Properties

Label 4767.2.a.g.1.13
Level $4767$
Weight $2$
Character 4767.1
Self dual yes
Analytic conductor $38.065$
Analytic rank $0$
Dimension $35$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4767,2,Mod(1,4767)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4767, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4767.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4767 = 3 \cdot 7 \cdot 227 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4767.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [35,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0646866435\)
Analytic rank: \(0\)
Dimension: \(35\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 4767.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.838531 q^{2} -1.00000 q^{3} -1.29687 q^{4} +2.50382 q^{5} +0.838531 q^{6} +1.00000 q^{7} +2.76452 q^{8} +1.00000 q^{9} -2.09953 q^{10} +3.24608 q^{11} +1.29687 q^{12} -4.49895 q^{13} -0.838531 q^{14} -2.50382 q^{15} +0.275589 q^{16} +1.27013 q^{17} -0.838531 q^{18} +1.07809 q^{19} -3.24712 q^{20} -1.00000 q^{21} -2.72194 q^{22} +6.45124 q^{23} -2.76452 q^{24} +1.26912 q^{25} +3.77251 q^{26} -1.00000 q^{27} -1.29687 q^{28} +3.44101 q^{29} +2.09953 q^{30} +4.40845 q^{31} -5.76014 q^{32} -3.24608 q^{33} -1.06505 q^{34} +2.50382 q^{35} -1.29687 q^{36} -5.86942 q^{37} -0.904012 q^{38} +4.49895 q^{39} +6.92187 q^{40} +1.72646 q^{41} +0.838531 q^{42} -0.382430 q^{43} -4.20972 q^{44} +2.50382 q^{45} -5.40957 q^{46} +7.24286 q^{47} -0.275589 q^{48} +1.00000 q^{49} -1.06419 q^{50} -1.27013 q^{51} +5.83453 q^{52} +11.6136 q^{53} +0.838531 q^{54} +8.12760 q^{55} +2.76452 q^{56} -1.07809 q^{57} -2.88540 q^{58} +7.27550 q^{59} +3.24712 q^{60} -9.56962 q^{61} -3.69663 q^{62} +1.00000 q^{63} +4.27888 q^{64} -11.2646 q^{65} +2.72194 q^{66} +6.04440 q^{67} -1.64719 q^{68} -6.45124 q^{69} -2.09953 q^{70} +3.52800 q^{71} +2.76452 q^{72} -13.3275 q^{73} +4.92169 q^{74} -1.26912 q^{75} -1.39814 q^{76} +3.24608 q^{77} -3.77251 q^{78} -10.8213 q^{79} +0.690025 q^{80} +1.00000 q^{81} -1.44769 q^{82} +12.5432 q^{83} +1.29687 q^{84} +3.18018 q^{85} +0.320680 q^{86} -3.44101 q^{87} +8.97386 q^{88} -5.44594 q^{89} -2.09953 q^{90} -4.49895 q^{91} -8.36639 q^{92} -4.40845 q^{93} -6.07337 q^{94} +2.69934 q^{95} +5.76014 q^{96} -4.98685 q^{97} -0.838531 q^{98} +3.24608 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 35 q + 7 q^{2} - 35 q^{3} + 45 q^{4} - 4 q^{5} - 7 q^{6} + 35 q^{7} + 21 q^{8} + 35 q^{9} + 11 q^{10} - 3 q^{11} - 45 q^{12} + 19 q^{13} + 7 q^{14} + 4 q^{15} + 65 q^{16} + 20 q^{17} + 7 q^{18} + 9 q^{19}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.838531 −0.592931 −0.296466 0.955044i \(-0.595808\pi\)
−0.296466 + 0.955044i \(0.595808\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.29687 −0.648433
\(5\) 2.50382 1.11974 0.559871 0.828580i \(-0.310851\pi\)
