Properties

Label 4767.2.a.g.1.15
Level $4767$
Weight $2$
Character 4767.1
Self dual yes
Analytic conductor $38.065$
Analytic rank $0$
Dimension $35$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4767,2,Mod(1,4767)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4767, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4767.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4767 = 3 \cdot 7 \cdot 227 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4767.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [35,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0646866435\)
Analytic rank: \(0\)
Dimension: \(35\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 4767.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.233639 q^{2} -1.00000 q^{3} -1.94541 q^{4} -1.48259 q^{5} +0.233639 q^{6} +1.00000 q^{7} +0.921803 q^{8} +1.00000 q^{9} +0.346390 q^{10} +5.41758 q^{11} +1.94541 q^{12} +4.94174 q^{13} -0.233639 q^{14} +1.48259 q^{15} +3.67546 q^{16} +6.13587 q^{17} -0.233639 q^{18} -5.83071 q^{19} +2.88424 q^{20} -1.00000 q^{21} -1.26576 q^{22} +7.09256 q^{23} -0.921803 q^{24} -2.80194 q^{25} -1.15458 q^{26} -1.00000 q^{27} -1.94541 q^{28} +9.88106 q^{29} -0.346390 q^{30} -3.28238 q^{31} -2.70234 q^{32} -5.41758 q^{33} -1.43358 q^{34} -1.48259 q^{35} -1.94541 q^{36} +8.66303 q^{37} +1.36228 q^{38} -4.94174 q^{39} -1.36665 q^{40} +8.49315 q^{41} +0.233639 q^{42} -0.270411 q^{43} -10.5394 q^{44} -1.48259 q^{45} -1.65710 q^{46} -8.27124 q^{47} -3.67546 q^{48} +1.00000 q^{49} +0.654643 q^{50} -6.13587 q^{51} -9.61372 q^{52} +10.3838 q^{53} +0.233639 q^{54} -8.03202 q^{55} +0.921803 q^{56} +5.83071 q^{57} -2.30860 q^{58} -11.5315 q^{59} -2.88424 q^{60} +5.96919 q^{61} +0.766893 q^{62} +1.00000 q^{63} -6.71954 q^{64} -7.32655 q^{65} +1.26576 q^{66} -2.51408 q^{67} -11.9368 q^{68} -7.09256 q^{69} +0.346390 q^{70} +2.71504 q^{71} +0.921803 q^{72} -3.97759 q^{73} -2.02402 q^{74} +2.80194 q^{75} +11.3431 q^{76} +5.41758 q^{77} +1.15458 q^{78} +6.44646 q^{79} -5.44918 q^{80} +1.00000 q^{81} -1.98433 q^{82} -0.577379 q^{83} +1.94541 q^{84} -9.09695 q^{85} +0.0631786 q^{86} -9.88106 q^{87} +4.99394 q^{88} -18.1493 q^{89} +0.346390 q^{90} +4.94174 q^{91} -13.7980 q^{92} +3.28238 q^{93} +1.93248 q^{94} +8.64453 q^{95} +2.70234 q^{96} -1.10284 q^{97} -0.233639 q^{98} +5.41758 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 35 q + 7 q^{2} - 35 q^{3} + 45 q^{4} - 4 q^{5} - 7 q^{6} + 35 q^{7} + 21 q^{8} + 35 q^{9} + 11 q^{10} - 3 q^{11} - 45 q^{12} + 19 q^{13} + 7 q^{14} + 4 q^{15} + 65 q^{16} + 20 q^{17} + 7 q^{18} + 9 q^{19}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.233639 −0.165208 −0.0826039 0.996582i \(-0.526324\pi\)
−0.0826039 + 0.996582i \(0.526324\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.94541 −0.972706
\(5\) −1.48259 −0.663033 −0.331516 0.943450i \(-0.607560\pi\)
−0.331516 + 0.943450i \(0.607560\pi\)
\(6\) 0.233639 0.0953828
\(7\) 1.00000 0.377964
\(8\) 0.921803 0.325906
\(9\) 1.00000 0.333333
\(10\) 0.346390 0.109538
\(11\) 5.41758 1.63346 0.816730 0.577020i \(-0.195784\pi\)
0.816730 + 0.577020i \(0.195784\pi\)
\(12\) 1.94541 0.561592
\(13\) 4.94174 1.37059 0.685296 0.728265i \(-0.259673\pi\)
0.685296 + 0.728265i \(0.259673\pi\)
\(14\) −0.233639 −0.0624427
\(15\) 1.48259 0.382802
\(16\) 3.67546 0.918864
\(17\) 6.13587 1.48817 0.744083 0.668087i \(-0.232887\pi\)
0.744083 + 0.668087i \(0.232887\pi\)
\(18\) −0.233639 −0.0550693
\(19\) −5.83071 −1.33766 −0.668828 0.743417i \(-0.733204\pi\)
−0.668828 + 0.743417i \(0.733204\pi\)
\(20\) 2.88424 0.644936
\(21\) −1.00000 −0.218218
\(22\) −1.26576 −0.269860
\(23\) 7.09256 1.47890 0.739450 0.673211i \(-0.235086\pi\)
0.739450 + 0.673211i \(0.235086\pi\)
\(24\) −0.921803 −0.188162
\(25\) −2.80194 −0.560388
\(26\) −1.15458 −0.226432
\(27\) −1.00000 −0.192450
\(28\) −1.94541 −0.367648
\(29\) 9.88106 1.83487 0.917433 0.397890i \(-0.130257\pi\)
0.917433 + 0.397890i \(0.130257\pi\)
\(30\) −0.346390 −0.0632419
\(31\) −3.28238 −0.589533 −0.294767 0.955569i \(-0.595242\pi\)
−0.294767 + 0.955569i \(0.595242\pi\)
\(32\) −2.70234 −0.477710
\(33\) −5.41758 −0.943079
\(34\) −1.43358 −0.245857
\(35\) −1.48259 −0.250603
\(36\) −1.94541 −0.324235
\(37\) 8.66303 1.42419 0.712096 0.702082i \(-0.247746\pi\)
0.712096 + 0.702082i \(0.247746\pi\)
\(38\) 1.36228 0.220991
\(39\) −4.94174 −0.791312
\(40\) −1.36665 −0.216087
\(41\) 8.49315 1.32641 0.663203 0.748439i \(-0.269197\pi\)
0.663203 + 0.748439i \(0.269197\pi\)
\(42\) 0.233639 0.0360513
\(43\) −0.270411 −0.0412373 −0.0206186 0.999787i \(-0.506564\pi\)
−0.0206186 + 0.999787i \(0.506564\pi\)
\(44\) −10.5394 −1.58888
\(45\) −1.48259 −0.221011
\(46\) −1.65710 −0.244326
\(47\) −8.27124 −1.20648 −0.603242 0.797558i \(-0.706125\pi\)
−0.603242 + 0.797558i \(0.706125\pi\)
\(48\) −3.67546 −0.530506
\(49\) 1.00000 0.142857
\(50\) 0.654643 0.0925804
\(51\) −6.13587 −0.859193
\(52\) −9.61372 −1.33318
\(53\) 10.3838 1.42633 0.713164 0.700997i \(-0.247262\pi\)
0.713164 + 0.700997i \(0.247262\pi\)
\(54\) 0.233639 0.0317943
\(55\) −8.03202 −1.08304
\(56\) 0.921803 0.123181
\(57\) 5.83071 0.772296
\(58\) −2.30860 −0.303134
