Properties

Label 21.2.a
Level $21$
Weight $2$
Character orbit 21.a
Rep. character $\chi_{21}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 21.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(21))\).

Total New Old
Modular forms 4 1 3
Cusp forms 1 1 0
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeDim
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q - q^{2} + q^{3} - q^{4} - 2 q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9} + 2 q^{10} + 4 q^{11} - q^{12} - 2 q^{13} + q^{14} - 2 q^{15} - q^{16} - 6 q^{17} - q^{18} + 4 q^{19} + 2 q^{20} - q^{21}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
21.2.a.a 21.a 1.a $1$ $0.168$ \(\Q\) None 21.2.a.a \(-1\) \(1\) \(-2\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\)