0.559871 + 0.828580i \(0.310851\pi\)
\(6\) 0.838531 0.342329
\(7\) 1.00000 0.377964
\(8\) 2.76452 0.977407
\(9\) 1.00000 0.333333
\(10\) −2.09953 −0.663930
\(11\) 3.24608 0.978729 0.489365 0.872079i \(-0.337229\pi\)
0.489365 + 0.872079i \(0.337229\pi\)
\(12\) 1.29687 0.374373
\(13\) −4.49895 −1.24778 −0.623892 0.781510i \(-0.714450\pi\)
−0.623892 + 0.781510i \(0.714450\pi\)
\(14\) −0.838531 −0.224107
\(15\) −2.50382 −0.646484
\(16\) 0.275589 0.0688973
\(17\) 1.27013 0.308052 0.154026 0.988067i \(-0.450776\pi\)
0.154026 + 0.988067i \(0.450776\pi\)
\(18\) −0.838531 −0.197644
\(19\) 1.07809 0.247331 0.123665 0.992324i \(-0.460535\pi\)
0.123665 + 0.992324i \(0.460535\pi\)
\(20\) −3.24712 −0.726077
\(21\) −1.00000 −0.218218
\(22\) −2.72194 −0.580319
\(23\) 6.45124 1.34518 0.672588 0.740017i \(-0.265183\pi\)
0.672588 + 0.740017i \(0.265183\pi\)
\(24\) −2.76452 −0.564306
\(25\) 1.26912 0.253823
\(26\) 3.77251 0.739851
\(27\) −1.00000 −0.192450
\(28\) −1.29687 −0.245084
\(29\) 3.44101 0.638980 0.319490 0.947590i \(-0.396488\pi\)
0.319490 + 0.947590i \(0.396488\pi\)
\(30\) 2.09953 0.383320
\(31\) 4.40845 0.791781 0.395891 0.918298i \(-0.370436\pi\)
0.395891 + 0.918298i \(0.370436\pi\)
\(32\) −5.76014 −1.01826
\(33\) −3.24608 −0.565070
\(34\) −1.06505 −0.182654
\(35\) 2.50382 0.423223
\(36\) −1.29687 −0.216144
\(37\) −5.86942 −0.964926 −0.482463 0.875916i \(-0.660258\pi\)
−0.482463 + 0.875916i \(0.660258\pi\)
\(38\) −0.904012 −0.146650
\(39\) 4.49895 0.720409
\(40\) 6.92187 1.09444
\(41\) 1.72646 0.269628 0.134814 0.990871i \(-0.456956\pi\)
0.134814 + 0.990871i \(0.456956\pi\)
\(42\) 0.838531 0.129388
\(43\) −0.382430 −0.0583201 −0.0291600 0.999575i \(-0.509283\pi\)
−0.0291600 + 0.999575i \(0.509283\pi\)
\(44\) −4.20972 −0.634640
\(45\) 2.50382 0.373248
\(46\) −5.40957 −0.797597
\(47\) 7.24286 1.05648 0.528240 0.849095i \(-0.322852\pi\)
0.528240 + 0.849095i \(0.322852\pi\)
\(48\) −0.275589 −0.0397778
\(49\) 1.00000 0.142857
\(50\) −1.06419 −0.150500
\(51\) −1.27013 −0.177854
\(52\) 5.83453 0.809104
\(53\) 11.6136 1.59525 0.797625 0.603153i \(-0.206089\pi\)
0.797625 + 0.603153i \(0.206089\pi\)
\(54\) 0.838531 0.114110
\(55\) 8.12760 1.09592
\(56\) 2.76452 0.369425
\(57\) −1.07809 −0.142796
\(58\) −2.88540 −0.378871
\(59\) 7.27550 0.947189 0.473594 0.880743i \(-0.342956\pi\)
0.473594 + 0.880743i \(0.342956\pi\)
\(60\) 3.24712 0.419201
\(61\) −9.56962 −1.22526 −0.612632 0.790368i \(-0.709889\pi\)
−0.612632 + 0.790368i \(0.709889\pi\)
\(62\) −3.69663 −0.469472
\(63\) 1.00000 0.125988
\(64\) 4.27888 0.534860
\(65\) −11.2646 −1.39720
\(66\) 2.72194 0.335047
\(67\) 6.04440 0.738441 0.369221 0.929342i \(-0.379625\pi\)
0.369221 + 0.929342i \(0.379625\pi\)
\(68\) −1.64719 −0.199751
\(69\) −6.45124 −0.776638
\(70\) −2.09953 −0.250942
\(71\) 3.52800 0.418697 0.209348 0.977841i \(-0.432866\pi\)