\(59\) −11.5315 −1.50128 −0.750639 0.660712i \(-0.770254\pi\)
−0.750639 + 0.660712i \(0.770254\pi\)
\(60\) −2.88424 −0.372354
\(61\) 5.96919 0.764276 0.382138 0.924105i \(-0.375188\pi\)
0.382138 + 0.924105i \(0.375188\pi\)
\(62\) 0.766893 0.0973955
\(63\) 1.00000 0.125988
\(64\) −6.71954 −0.839943
\(65\) −7.32655 −0.908747
\(66\) 1.26576 0.155804
\(67\) −2.51408 −0.307144 −0.153572 0.988137i \(-0.549078\pi\)
−0.153572 + 0.988137i \(0.549078\pi\)
\(68\) −11.9368 −1.44755
\(69\) −7.09256 −0.853844
\(70\) 0.346390 0.0414015
\(71\) 2.71504 0.322216 0.161108 0.986937i \(-0.448493\pi\)
0.161108 + 0.986937i \(0.448493\pi\)
\(72\) 0.921803 0.108635
\(73\) −3.97759 −0.465542 −0.232771 0.972532i \(-0.574779\pi\)
−0.232771 + 0.972532i \(0.574779\pi\)
\(74\) −2.02402 −0.235288
\(75\) 2.80194 0.323540
\(76\) 11.3431 1.30115
\(77\) 5.41758 0.617390
\(78\) 1.15458 0.130731
\(79\) 6.44646 0.725283 0.362642 0.931929i \(-0.381875\pi\)
0.362642 + 0.931929i \(0.381875\pi\)
\(80\) −5.44918 −0.609237
\(81\) 1.00000 0.111111
\(82\) −1.98433 −0.219133
\(83\) −0.577379 −0.0633756 −0.0316878 0.999498i \(-0.510088\pi\)
−0.0316878 + 0.999498i \(0.510088\pi\)
\(84\) 1.94541 0.212262
\(85\) −9.09695 −0.986703
\(86\) 0.0631786 0.00681272
\(87\) −9.88106 −1.05936
\(88\) 4.99394 0.532355
\(89\) −18.1493 −1.92382 −0.961909 0.273371i \(-0.911861\pi\)
−0.961909 + 0.273371i \(0.911861\pi\)
\(90\) 0.346390 0.0365127
\(91\) 4.94174 0.518035
\(92\) −13.7980 −1.43854
\(93\) 3.28238 0.340367
\(94\) 1.93248 0.199321
\(95\) 8.64453 0.886910
\(96\) 2.70234 0.275806
\(97\) −1.10284 −0.111976 −0.0559881 0.998431i \(-0.517831\pi\)
−0.0559881 + 0.998431i \(0.517831\pi\)
\(98\) −0.233639 −0.0236011
\(99\) 5.41758 0.544487
\(100\) 5.45093 0.545093
\(101\) 15.3358 1.52597 0.762985 0.646417i \(-0.223733\pi\)
0.762985 + 0.646417i \(0.223733\pi\)
\(102\) 1.43358 0.141945
\(103\) −5.04823 −0.497417 −0.248709 0.968578i \(-0.580006\pi\)
−0.248709 + 0.968578i \(0.580006\pi\)
\(104\) 4.55531 0.446685
\(105\) 1.48259 0.144686
\(106\) −2.42607 −0.235640
\(107\) −20.3055 −1.96301 −0.981504 0.191442i \(-0.938684\pi\)
−0.981504 + 0.191442i \(0.938684\pi\)
\(108\) 1.94541 0.187197
\(109\) −0.870389 −0.0833681 −0.0416841 0.999131i \(-0.513272\pi\)
−0.0416841 + 0.999131i \(0.513272\pi\)
\(110\) 1.87659 0.178926
\(111\) −8.66303 −0.822258
\(112\) 3.67546 0.347298
\(113\) −11.6480 −1.09575 −0.547875 0.836560i \(-0.684563\pi\)
−0.547875 + 0.836560i \(0.684563\pi\)
\(114\) −1.36228 −0.127589
\(115\) −10.5153 −0.980559
\(116\) −19.2227 −1.78479
\(117\) 4.94174 0.456864
\(118\) 2.69422 0.248023
\(119\) 6.13587 0.562474
\(120\) 1.36665 0.124758
\(121\) 18.3501 1.66819
\(122\) −1.39464 −0.126264
\(123\) −8.49315 −0.765801
\(124\) 6.38559 0.573443
\(125\) 11.5670 1.03459
\(126\) −0.233639 −0.0208142
\(127\) −1.38223 −0.122653 −0.0613265 0.998118i \(-0.519533\pi\)
−0.0613265 + 0.998118i \(0.519533\pi\)
\(128\) 6.97462 0.616475
\(129\) 0.270411 0.0238084
\(130\) 1.71177 0.150132
\(131\) −14.8618 −1.29848 −0.649241 0.760583i \(-0.724913\pi\)
−0.649241 + 0.760583i \(0.724913\pi\)
\(132\) 10.5394 0.917339
\(133\) −5.83071 −0.505587
\(134\) 0.587387 0.0507425
\(135\) 1.48259 0.127601
\(136\) 5.65606 0.485003
\(137\) −19.5731 −1.67225 −0.836123 0.548543i \(-0.815183\pi\)
−0.836123 + 0.548543i \(0.815183\pi\)
\(138\) 1.65710 0.141062
\(139\) 14.4677 1.22714 0.613569 0.789641i \(-0.289733\pi\)
0.613569 + 0.789641i \(0.289733\pi\)
\(140\) 2.88424 0.243763
\(141\) 8.27124 0.696564
\(142\) −0.634340 −0.0532327
\(143\) 26.7722 2.23881
\(144\) 3.67546 0.306288
\(145\) −14.6495 −1.21658
\(146\) 0.929322 0.0769112
\(147\) −1.00000 −0.0824786
\(148\) −16.8532 −1.38532
\(149\) 4.53174 0.371254 0.185627 0.982620i \(-0.440568\pi\)
0.185627 + 0.982620i \(0.440568\pi\)
\(150\) −0.654643 −0.0534513
\(151\) 9.47624 0.771165 0.385583 0.922673i \(-0.374000\pi\)
0.385583 + 0.922673i \(0.374000\pi\)
\(152\) −5.37476 −0.435951
\(153\) 6.13587 0.496055
\(154\) −1.26576 −0.101998
\(155\) 4.86641 0.390880
\(156\) 9.61372 0.769714
\(157\) 23.5581 1.88014 0.940071 0.340980i \(-0.110759\pi\)
0.940071 + 0.340980i \(0.110759\pi\)
\(158\) −1.50615 −0.119822
\(159\) −10.3838 −0.823491
\(160\) 4.00644 0.316737
\(161\) 7.09256 0.558972
\(162\) −0.233639 −0.0183564
\(163\) 2.58640 0.202583 0.101291 0.994857i \(-0.467703\pi\)
0.101291 + 0.994857i \(0.467703\pi\)
\(164\) −16.5227 −1.29020
\(165\) 8.03202 0.625292
\(166\) 0.134898 0.0104701
\(167\) −5.18530 −0.401250 −0.200625 0.979668i \(-0.564297\pi\)
−0.200625 + 0.979668i \(0.564297\pi\)
\(168\) −0.921803 −0.0711186
\(169\) 11.4208 0.878522
\(170\) 2.12540 0.163011
\(171\) −5.83071 −0.445885
\(172\) 0.526061 0.0401118
\(173\) 18.1348 1.37876 0.689380 0.724400i \(-0.257883\pi\)
0.689380 + 0.724400i \(0.257883\pi\)
\(174\) 2.30860 0.175015
\(175\) −2.80194 −0.211807
\(176\) 19.9121 1.50093
\(177\) 11.5315 0.866763
\(178\) 4.24038 0.317830
\(179\) 0.509410 0.0380751 0.0190376 0.999819i \(-0.493940\pi\)
0.0190376 + 0.999819i \(0.493940\pi\)
\(180\) 2.88424 0.214979
\(181\) −6.83038 −0.507698 −0.253849 0.967244i \(-0.581697\pi\)
−0.253849 + 0.967244i \(0.581697\pi\)
\(182\) −1.15458 −0.0855834
\(183\) −5.96919 −0.441255
\(184\) 6.53794 0.481983
