Properties

Label 4767.2.a
Level 47674767
Weight 22
Character orbit 4767.a
Rep. character χ4767(1,)\chi_{4767}(1,\cdot)
Character field Q\Q
Dimension 227227
Newform subspaces 88
Sturm bound 12161216
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4767=37227 4767 = 3 \cdot 7 \cdot 227
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4767.a (trivial)
Character field: Q\Q
Newform subspaces: 8 8
Sturm bound: 12161216
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(4767))M_{2}(\Gamma_0(4767)).

Total New Old
Modular forms 612 227 385
Cusp forms 605 227 378
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

3377227227FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++616127273434616127273434000000
++++--929230306262919130306161110011
++-++-828235354747818135354646110011
++--++717122224949707022224848110011
-++++-696929294040686829293939110011
-++-++848426265858838326265757110011
--++++747423235151737323235050110011
----797935354444787835354343110011
Plus space++29029098981921922872879898189189330033
Minus space-322322129129193193318318129129189189440044

Trace form

227q+5q2q3+229q4+10q53q6+3q7+9q8+227q910q10+4q117q12+10q13+q146q15+221q16+22q17+5q1820q19++4q99+O(q100) 227 q + 5 q^{2} - q^{3} + 229 q^{4} + 10 q^{5} - 3 q^{6} + 3 q^{7} + 9 q^{8} + 227 q^{9} - 10 q^{10} + 4 q^{11} - 7 q^{12} + 10 q^{13} + q^{14} - 6 q^{15} + 221 q^{16} + 22 q^{17} + 5 q^{18} - 20 q^{19}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(4767))S_{2}^{\mathrm{new}}(\Gamma_0(4767)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 7 227
4767.2.a.a 4767.a 1.a 2222 38.06538.065 None 4767.2.a.a 4-4 22-22 88 2222 ++ - - SU(2)\mathrm{SU}(2)
4767.2.a.b 4767.a 1.a 2323 38.06538.065 None 4767.2.a.b 9-9 2323 20-20 2323 - - ++ SU(2)\mathrm{SU}(2)
4767.2.a.c 4767.a 1.a 2626 38.06538.065 None 4767.2.a.c 4-4 2626 2-2 26-26 - ++ - SU(2)\mathrm{SU}(2)
4767.2.a.d 4767.a 1.a 2727 38.06538.065 None 4767.2.a.d 11 27-27 10-10 27-27 ++ ++ ++ SU(2)\mathrm{SU}(2)
4767.2.a.e 4767.a 1.a 2929 38.06538.065 None 4767.2.a.e 55 2929 66 29-29 - ++ ++ SU(2)\mathrm{SU}(2)
4767.2.a.f 4767.a 1.a 3030 38.06538.065 None 4767.2.a.f 00 30-30 1414 30-30 ++ ++ - SU(2)\mathrm{SU}(2)
4767.2.a.g 4767.a 1.a 3535 38.06538.065 None 4767.2.a.g 77 35-35 4-4 3535 ++ - ++ SU(2)\mathrm{SU}(2)
4767.2.a.h 4767.a 1.a 3535 38.06538.065 None 4767.2.a.h 99 3535 1818 3535 - - - SU(2)\mathrm{SU}(2)

Decomposition of S2old(Γ0(4767))S_{2}^{\mathrm{old}}(\Gamma_0(4767)) into lower level spaces

S2old(Γ0(4767)) S_{2}^{\mathrm{old}}(\Gamma_0(4767)) \simeq S2new(Γ0(21))S_{2}^{\mathrm{new}}(\Gamma_0(21))2^{\oplus 2}\oplusS2new(Γ0(227))S_{2}^{\mathrm{new}}(\Gamma_0(227))4^{\oplus 4}\oplusS2new(Γ0(681))S_{2}^{\mathrm{new}}(\Gamma_0(681))2^{\oplus 2}\oplusS2new(Γ0(1589))S_{2}^{\mathrm{new}}(\Gamma_0(1589))2^{\oplus 2}