0.209348 + 0.977841i \(0.432866\pi\)
\(72\) 2.76452 0.325802
\(73\) −13.3275 −1.55987 −0.779933 0.625863i \(-0.784747\pi\)
−0.779933 + 0.625863i \(0.784747\pi\)
\(74\) 4.92169 0.572135
\(75\) −1.26912 −0.146545
\(76\) −1.39814 −0.160377
\(77\) 3.24608 0.369925
\(78\) −3.77251 −0.427153
\(79\) −10.8213 −1.21749 −0.608744 0.793367i \(-0.708326\pi\)
−0.608744 + 0.793367i \(0.708326\pi\)
\(80\) 0.690025 0.0771472
\(81\) 1.00000 0.111111
\(82\) −1.44769 −0.159871
\(83\) 12.5432 1.37679 0.688395 0.725336i \(-0.258315\pi\)
0.688395 + 0.725336i \(0.258315\pi\)
\(84\) 1.29687 0.141500
\(85\) 3.18018 0.344939
\(86\) 0.320680 0.0345798
\(87\) −3.44101 −0.368915
\(88\) 8.97386 0.956617
\(89\) −5.44594 −0.577269 −0.288634 0.957439i \(-0.593201\pi\)
−0.288634 + 0.957439i \(0.593201\pi\)
\(90\) −2.09953 −0.221310
\(91\) −4.49895 −0.471618
\(92\) −8.36639 −0.872256
\(93\) −4.40845 −0.457135
\(94\) −6.07337 −0.626420
\(95\) 2.69934 0.276947
\(96\) 5.76014 0.587892
\(97\) −4.98685 −0.506338 −0.253169 0.967422i \(-0.581473\pi\)
−0.253169 + 0.967422i \(0.581473\pi\)
\(98\) −0.838531 −0.0847045
\(99\) 3.24608 0.326243
\(100\) −1.64587 −0.164587
\(101\) 0.473401 0.0471052 0.0235526 0.999723i \(-0.492502\pi\)
0.0235526 + 0.999723i \(0.492502\pi\)
\(102\) 1.06505 0.105455
\(103\) −6.55626 −0.646008 −0.323004 0.946398i \(-0.604693\pi\)
−0.323004 + 0.946398i \(0.604693\pi\)
\(104\) −12.4375 −1.21959
\(105\) −2.50382 −0.244348
\(106\) −9.73837 −0.945874
\(107\) 6.01726 0.581711 0.290855 0.956767i \(-0.406060\pi\)
0.290855 + 0.956767i \(0.406060\pi\)
\(108\) 1.29687 0.124791
\(109\) 15.0384 1.44042 0.720209 0.693757i \(-0.244046\pi\)
0.720209 + 0.693757i \(0.244046\pi\)
\(110\) −6.81524 −0.649808
\(111\) 5.86942 0.557100
\(112\) 0.275589 0.0260407
\(113\) 2.34409 0.220514 0.110257 0.993903i \(-0.464833\pi\)
0.110257 + 0.993903i \(0.464833\pi\)
\(114\) 0.904012 0.0846684
\(115\) 16.1527 1.50625
\(116\) −4.46253 −0.414336
\(117\) −4.49895 −0.415928
\(118\) −6.10073 −0.561618
\(119\) 1.27013 0.116433
\(120\) −6.92187 −0.631878
\(121\) −0.462979 −0.0420890
\(122\) 8.02442 0.726497
\(123\) −1.72646 −0.155670
\(124\) −5.71717 −0.513417
\(125\) −9.34146 −0.835526
\(126\) −0.838531 −0.0747023
\(127\) 2.83049 0.251166 0.125583 0.992083i \(-0.459920\pi\)
0.125583 + 0.992083i \(0.459920\pi\)
\(128\) 7.93230 0.701123
\(129\) 0.382430 0.0336711
\(130\) 9.44569 0.828442
\(131\) −0.0553473 −0.00483571 −0.00241786 0.999997i \(-0.500770\pi\)
−0.00241786 + 0.999997i \(0.500770\pi\)
\(132\) 4.20972 0.366410
\(133\) 1.07809 0.0934822
\(134\) −5.06842 −0.437845
\(135\) −2.50382 −0.215495
\(136\) 3.51131 0.301093
\(137\) 8.25886 0.705602 0.352801 0.935698i \(-0.385229\pi\)
0.352801 + 0.935698i \(0.385229\pi\)
\(138\) 5.40957 0.460493
\(139\) −20.4447 −1.73409 −0.867047 0.498226i \(-0.833985\pi\)