\(185\) −12.8437 −0.944286
\(186\) −0.766893 −0.0562313
\(187\) 33.2415 2.43086
\(188\) 16.0910 1.17355
\(189\) −1.00000 −0.0727393
\(190\) −2.01970 −0.146524
\(191\) 11.7716 0.851762 0.425881 0.904779i \(-0.359964\pi\)
0.425881 + 0.904779i \(0.359964\pi\)
\(192\) 6.71954 0.484941
\(193\) 17.7698 1.27910 0.639549 0.768750i \(-0.279121\pi\)
0.639549 + 0.768750i \(0.279121\pi\)
\(194\) 0.257666 0.0184993
\(195\) 7.32655 0.524665
\(196\) −1.94541 −0.138958
\(197\) 0.944056 0.0672612 0.0336306 0.999434i \(-0.489293\pi\)
0.0336306 + 0.999434i \(0.489293\pi\)
\(198\) −1.26576 −0.0899535
\(199\) 2.09676 0.148635 0.0743177 0.997235i \(-0.476322\pi\)
0.0743177 + 0.997235i \(0.476322\pi\)
\(200\) −2.58284 −0.182634
\(201\) 2.51408 0.177329
\(202\) −3.58304 −0.252102
\(203\) 9.88106 0.693514
\(204\) 11.9368 0.835743
\(205\) −12.5918 −0.879451
\(206\) 1.17946 0.0821772
\(207\) 7.09256 0.492967
\(208\) 18.1631 1.25939
\(209\) −31.5883 −2.18501
\(210\) −0.346390 −0.0239032
\(211\) −2.84088 −0.195574 −0.0977871 0.995207i \(-0.531176\pi\)
−0.0977871 + 0.995207i \(0.531176\pi\)
\(212\) −20.2008 −1.38740
\(213\) −2.71504 −0.186032
\(214\) 4.74416 0.324304
\(215\) 0.400907 0.0273417
\(216\) −0.921803 −0.0627207
\(217\) −3.28238 −0.222823
\(218\) 0.203357 0.0137731
\(219\) 3.97759 0.268781
\(220\) 15.6256 1.05348
\(221\) 30.3218 2.03967
\(222\) 2.02402 0.135843
\(223\) 17.7173 1.18644 0.593220 0.805041i \(-0.297857\pi\)
0.593220 + 0.805041i \(0.297857\pi\)
\(224\) −2.70234 −0.180557
\(225\) −2.80194 −0.186796
\(226\) 2.72143 0.181027
\(227\) −1.00000 −0.0663723
\(228\) −11.3431 −0.751217
\(229\) 6.65562 0.439816 0.219908 0.975521i \(-0.429424\pi\)
0.219908 + 0.975521i \(0.429424\pi\)
\(230\) 2.45679 0.161996
\(231\) −5.41758 −0.356450
\(232\) 9.10839 0.597995
\(233\) 2.80827 0.183976 0.0919880 0.995760i \(-0.470678\pi\)
0.0919880 + 0.995760i \(0.470678\pi\)
\(234\) −1.15458 −0.0754775
\(235\) 12.2628 0.799938
\(236\) 22.4336 1.46030
\(237\) −6.44646 −0.418743
\(238\) −1.43358 −0.0929251
\(239\) 18.9776 1.22756 0.613778 0.789479i \(-0.289649\pi\)
0.613778 + 0.789479i \(0.289649\pi\)
\(240\) 5.44918 0.351743
\(241\) −11.3574 −0.731594 −0.365797 0.930695i \(-0.619204\pi\)
−0.365797 + 0.930695i \(0.619204\pi\)
\(242\) −4.28731 −0.275599
\(243\) −1.00000 −0.0641500
\(244\) −11.6125 −0.743416
\(245\) −1.48259 −0.0947189
\(246\) 1.98433 0.126516
\(247\) −28.8138 −1.83338
\(248\) −3.02571 −0.192133
\(249\) 0.577379 0.0365899
\(250\) −2.70251 −0.170922
\(251\) −13.2019 −0.833298 −0.416649 0.909068i \(-0.636796\pi\)
−0.416649 + 0.909068i \(0.636796\pi\)
\(252\) −1.94541 −0.122549
\(253\) 38.4245 2.41573
\(254\) 0.322943 0.0202632
\(255\) 9.09695 0.569673
\(256\) 11.8095 0.738096
\(257\) 8.71050 0.543346 0.271673 0.962390i \(-0.412423\pi\)
0.271673 + 0.962390i \(0.412423\pi\)
\(258\) −0.0631786 −0.00393333
\(259\) 8.66303 0.538294
\(260\) 14.2532 0.883944
\(261\) 9.88106 0.611622
\(262\) 3.47230 0.214519
\(263\) −17.5957 −1.08500 −0.542499 0.840056i \(-0.682522\pi\)
−0.542499 + 0.840056i \(0.682522\pi\)
\(264\) −4.99394 −0.307356
\(265\) −15.3949 −0.945702
\(266\) 1.36228 0.0835269
\(267\) 18.1493 1.11072
\(268\) 4.89092 0.298761
\(269\) 13.0821 0.797632 0.398816 0.917031i \(-0.369421\pi\)
0.398816 + 0.917031i \(0.369421\pi\)
\(270\) −0.346390 −0.0210806
\(271\) −13.4587 −0.817557 −0.408778 0.912634i \(-0.634045\pi\)
−0.408778 + 0.912634i \(0.634045\pi\)
\(272\) 22.5521 1.36742
\(273\) −4.94174 −0.299088
\(274\) 4.57305 0.276268
\(275\) −15.1797 −0.915372
\(276\) 13.7980 0.830539
\(277\) −31.8391 −1.91302 −0.956512 0.291693i \(-0.905781\pi\)
−0.956512 + 0.291693i \(0.905781\pi\)
\(278\) −3.38023 −0.202733
\(279\) −3.28238 −0.196511
\(280\) −1.36665 −0.0816731
\(281\) 17.1961 1.02583 0.512915 0.858439i \(-0.328565\pi\)
0.512915 + 0.858439i \(0.328565\pi\)
\(282\) −1.93248 −0.115078
\(283\) 1.73316 0.103026 0.0515129 0.998672i \(-0.483596\pi\)
0.0515129 + 0.998672i \(0.483596\pi\)
\(284\) −5.28188 −0.313422
\(285\) −8.64453 −0.512058
\(286\) −6.25504 −0.369869
\(287\) 8.49315 0.501335
\(288\) −2.70234 −0.159237
\(289\) 20.6489 1.21464
\(290\) 3.42270 0.200988
\(291\) 1.10284 0.0646494
\(292\) 7.73806 0.452836
\(293\) −2.53029 −0.147821 −0.0739107 0.997265i \(-0.523548\pi\)
−0.0739107 + 0.997265i \(0.523548\pi\)
\(294\) 0.233639 0.0136261
\(295\) 17.0965 0.995396
\(296\) 7.98560 0.464154
\(297\) −5.41758 −0.314360
\(298\) −1.05879 −0.0613341
\(299\) 35.0496 2.02697
\(300\) −5.45093 −0.314709
\(301\) −0.270411 −0.0155862
\(302\) −2.21402 −0.127403
\(303\) −15.3358 −0.881019
\(304\) −21.4305 −1.22912
\(305\) −8.84984 −0.506740
\(306\) −1.43358 −0.0819522
\(307\) −18.5168 −1.05681 −0.528405 0.848992i \(-0.677210\pi\)
−0.528405 + 0.848992i \(0.677210\pi\)
\(308\) −10.5394 −0.600539
\(309\) 5.04823 0.287184
\(310\) −1.13698 −0.0645764
\(311\) 16.9454 0.960887 0.480444 0.877026i \(-0.340476\pi\)
0.480444 + 0.877026i \(0.340476\pi\)
\(312\) −4.55531 −0.257894
\(313\) −26.1822 −1.47990 −0.739952 0.672659i \(-0.765152\pi\)
−0.739952 + 0.672659i \(0.765152\pi\)
\(314\) −5.50409 −0.310614
\(315\) −1.48259 −0.0835342
\(316\) −12.5410 −0.705488
\(317\) −16.8307 −0.945307 −0.472653 0.881248i \(-0.656704\pi\)
