8.17029 0.264801
\(953\) −41.7141 −1.35125 −0.675627 0.737244i \(-0.736127\pi\)
−0.675627 + 0.737244i \(0.736127\pi\)
\(954\) 14.7344 0.477044
\(955\) −33.2864 −1.07712
\(956\) −1.87837 −0.0607507
\(957\) 0.360095 0.0116402
\(958\) −8.88415 −0.287034
\(959\) 9.49883 0.306733
\(960\) −10.4771 −0.338147
\(961\) 2.19333 0.0707527
\(962\) 55.2890 1.78259
\(963\) −9.98708 −0.321829
\(964\) 23.7790 0.765869
\(965\) 78.8409 2.53798
\(966\) 7.55439 0.243059
\(967\) −23.7614 −0.764114 −0.382057 0.924139i \(-0.624784\pi\)
−0.382057 + 0.924139i \(0.624784\pi\)
\(968\) −17.4302 −0.560228
\(969\) 15.3473 0.493027
\(970\) −56.8382 −1.82497
\(971\) 53.1009 1.70409 0.852045 0.523468i \(-0.175362\pi\)
0.852045 + 0.523468i \(0.175362\pi\)
\(972\) −0.783461 −0.0251295
\(973\) −6.57503 −0.210786
\(974\) 47.6563 1.52701
\(975\) −46.8573 −1.50063
\(976\) −60.1872 −1.92655
\(977\) −14.9913 −0.479614 −0.239807 0.970821i \(-0.577084\pi\)
−0.239807 + 0.970821i \(0.577084\pi\)
\(978\) −23.0749 −0.737854
\(979\) −24.6530 −0.787914
\(980\) 2.83850 0.0906725
\(981\) −15.3367 −0.489662
\(982\) −15.9706 −0.509641
\(983\) 55.0024 1.75430 0.877152 0.480213i \(-0.159441\pi\)
0.877152 + 0.480213i \(0.159441\pi\)
\(984\) −13.3181 −0.424566
\(985\) 37.8441 1.20581
\(986\) −1.55713 −0.0495891
\(987\) 4.05857 0.129186
\(988\) −17.2232 −0.547943
\(989\) −18.3403 −0.583189
\(990\) 9.38788 0.298366
\(991\) −21.1160 −0.670773 −0.335387 0.942081i \(-0.608867\pi\)
−0.335387 + 0.942081i \(0.608867\pi\)
\(992\) 24.2228 0.769074
\(993\) 22.1304 0.702287
\(994\) −27.7251 −0.879388
\(995\) 58.3731 1.85055
\(996\) −4.85527 −0.153845
\(997\) 4.59981 0.145677 0.0728387 0.997344i \(-0.476794\pi\)
0.0728387 + 0.997344i \(0.476794\pi\)
\(998\) −47.3339 −1.49833
\(999\) 5.74729 0.181836
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4767.2.a.g.1.8 35
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4767.2.a.g.1.8 35 1.1 even 1 trivial