−0.867047 + 0.498226i \(0.833985\pi\)
\(140\) −3.24712 −0.274431
\(141\) −7.24286 −0.609959
\(142\) −2.95834 −0.248258
\(143\) −14.6039 −1.22124
\(144\) 0.275589 0.0229658
\(145\) 8.61568 0.715493
\(146\) 11.1755 0.924893
\(147\) −1.00000 −0.0824786
\(148\) 7.61184 0.625689
\(149\) −7.42854 −0.608569 −0.304285 0.952581i \(-0.598417\pi\)
−0.304285 + 0.952581i \(0.598417\pi\)
\(150\) 1.06419 0.0868911
\(151\) −5.15346 −0.419383 −0.209691 0.977768i \(-0.567246\pi\)
−0.209691 + 0.977768i \(0.567246\pi\)
\(152\) 2.98040 0.241743
\(153\) 1.27013 0.102684
\(154\) −2.72194 −0.219340
\(155\) 11.0380 0.886591
\(156\) −5.83453 −0.467136
\(157\) −6.59247 −0.526136 −0.263068 0.964777i \(-0.584734\pi\)
−0.263068 + 0.964777i \(0.584734\pi\)
\(158\) 9.07398 0.721887
\(159\) −11.6136 −0.921018
\(160\) −14.4224 −1.14019
\(161\) 6.45124 0.508429
\(162\) −0.838531 −0.0658813
\(163\) 9.99286 0.782701 0.391351 0.920242i \(-0.372008\pi\)
0.391351 + 0.920242i \(0.372008\pi\)
\(164\) −2.23899 −0.174836
\(165\) −8.12760 −0.632732
\(166\) −10.5178 −0.816342
\(167\) −14.1546 −1.09531 −0.547657 0.836703i \(-0.684480\pi\)
−0.547657 + 0.836703i \(0.684480\pi\)
\(168\) −2.76452 −0.213288
\(169\) 7.24056 0.556966
\(170\) −2.66668 −0.204525
\(171\) 1.07809 0.0824435
\(172\) 0.495961 0.0378166
\(173\) 3.39858 0.258390 0.129195 0.991619i \(-0.458761\pi\)
0.129195 + 0.991619i \(0.458761\pi\)
\(174\) 2.88540 0.218741
\(175\) 1.26912 0.0959362
\(176\) 0.894583 0.0674318
\(177\) −7.27550 −0.546860
\(178\) 4.56659 0.342281
\(179\) −22.8363 −1.70687 −0.853434 0.521201i \(-0.825484\pi\)
−0.853434 + 0.521201i \(0.825484\pi\)
\(180\) −3.24712 −0.242026
\(181\) 20.6192 1.53261 0.766307 0.642475i \(-0.222092\pi\)
0.766307 + 0.642475i \(0.222092\pi\)
\(182\) 3.77251 0.279637
\(183\) 9.56962 0.707406
\(184\) 17.8346 1.31479
\(185\) −14.6960 −1.08047
\(186\) 3.69663 0.271050
\(187\) 4.12295 0.301500
\(188\) −9.39302 −0.685056
\(189\) −1.00000 −0.0727393
\(190\) −2.26348 −0.164210
\(191\) −26.8271 −1.94114 −0.970571 0.240815i \(-0.922585\pi\)
−0.970571 + 0.240815i \(0.922585\pi\)
\(192\) −4.27888 −0.308802
\(193\) 3.30869 0.238164 0.119082 0.992884i \(-0.462005\pi\)
0.119082 + 0.992884i \(0.462005\pi\)
\(194\) 4.18163 0.300224
\(195\) 11.2646 0.806672
\(196\) −1.29687 −0.0926332
\(197\) 14.7641 1.05190 0.525948 0.850517i \(-0.323711\pi\)
0.525948 + 0.850517i \(0.323711\pi\)
\(198\) −2.72194 −0.193440
\(199\) −5.90846 −0.418839 −0.209420 0.977826i \(-0.567157\pi\)
−0.209420 + 0.977826i \(0.567157\pi\)
\(200\) 3.50850 0.248089
\(201\) −6.04440 −0.426339
\(202\) −0.396962 −0.0279302
\(203\) 3.44101 0.241512
\(204\) 1.64719 0.115326
\(205\) 4.32275 0.301914
\(206\) 5.49763 0.383038
\(207\) 6.45124 0.448392
\(208\) −1.23986 −0.0859689
\(209\) 3.49956 0.242070
\(210\) 2.09953 0.144881
\(211\) 7.99730 0.550557 0.275279 0.961365i \(-0.411230\pi\)