−0.472653 + 0.881248i \(0.656704\pi\)
\(318\) 2.42607 0.136047
\(319\) 53.5314 2.99718
\(320\) 9.96230 0.556909
\(321\) 20.3055 1.13334
\(322\) −1.65710 −0.0923465
\(323\) −35.7764 −1.99065
\(324\) −1.94541 −0.108078
\(325\) −13.8465 −0.768063
\(326\) −0.604285 −0.0334682
\(327\) 0.870389 0.0481326
\(328\) 7.82901 0.432284
\(329\) −8.27124 −0.456008
\(330\) −1.87659 −0.103303
\(331\) 8.93670 0.491205 0.245603 0.969371i \(-0.421014\pi\)
0.245603 + 0.969371i \(0.421014\pi\)
\(332\) 1.12324 0.0616458
\(333\) 8.66303 0.474731
\(334\) 1.21149 0.0662897
\(335\) 3.72734 0.203646
\(336\) −3.67546 −0.200513
\(337\) 14.6359 0.797271 0.398635 0.917109i \(-0.369484\pi\)
0.398635 + 0.917109i \(0.369484\pi\)
\(338\) −2.66834 −0.145139
\(339\) 11.6480 0.632632
\(340\) 17.6973 0.959772
\(341\) −17.7825 −0.962979
\(342\) 1.36228 0.0736638
\(343\) 1.00000 0.0539949
\(344\) −0.249266 −0.0134395
\(345\) 10.5153 0.566126
\(346\) −4.23699 −0.227782
\(347\) −2.56661 −0.137783 −0.0688915 0.997624i \(-0.521946\pi\)
−0.0688915 + 0.997624i \(0.521946\pi\)
\(348\) 19.2227 1.03045
\(349\) 15.2130 0.814334 0.407167 0.913354i \(-0.366517\pi\)
0.407167 + 0.913354i \(0.366517\pi\)
\(350\) 0.654643 0.0349921
\(351\) −4.94174 −0.263771
\(352\) −14.6401 −0.780321
\(353\) −33.2349 −1.76891 −0.884457 0.466621i \(-0.845471\pi\)
−0.884457 + 0.466621i \(0.845471\pi\)
\(354\) −2.69422 −0.143196
\(355\) −4.02529 −0.213640
\(356\) 35.3078 1.87131
\(357\) −6.13587 −0.324744
\(358\) −0.119018 −0.00629031
\(359\) −7.40339 −0.390736 −0.195368 0.980730i \(-0.562590\pi\)
−0.195368 + 0.980730i \(0.562590\pi\)
\(360\) −1.36665 −0.0720289
\(361\) 14.9972 0.789325
\(362\) 1.59584 0.0838757
\(363\) −18.3501 −0.963132
\(364\) −9.61372 −0.503896
\(365\) 5.89712 0.308670
\(366\) 1.39464 0.0728988
\(367\) −12.5955 −0.657478 −0.328739 0.944421i \(-0.606624\pi\)
−0.328739 + 0.944421i \(0.606624\pi\)
\(368\) 26.0684 1.35891
\(369\) 8.49315 0.442135
\(370\) 3.00079 0.156003
\(371\) 10.3838 0.539101
\(372\) −6.38559 −0.331077
\(373\) −29.6137 −1.53334 −0.766669 0.642042i \(-0.778087\pi\)
−0.766669 + 0.642042i \(0.778087\pi\)
\(374\) −7.76652 −0.401597
\(375\) −11.5670 −0.597320
\(376\) −7.62445 −0.393201
\(377\) 48.8296 2.51485
\(378\) 0.233639 0.0120171
\(379\) −1.29867 −0.0667083 −0.0333541 0.999444i \(-0.510619\pi\)
−0.0333541 + 0.999444i \(0.510619\pi\)
\(380\) −16.8172 −0.862703
\(381\) 1.38223 0.0708138
\(382\) −2.75030 −0.140718
\(383\) 24.7287 1.26358 0.631788 0.775141i \(-0.282321\pi\)
0.631788 + 0.775141i \(0.282321\pi\)
\(384\) −6.97462 −0.355922
\(385\) −8.03202 −0.409350
\(386\) −4.15172 −0.211317
\(387\) −0.270411 −0.0137458
\(388\) 2.14547 0.108920
\(389\) 8.56030 0.434024 0.217012 0.976169i \(-0.430369\pi\)
0.217012 + 0.976169i \(0.430369\pi\)
\(390\) −1.71177 −0.0866788
\(391\) 43.5190 2.20085
\(392\) 0.921803 0.0465581
\(393\) 14.8618 0.749679
\(394\) −0.220569 −0.0111121
\(395\) −9.55743 −0.480887
\(396\) −10.5394 −0.529626
\(397\) −35.5166 −1.78252 −0.891262 0.453488i \(-0.850180\pi\)
−0.891262 + 0.453488i \(0.850180\pi\)
\(398\) −0.489886 −0.0245557
\(399\) 5.83071 0.291901
\(400\) −10.2984 −0.514920
\(401\) 3.56813 0.178184 0.0890920 0.996023i \(-0.471603\pi\)
0.0890920 + 0.996023i \(0.471603\pi\)
\(402\) −0.587387 −0.0292962
\(403\) −16.2207 −0.808009
\(404\) −29.8345 −1.48432
\(405\) −1.48259 −0.0736703
\(406\) −2.30860 −0.114574
\(407\) 46.9326 2.32636
\(408\) −5.65606 −0.280017
\(409\) −0.474218 −0.0234486 −0.0117243 0.999931i \(-0.503732\pi\)
−0.0117243 + 0.999931i \(0.503732\pi\)
\(410\) 2.94194 0.145292
\(411\) 19.5731 0.965471
\(412\) 9.82090 0.483841
\(413\) −11.5315 −0.567430
\(414\) −1.65710 −0.0814420
\(415\) 0.856014 0.0420201
\(416\) −13.3542 −0.654745
\(417\) −14.4677 −0.708488
\(418\) 7.38026 0.360981
\(419\) −24.1420 −1.17941 −0.589706 0.807618i \(-0.700756\pi\)
−0.589706 + 0.807618i \(0.700756\pi\)
\(420\) −2.88424 −0.140737
\(421\) −28.2265 −1.37568 −0.687838 0.725864i \(-0.741440\pi\)
−0.687838 + 0.725864i \(0.741440\pi\)
\(422\) 0.663741 0.0323104
\(423\) −8.27124 −0.402161
\(424\) 9.57183 0.464849
\(425\) −17.1923 −0.833950
\(426\) 0.634340 0.0307339
\(427\) 5.96919 0.288869
\(428\) 39.5026 1.90943
\(429\) −26.7722 −1.29258
\(430\) −0.0936676 −0.00451705
\(431\) −16.3896 −0.789457 −0.394729 0.918798i \(-0.629161\pi\)
−0.394729 + 0.918798i \(0.629161\pi\)
\(432\) −3.67546 −0.176835
\(433\) 17.9432 0.862295 0.431147 0.902282i \(-0.358109\pi\)
0.431147 + 0.902282i \(0.358109\pi\)
\(434\) 0.766893 0.0368120
\(435\) 14.6495 0.702391
\(436\) 1.69327 0.0810927
\(437\) −41.3546 −1.97826
\(438\) −0.929322 −0.0444047
\(439\) −13.7276 −0.655183 −0.327592 0.944819i \(-0.606237\pi\)
−0.327592 + 0.944819i \(0.606237\pi\)
\(440\) −7.40394 −0.352969
\(441\) 1.00000 0.0476190
\(442\) −7.08437 −0.336969
\(443\) −25.6379 −1.21809 −0.609047 0.793134i \(-0.708448\pi\)
−0.609047 + 0.793134i \(0.708448\pi\)
\(444\) 16.8532 0.799816
\(445\) 26.9078 1.27555
\(446\) −4.13946 −0.196009
\(447\) −4.53174 −0.214344
\(448\) −6.71954 −0.317468
\(449\) 4.52604 0.213597 0.106798 0.994281i \(-0.465940\pi\)
0.106798 + 0.994281i \(0.465940\pi\)
\(450\) 0.654643 0.0308601
\(451\) 46.0123 2.16663
\(452\) 22.6601 1.06584
\(453\) −9.47624 −0.445232
\(454\) 0.233639 0.0109652
\(455\) −7.32655 −0.343474
\(456\) 5.37476 0.251696
\(457\) −0.544430 −0.0254673 −0.0127337 0.999919i \(-0.504053\pi\)
−0.0127337 + 0.999919i \(0.504053\pi\)
\(458\) −1.55501 −0.0726610
\(459\) −6.13587 −0.286398
\(460\) 20.4566 0.953796
\(461\) −27.2223 −1.26787 −0.633933 0.773388i \(-0.718561\pi\)
−0.633933 + 0.773388i \(0.718561\pi\)
\(462\) 1.26576 0.0588884
\(463\) 13.8501 0.643671 0.321835 0.946796i \(-0.395700\pi\)
0.321835 + 0.946796i \(0.395700\pi\)
\(464\) 36.3174 1.68599
\(465\) −4.86641 −0.225674
\(466\) −0.656122 −0.0303943
\(467\) 22.7412 1.05234 0.526168 0.850380i \(-0.323628\pi\)
0.526168 + 0.850380i \(0.323628\pi\)
\(468\) −9.61372 −0.444394
\(469\) −2.51408 −0.116089
\(470\) −2.86507 −0.132156
\(471\) −23.5581 −1.08550
\(472\) −10.6298 −0.489276
\(473\) −1.46497 −0.0673595
\(474\) 1.50615 0.0691795
\(475\) 16.3373 0.749606
\(476\) −11.9368 −0.547122
\(477\) 10.3838 0.475442
\(478\) −4.43390 −0.202802
\(479\) 18.2841 0.835424 0.417712 0.908579i \(-0.362832\pi\)
0.417712 + 0.908579i \(0.362832\pi\)
\(480\) −4.00644 −0.182868
\(481\) 42.8104 1.95199
\(482\) 2.65353 0.120865
\(483\) −7.09256 −0.322723
\(484\) −35.6986 −1.62266
\(485\) 1.63505 0.0742438
\(486\) 0.233639 0.0105981
\(487\) −2.61586 −0.118536 −0.0592680 0.998242i \(-0.518877\pi\)
−0.0592680 + 0.998242i \(0.518877\pi\)
\(488\) 5.50242 0.249083
\(489\) −2.58640 −0.116961
\(490\) 0.346390 0.0156483
\(491\) −30.3215 −1.36839 −0.684196 0.729299i \(-0.739847\pi\)
−0.684196 + 0.729299i \(0.739847\pi\)
\(492\) 16.5227 0.744900
\(493\) 60.6289 2.73059
\(494\) 6.73204 0.302889
\(495\) −8.03202 −0.361013
\(496\) −12.0642 −0.541701
\(497\) 2.71504 0.121786
\(498\) −0.134898 −0.00604494
\(499\) −24.2202 −1.08425 −0.542123 0.840299i \(-0.682379\pi\)
−0.542123 + 0.840299i \(0.682379\pi\)
\(500\) −22.5027 −1.00635
\(501\) 5.18530 0.231662
\(502\) 3.08448 0.137667
\(503\) 13.6459 0.608439 0.304220 0.952602i \(-0.401604\pi\)
0.304220 + 0.952602i \(0.401604\pi\)
\(504\) 0.921803 0.0410604
\(505\) −22.7366 −1.01177
\(506\) −8.97746 −0.399097
\(507\) −11.4208 −0.507215
\(508\) 2.68901 0.119305
\(509\) −35.6435 −1.57987 −0.789935 0.613191i \(-0.789886\pi\)
−0.789935 + 0.613191i \(0.789886\pi\)
\(510\) −2.12540 −0.0941144
\(511\) −3.97759 −0.175958
\(512\) −16.7084 −0.738414
\(513\) 5.83071 0.257432
\(514\) −2.03511 −0.0897650
\(515\) 7.48444 0.329804
\(516\) −0.526061 −0.0231585
\(517\) −44.8101 −1.97074
\(518\) −2.02402 −0.0889304
\(519\) −18.1348 −0.796027
\(520\) −6.75364 −0.296167
\(521\) −5.66809 −0.248324 −0.124162 0.992262i \(-0.539624\pi\)
−0.124162 + 0.992262i \(0.539624\pi\)
\(522\) −2.30860 −0.101045
\(523\) 16.3376 0.714393 0.357197 0.934029i \(-0.383733\pi\)
0.357197 + 0.934029i \(0.383733\pi\)
\(524\) 28.9124 1.26304
\(525\) 2.80194 0.122287
\(526\) 4.11105 0.179250
\(527\) −20.1403 −0.877323
\(528\) −19.9121 −0.866561
\(529\) 27.3044 1.18715
\(530\) 3.59685 0.156237
\(531\) −11.5315 −0.500426
\(532\) 11.3431 0.491787
\(533\) 41.9709 1.81796
\(534\) −4.24038 −0.183499
\(535\) 30.1047 1.30154
\(536\) −2.31749 −0.100100
\(537\) −0.509410 −0.0219827
\(538\) −3.05650 −0.131775
\(539\) 5.41758 0.233352
\(540\) −2.88424 −0.124118
\(541\) 5.22963 0.224839 0.112420 0.993661i \(-0.464140\pi\)
0.112420 + 0.993661i \(0.464140\pi\)
\(542\) 3.14448 0.135067
\(543\) 6.83038 0.293120
\(544\) −16.5812 −0.710912
\(545\) 1.29043 0.0552758
\(546\) 1.15458 0.0494116
\(547\) 45.2012 1.93267 0.966333 0.257296i \(-0.0828315\pi\)
0.966333 + 0.257296i \(0.0828315\pi\)
\(548\) 38.0778 1.62660
\(549\) 5.96919 0.254759
\(550\) 3.54658 0.151227
\(551\) −57.6136 −2.45442
\(552\) −6.53794 −0.278273
\(553\) 6.44646 0.274131
\(554\) 7.43885 0.316046
\(555\) 12.8437 0.545184
\(556\) −28.1457 −1.19364
\(557\) −32.8668 −1.39261 −0.696305 0.717746i \(-0.745174\pi\)
−0.696305 + 0.717746i \(0.745174\pi\)
\(558\) 0.766893 0.0324652
\(559\) −1.33630 −0.0565195
\(560\) −5.44918 −0.230270
\(561\) −33.2415 −1.40346
\(562\) −4.01767 −0.169475
\(563\) −20.3547 −0.857848 −0.428924 0.903340i \(-0.641107\pi\)
−0.428924 + 0.903340i \(0.641107\pi\)
\(564\) −16.0910 −0.677552
\(565\) 17.2691 0.726518
\(566\) −0.404934 −0.0170207
\(567\) 1.00000 0.0419961
\(568\) 2.50273 0.105012
\(569\) −22.9719 −0.963032 −0.481516 0.876437i \(-0.659914\pi\)
−0.481516 + 0.876437i \(0.659914\pi\)
\(570\) 2.01970 0.0845959
\(571\) 38.4872 1.61064 0.805319 0.592842i \(-0.201994\pi\)
0.805319 + 0.592842i \(0.201994\pi\)
\(572\) −52.0831 −2.17770
\(573\) −11.7716 −0.491765
\(574\) −1.98433 −0.0828244
\(575\) −19.8729 −0.828758
\(576\) −6.71954 −0.279981
\(577\) −21.3650 −0.889437 −0.444718 0.895670i \(-0.646696\pi\)
−0.444718 + 0.895670i \(0.646696\pi\)
\(578\) −4.82438 −0.200668
\(579\) −17.7698 −0.738488
\(580\) 28.4994 1.18337
\(581\) −0.577379 −0.0239537
\(582\) −0.257666 −0.0106806
\(583\) 56.2551 2.32985
\(584\) −3.66656 −0.151723
\(585\) −7.32655 −0.302916
\(586\) 0.591176 0.0244213
\(587\) 40.5307 1.67288 0.836441 0.548057i \(-0.184632\pi\)
0.836441 + 0.548057i \(0.184632\pi\)
\(588\) 1.94541 0.0802275
\(589\) 19.1386 0.788593
\(590\) −3.99441 −0.164447
\(591\) −0.944056 −0.0388333
\(592\) 31.8406 1.30864
\(593\) −29.1570 −1.19734 −0.598668 0.800998i \(-0.704303\pi\)
−0.598668 + 0.800998i \(0.704303\pi\)
\(594\) 1.26576 0.0519347
\(595\) −9.09695 −0.372939
\(596\) −8.81610 −0.361121
\(597\) −2.09676 −0.0858147
\(598\) −8.18895 −0.334871
\(599\) 23.4903 0.959786 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(600\) 2.58284 0.105444
\(601\) −15.9930 −0.652370 −0.326185 0.945306i \(-0.605763\pi\)
−0.326185 + 0.945306i \(0.605763\pi\)
\(602\) 0.0631786 0.00257497
\(603\) −2.51408 −0.102381
\(604\) −18.4352 −0.750117
\(605\) −27.2056 −1.10607
\(606\) 3.58304 0.145551
\(607\) 28.6987 1.16484 0.582422 0.812887i \(-0.302105\pi\)
0.582422 + 0.812887i \(0.302105\pi\)
\(608\) 15.7565 0.639012
\(609\) −9.88106 −0.400401
\(610\) 2.06767 0.0837174
\(611\) −40.8743 −1.65360
\(612\) −11.9368 −0.482516
\(613\) 31.2425 1.26187 0.630936 0.775835i \(-0.282671\pi\)
0.630936 + 0.775835i \(0.282671\pi\)
\(614\) 4.32625 0.174593
\(615\) 12.5918 0.507751
\(616\) 4.99394 0.201211
\(617\) 15.4258 0.621018 0.310509 0.950570i \(-0.399500\pi\)
0.310509 + 0.950570i \(0.399500\pi\)
\(618\) −1.17946 −0.0474450
\(619\) −18.6507 −0.749635 −0.374818 0.927099i \(-0.622295\pi\)
−0.374818 + 0.927099i \(0.622295\pi\)
\(620\) −9.46718 −0.380211
\(621\) −7.09256 −0.284615
\(622\) −3.95911 −0.158746
\(623\) −18.1493 −0.727135
\(624\) −18.1631 −0.727108
\(625\) −3.13944 −0.125578
\(626\) 6.11718 0.244492
\(627\) 31.5883 1.26152
\(628\) −45.8302 −1.82883
\(629\) 53.1552 2.11944
\(630\) 0.346390 0.0138005
\(631\) 6.62472 0.263726 0.131863 0.991268i \(-0.457904\pi\)
0.131863 + 0.991268i \(0.457904\pi\)
\(632\) 5.94236 0.236375
\(633\) 2.84088 0.112915
\(634\) 3.93231 0.156172
\(635\) 2.04927 0.0813230
\(636\) 20.2008 0.801015
\(637\) 4.94174 0.195799
\(638\) −12.5070 −0.495158
\(639\) 2.71504 0.107405
\(640\) −10.3405 −0.408743
\(641\) 10.3172 0.407503 0.203751 0.979023i \(-0.434687\pi\)
0.203751 + 0.979023i \(0.434687\pi\)
\(642\) −4.74416 −0.187237
\(643\) 17.2798 0.681450 0.340725 0.940163i \(-0.389327\pi\)
0.340725 + 0.940163i \(0.389327\pi\)
\(644\) −13.7980 −0.543716
\(645\) −0.400907 −0.0157857
\(646\) 8.35878 0.328872
\(647\) 0.730968 0.0287373 0.0143687 0.999897i \(-0.495426\pi\)
0.0143687 + 0.999897i \(0.495426\pi\)
\(648\) 0.921803 0.0362118
\(649\) −62.4730 −2.45228
\(650\) 3.23507 0.126890
\(651\) 3.28238 0.128647
\(652\) −5.03162 −0.197053
\(653\) 2.81325 0.110091 0.0550454 0.998484i \(-0.482470\pi\)
0.0550454 + 0.998484i \(0.482470\pi\)
\(654\) −0.203357 −0.00795188
\(655\) 22.0339 0.860936
\(656\) 31.2162 1.21879
\(657\) −3.97759 −0.155181
\(658\) 1.93248 0.0753361
\(659\) −4.62113 −0.180014 −0.0900069 0.995941i \(-0.528689\pi\)
−0.0900069 + 0.995941i \(0.528689\pi\)
\(660\) −15.6256 −0.608226
\(661\) −16.8602 −0.655785 −0.327893 0.944715i \(-0.606338\pi\)
−0.327893 + 0.944715i \(0.606338\pi\)
\(662\) −2.08796 −0.0811510
\(663\) −30.3218 −1.17760
\(664\) −0.532229 −0.0206545
\(665\) 8.64453 0.335220
\(666\) −2.02402 −0.0784293
\(667\) 70.0820 2.71359
\(668\) 10.0875 0.390299
\(669\) −17.7173 −0.684991
\(670\) −0.870852 −0.0336439
\(671\) 32.3385 1.24842
\(672\) 2.70234 0.104245
\(673\) 47.3561 1.82545 0.912723 0.408580i \(-0.133976\pi\)
0.912723 + 0.408580i \(0.133976\pi\)
\(674\) −3.41953 −0.131715
\(675\) 2.80194 0.107847
\(676\) −22.2181 −0.854544
\(677\) 4.74931 0.182531 0.0912654 0.995827i \(-0.470909\pi\)
0.0912654 + 0.995827i \(0.470909\pi\)
\(678\) −2.72143 −0.104516
\(679\) −1.10284 −0.0423230
\(680\) −8.38559 −0.321573
\(681\) 1.00000 0.0383201
\(682\) 4.15470 0.159092
\(683\) −48.0158 −1.83727 −0.918637 0.395102i \(-0.870709\pi\)
−0.918637 + 0.395102i \(0.870709\pi\)
\(684\) 11.3431 0.433716
\(685\) 29.0188 1.10875
\(686\) −0.233639 −0.00892038
\(687\) −6.65562 −0.253928
\(688\) −0.993883 −0.0378915
\(689\) 51.3141 1.95491
\(690\) −2.45679 −0.0935285
\(691\) −9.24469 −0.351685 −0.175842 0.984418i \(-0.556265\pi\)
−0.175842 + 0.984418i \(0.556265\pi\)
\(692\) −35.2796 −1.34113
\(693\) 5.41758 0.205797
\(694\) 0.599661 0.0227628
\(695\) −21.4497 −0.813632
\(696\) −9.10839 −0.345253
\(697\) 52.1128 1.97391
\(698\) −3.55436 −0.134534
\(699\) −2.80827 −0.106219
\(700\) 5.45093 0.206026
\(701\) 29.6555 1.12007 0.560035 0.828469i \(-0.310787\pi\)
0.560035 + 0.828469i \(0.310787\pi\)
\(702\) 1.15458 0.0435769
\(703\) −50.5116 −1.90508
\(704\) −36.4036 −1.37201
\(705\) −12.2628 −0.461845
\(706\) 7.76497 0.292239
\(707\) 15.3358 0.576762
\(708\) −22.4336 −0.843106
\(709\) −47.9719 −1.80162 −0.900812 0.434210i \(-0.857027\pi\)
−0.900812 + 0.434210i \(0.857027\pi\)
\(710\) 0.940464 0.0352950
\(711\) 6.44646 0.241761
\(712\) −16.7300 −0.626985
\(713\) −23.2805 −0.871861
\(714\) 1.43358 0.0536503
\(715\) −39.6922 −1.48440
\(716\) −0.991014 −0.0370359
\(717\) −18.9776 −0.708730
\(718\) 1.72972 0.0645527
\(719\) −12.8217 −0.478170 −0.239085 0.970999i \(-0.576847\pi\)
−0.239085 + 0.970999i \(0.576847\pi\)
\(720\) −5.44918 −0.203079
\(721\) −5.04823 −0.188006
\(722\) −3.50392 −0.130403
\(723\) 11.3574 0.422386
\(724\) 13.2879 0.493841
\(725\) −27.6861 −1.02824
\(726\) 4.28731 0.159117
\(727\) −26.0404 −0.965786 −0.482893 0.875679i \(-0.660414\pi\)
−0.482893 + 0.875679i \(0.660414\pi\)
\(728\) 4.55531 0.168831
\(729\) 1.00000 0.0370370
\(730\) −1.37780 −0.0509946
\(731\) −1.65921 −0.0613679
\(732\) 11.6125 0.429212
\(733\) 4.59002 0.169536 0.0847681 0.996401i \(-0.472985\pi\)
0.0847681 + 0.996401i \(0.472985\pi\)
\(734\) 2.94280 0.108621
\(735\) 1.48259 0.0546860
\(736\) −19.1665 −0.706486
\(737\) −13.6202 −0.501707
\(738\) −1.98433 −0.0730442
\(739\) −35.9474 −1.32235 −0.661174 0.750233i \(-0.729941\pi\)
−0.661174 + 0.750233i \(0.729941\pi\)
\(740\) 24.9863 0.918513
\(741\) 28.8138 1.05850
\(742\) −2.42607 −0.0890637
\(743\) −4.05673 −0.148827 −0.0744135 0.997227i \(-0.523708\pi\)
−0.0744135 + 0.997227i \(0.523708\pi\)
\(744\) 3.02571 0.110928
\(745\) −6.71869 −0.246154
\(746\) 6.91892 0.253320
\(747\) −0.577379 −0.0211252
\(748\) −64.6685 −2.36451
\(749\) −20.3055 −0.741947
\(750\) 2.70251 0.0986819
\(751\) −18.6982 −0.682308 −0.341154 0.940007i \(-0.610818\pi\)
−0.341154 + 0.940007i \(0.610818\pi\)
\(752\) −30.4006 −1.10859
\(753\) 13.2019 0.481105
\(754\) −11.4085 −0.415473
\(755\) −14.0493 −0.511308
\(756\) 1.94541 0.0707540
\(757\) 17.1096 0.621860 0.310930 0.950433i \(-0.399360\pi\)
0.310930 + 0.950433i \(0.399360\pi\)
\(758\) 0.303421 0.0110207
\(759\) −38.4245 −1.39472
\(760\) 7.96855 0.289050
\(761\) −7.90260 −0.286469 −0.143235 0.989689i \(-0.545750\pi\)
−0.143235 + 0.989689i \(0.545750\pi\)
\(762\) −0.322943 −0.0116990
\(763\) −0.870389 −0.0315102
\(764\) −22.9006 −0.828514
\(765\) −9.09695 −0.328901
\(766\) −5.77759 −0.208753
\(767\) −56.9858 −2.05764
\(768\) −11.8095 −0.426140
\(769\) −35.7692 −1.28987 −0.644935 0.764238i \(-0.723116\pi\)
−0.644935 + 0.764238i \(0.723116\pi\)
\(770\) 1.87659 0.0676278
\(771\) −8.71050 −0.313701
\(772\) −34.5696 −1.24419
\(773\) 47.7411 1.71713 0.858564 0.512706i \(-0.171357\pi\)
0.858564 + 0.512706i \(0.171357\pi\)
\(774\) 0.0631786 0.00227091
\(775\) 9.19703 0.330367
\(776\) −1.01660 −0.0364937
\(777\) −8.66303 −0.310784
\(778\) −2.00002 −0.0717042
\(779\) −49.5211 −1.77428
\(780\) −14.2532 −0.510345
\(781\) 14.7090 0.526328
\(782\) −10.1677 −0.363598
\(783\) −9.88106 −0.353120
\(784\) 3.67546 0.131266
\(785\) −34.9269 −1.24659
\(786\) −3.47230 −0.123853
\(787\) −1.76127 −0.0627826 −0.0313913 0.999507i \(-0.509994\pi\)
−0.0313913 + 0.999507i \(0.509994\pi\)
\(788\) −1.83658 −0.0654254
\(789\) 17.5957 0.626424
\(790\) 2.23299 0.0794462
\(791\) −11.6480 −0.414155
\(792\) 4.99394 0.177452
\(793\) 29.4982 1.04751
\(794\) 8.29806 0.294487
\(795\) 15.3949 0.546001
\(796\) −4.07907 −0.144579
\(797\) 45.9642 1.62813 0.814067 0.580771i \(-0.197249\pi\)
0.814067 + 0.580771i \(0.197249\pi\)
\(798\) −1.36228 −0.0482242
\(799\) −50.7512 −1.79545
\(800\) 7.57178 0.267703
\(801\) −18.1493 −0.641273
\(802\) −0.833655 −0.0294374
\(803\) −21.5489 −0.760445
\(804\) −4.89092 −0.172490
\(805\) −10.5153 −0.370617
\(806\) 3.78978 0.133489
\(807\) −13.0821 −0.460513
\(808\) 14.1366 0.497323
\(809\) 47.8622 1.68275 0.841373 0.540455i \(-0.181748\pi\)
0.841373 + 0.540455i \(0.181748\pi\)
\(810\) 0.346390 0.0121709
\(811\) 5.24320 0.184114 0.0920568 0.995754i \(-0.470656\pi\)
0.0920568 + 0.995754i \(0.470656\pi\)
\(812\) −19.2227 −0.674586
\(813\) 13.4587 0.472017
\(814\) −10.9653 −0.384333
\(815\) −3.83456 −0.134319
\(816\) −22.5521 −0.789482
\(817\) 1.57669 0.0551613
\(818\) 0.110796 0.00387389
\(819\) 4.94174 0.172678
\(820\) 24.4963 0.855447
\(821\) 33.0933 1.15496 0.577482 0.816403i \(-0.304035\pi\)
0.577482 + 0.816403i \(0.304035\pi\)
\(822\) −4.57305 −0.159503
\(823\) 52.1987 1.81953 0.909765 0.415123i \(-0.136261\pi\)
0.909765 + 0.415123i \(0.136261\pi\)
\(824\) −4.65347 −0.162111
\(825\) 15.1797 0.528490
\(826\) 2.69422 0.0937438
\(827\) −15.6985 −0.545890 −0.272945 0.962030i \(-0.587998\pi\)
−0.272945 + 0.962030i \(0.587998\pi\)
\(828\) −13.7980 −0.479512
\(829\) −6.29080 −0.218489 −0.109244 0.994015i \(-0.534843\pi\)
−0.109244 + 0.994015i \(0.534843\pi\)
\(830\) −0.199998 −0.00694204
\(831\) 31.8391 1.10448
\(832\) −33.2062 −1.15122
\(833\) 6.13587 0.212595
\(834\) 3.38023 0.117048
\(835\) 7.68765 0.266042
\(836\) 61.4523 2.12537
\(837\) 3.28238 0.113456
\(838\) 5.64051 0.194848
\(839\) 36.5833 1.26300 0.631498 0.775378i \(-0.282441\pi\)
0.631498 + 0.775378i \(0.282441\pi\)
\(840\) 1.36665 0.0471540
\(841\) 68.6353 2.36674
\(842\) 6.59482 0.227272
\(843\) −17.1961 −0.592264
\(844\) 5.52669 0.190236
\(845\) −16.9323 −0.582488
\(846\) 1.93248 0.0664402
\(847\) 18.3501 0.630518
\(848\) 38.1653 1.31060
\(849\) −1.73316 −0.0594819
\(850\) 4.01680 0.137775
\(851\) 61.4430 2.10624
\(852\) 5.28188 0.180954
\(853\) 27.0046 0.924619 0.462310 0.886719i \(-0.347021\pi\)
0.462310 + 0.886719i \(0.347021\pi\)
\(854\) −1.39464 −0.0477235
\(855\) 8.64453 0.295637
\(856\) −18.7177 −0.639757
\(857\) 9.69796 0.331276 0.165638 0.986187i \(-0.447032\pi\)
0.165638 + 0.986187i \(0.447032\pi\)
\(858\) 6.25504 0.213544
\(859\) 28.4438 0.970489 0.485244 0.874379i \(-0.338731\pi\)
0.485244 + 0.874379i \(0.338731\pi\)
\(860\) −0.779930 −0.0265954
\(861\) −8.49315 −0.289446
\(862\) 3.82924 0.130424
\(863\) −4.94345 −0.168277 −0.0841385 0.996454i \(-0.526814\pi\)
−0.0841385 + 0.996454i \(0.526814\pi\)
\(864\) 2.70234 0.0919353
\(865\) −26.8863 −0.914163
\(866\) −4.19223 −0.142458
\(867\) −20.6489 −0.701272
\(868\) 6.38559 0.216741
\(869\) 34.9242 1.18472
\(870\) −3.42270 −0.116040
\(871\) −12.4239 −0.420969
\(872\) −0.802327 −0.0271702
\(873\) −1.10284 −0.0373254
\(874\) 9.66206 0.326824
\(875\) 11.5670 0.391037
\(876\) −7.73806 −0.261445
\(877\) −46.4898 −1.56985 −0.784924 0.619592i \(-0.787298\pi\)
−0.784924 + 0.619592i \(0.787298\pi\)
\(878\) 3.20731 0.108241
\(879\) 2.53029 0.0853447
\(880\) −29.5213 −0.995164
\(881\) 52.3911 1.76510 0.882550 0.470218i \(-0.155825\pi\)
0.882550 + 0.470218i \(0.155825\pi\)
\(882\) −0.233639 −0.00786704
\(883\) 15.3437 0.516356 0.258178 0.966097i \(-0.416878\pi\)
0.258178 + 0.966097i \(0.416878\pi\)
\(884\) −58.9885 −1.98400
\(885\) −17.0965 −0.574692
\(886\) 5.99002 0.201239
\(887\) −23.2348 −0.780148 −0.390074 0.920784i \(-0.627551\pi\)
−0.390074 + 0.920784i \(0.627551\pi\)
\(888\) −7.98560 −0.267979
\(889\) −1.38223 −0.0463585
\(890\) −6.28672 −0.210731
\(891\) 5.41758 0.181496
\(892\) −34.4675 −1.15406
\(893\) 48.2272 1.61386
\(894\) 1.05879 0.0354113
\(895\) −0.755245 −0.0252450
\(896\) 6.97462 0.233006
\(897\) −35.0496 −1.17027
\(898\) −1.05746 −0.0352879
\(899\) −32.4334 −1.08171
\(900\) 5.45093 0.181698
\(901\) 63.7137 2.12261
\(902\) −10.7503 −0.357945
\(903\) 0.270411 0.00899871
\(904\) −10.7371 −0.357112
\(905\) 10.1266 0.336620
\(906\) 2.21402 0.0735559
\(907\) 25.8865 0.859548 0.429774 0.902937i \(-0.358593\pi\)
0.429774 + 0.902937i \(0.358593\pi\)
\(908\) 1.94541 0.0645608
\(909\) 15.3358 0.508656
\(910\) 1.71177 0.0567446
\(911\) −28.3766 −0.940158 −0.470079 0.882624i \(-0.655775\pi\)
−0.470079 + 0.882624i \(0.655775\pi\)
\(912\) 21.4305 0.709635
\(913\) −3.12799 −0.103521
\(914\) 0.127200 0.00420740
\(915\) 8.84984 0.292567
\(916\) −12.9479 −0.427812
\(917\) −14.8618 −0.490780
\(918\) 1.43358 0.0473151
\(919\) 50.2900 1.65891 0.829456 0.558572i \(-0.188650\pi\)
0.829456 + 0.558572i \(0.188650\pi\)
\(920\) −9.69306 −0.319571
\(921\) 18.5168 0.610150
\(922\) 6.36018 0.209461
\(923\) 13.4170 0.441627
\(924\) 10.5394 0.346722
\(925\) −24.2733 −0.798100
\(926\) −3.23593 −0.106339
\(927\) −5.04823 −0.165806
\(928\) −26.7019 −0.876534
\(929\) −25.3164 −0.830603 −0.415302 0.909684i \(-0.636324\pi\)
−0.415302 + 0.909684i \(0.636324\pi\)
\(930\) 1.13698 0.0372832
\(931\) −5.83071 −0.191094
\(932\) −5.46325 −0.178955
\(933\) −16.9454 −0.554768
\(934\) −5.31323 −0.173854
\(935\) −49.2834 −1.61174
\(936\) 4.55531 0.148895
\(937\) 45.4720 1.48551 0.742753 0.669565i \(-0.233520\pi\)
0.742753 + 0.669565i \(0.233520\pi\)
\(938\) 0.587387 0.0191789
\(939\) 26.1822 0.854424
\(940\) −23.8562 −0.778105
\(941\) 34.9106 1.13805 0.569027 0.822319i \(-0.307320\pi\)
0.569027 + 0.822319i \(0.307320\pi\)
\(942\) 5.50409 0.179333
\(943\) 60.2381 1.96162
\(944\) −42.3837 −1.37947
\(945\) 1.48259 0.0482285
\(946\) 0.342275 0.0111283
\(947\) −2.68901 −0.0873809 −0.0436905 0.999045i \(-0.513912\pi\)
−0.0436905 + 0.999045i \(0.513912\pi\)
\(948\) 12.5410 0.407314
\(949\) −19.6562 −0.638068
\(950\) −3.81703 −0.123841
\(951\) 16.8307 0.545773
\(952\) 5.65606 0.183314
\(953\) −27.7630 −0.899333 −0.449666 0.893197i \(-0.648457\pi\)
−0.449666 + 0.893197i \(0.648457\pi\)
\(954\) −2.42607 −0.0785468
\(955\) −17.4524 −0.564746
\(956\) −36.9192 −1.19405
\(957\) −53.5314 −1.73042
\(958\) −4.27189 −0.138019
\(959\) −19.5731 −0.632049
\(960\) −9.96230 −0.321532
\(961\) −20.2260 −0.652451
\(962\) −10.0022 −0.322483
\(963\) −20.3055 −0.654336
\(964\) 22.0948 0.711626
\(965\) −26.3453 −0.848084
\(966\) 1.65710 0.0533163
\(967\) 37.3245 1.20027 0.600137 0.799897i \(-0.295113\pi\)
0.600137 + 0.799897i \(0.295113\pi\)
\(968\) 16.9152 0.543675
\(969\) 35.7764 1.14931
\(970\) −0.382012 −0.0122657
\(971\) 41.6220 1.33571 0.667857 0.744289i \(-0.267212\pi\)
0.667857 + 0.744289i \(0.267212\pi\)
\(972\) 1.94541 0.0623991
\(973\) 14.4677 0.463815
\(974\) 0.611167 0.0195831
\(975\) 13.8465 0.443441
\(976\) 21.9395 0.702266
\(977\) 12.6534 0.404819 0.202409 0.979301i \(-0.435123\pi\)
0.202409 + 0.979301i \(0.435123\pi\)
\(978\) 0.604285 0.0193229
\(979\) −98.3250 −3.14248
\(980\) 2.88424 0.0921337
\(981\) −0.870389 −0.0277894
\(982\) 7.08429 0.226069
\(983\) −51.6448 −1.64721 −0.823606 0.567162i \(-0.808041\pi\)
−0.823606 + 0.567162i \(0.808041\pi\)
\(984\) −7.82901 −0.249580
\(985\) −1.39964 −0.0445964
\(986\) −14.1653 −0.451114
\(987\) 8.27124 0.263276
\(988\) 56.0548 1.78334
\(989\) −1.91790 −0.0609858
\(990\) 1.87659 0.0596421
\(991\) −26.0789 −0.828424 −0.414212 0.910180i \(-0.635943\pi\)
−0.414212 + 0.910180i \(0.635943\pi\)
\(992\) 8.87010 0.281626
\(993\) −8.93670 −0.283598
\(994\) −0.634340 −0.0201201
\(995\) −3.10863 −0.0985502
\(996\) −1.12324 −0.0355912
\(997\) −37.8472 −1.19863 −0.599316 0.800513i \(-0.704561\pi\)
−0.599316 + 0.800513i \(0.704561\pi\)
\(998\) 5.65879 0.179126
\(999\) −8.66303 −0.274086
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4767.2.a.g.1.15 35
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4767.2.a.g.1.15 35 1.1 even 1 trivial