0.275279 + 0.961365i \(0.411230\pi\)
\(212\) −15.0613 −1.03441
\(213\) −3.52800 −0.241735
\(214\) −5.04566 −0.344914
\(215\) −0.957537 −0.0653035
\(216\) −2.76452 −0.188102
\(217\) 4.40845 0.299265
\(218\) −12.6102 −0.854069
\(219\) 13.3275 0.900589
\(220\) −10.5404 −0.710633
\(221\) −5.71426 −0.384383
\(222\) −4.92169 −0.330322
\(223\) −13.7164 −0.918515 −0.459258 0.888303i \(-0.651885\pi\)
−0.459258 + 0.888303i \(0.651885\pi\)
\(224\) −5.76014 −0.384866
\(225\) 1.26912 0.0846078
\(226\) −1.96560 −0.130750
\(227\) −1.00000 −0.0663723
\(228\) 1.39814 0.0925938
\(229\) 14.9093 0.985237 0.492618 0.870245i \(-0.336040\pi\)
0.492618 + 0.870245i \(0.336040\pi\)
\(230\) −13.5446 −0.893104
\(231\) −3.24608 −0.213576
\(232\) 9.51277 0.624544
\(233\) 7.72947 0.506374 0.253187 0.967417i \(-0.418521\pi\)
0.253187 + 0.967417i \(0.418521\pi\)
\(234\) 3.77251 0.246617
\(235\) 18.1348 1.18299
\(236\) −9.43534 −0.614188
\(237\) 10.8213 0.702917
\(238\) −1.06505 −0.0690367
\(239\) 19.8732 1.28549 0.642745 0.766080i \(-0.277795\pi\)
0.642745 + 0.766080i \(0.277795\pi\)
\(240\) −0.690025 −0.0445409
\(241\) 19.0302 1.22584 0.612921 0.790144i \(-0.289994\pi\)
0.612921 + 0.790144i \(0.289994\pi\)
\(242\) 0.388223 0.0249559
\(243\) −1.00000 −0.0641500
\(244\) 12.4105 0.794501
\(245\) 2.50382 0.159963
\(246\) 1.44769 0.0923015
\(247\) −4.85027 −0.308615
\(248\) 12.1873 0.773893
\(249\) −12.5432 −0.794890
\(250\) 7.83311 0.495409
\(251\) −20.7963 −1.31265 −0.656326 0.754478i \(-0.727890\pi\)
−0.656326 + 0.754478i \(0.727890\pi\)
\(252\) −1.29687 −0.0816948
\(253\) 20.9412 1.31656
\(254\) −2.37346 −0.148924
\(255\) −3.18018 −0.199151
\(256\) −15.2092 −0.950578
\(257\) 27.6502 1.72477 0.862386 0.506251i \(-0.168969\pi\)
0.862386 + 0.506251i \(0.168969\pi\)
\(258\) −0.320680 −0.0199647
\(259\) −5.86942 −0.364708
\(260\) 14.6086 0.905988
\(261\) 3.44101 0.212993
\(262\) 0.0464104 0.00286725
\(263\) 17.1208 1.05571 0.527856 0.849334i \(-0.322996\pi\)
0.527856 + 0.849334i \(0.322996\pi\)
\(264\) −8.97386 −0.552303
\(265\) 29.0784 1.78627
\(266\) −0.904012 −0.0554285
\(267\) 5.44594 0.333286
\(268\) −7.83877 −0.478829
\(269\) 6.09874 0.371847 0.185923 0.982564i \(-0.440472\pi\)
0.185923 + 0.982564i \(0.440472\pi\)
\(270\) 2.09953 0.127773
\(271\) 16.0857 0.977134 0.488567 0.872526i \(-0.337520\pi\)
0.488567 + 0.872526i \(0.337520\pi\)
\(272\) 0.350034 0.0212240
\(273\) 4.49895 0.272289
\(274\) −6.92531 −0.418373
\(275\) 4.11965 0.248424
\(276\) 8.36639 0.503597
\(277\) 15.5248 0.932797 0.466399 0.884575i \(-0.345551\pi\)
0.466399 + 0.884575i \(0.345551\pi\)
\(278\) 17.1435 1.02820
\(279\) 4.40845 0.263927
\(280\) 6.92187 0.413661
\(281\) 26.9330 1.60669 0.803344 0.595515i \(-0.203052\pi\)
0.803344 + 0.595515i \(0.203052\pi\)
\(282\) 6.07337 0.361664
\(283\) −27.7956 −1.65228 −0.826139 0.563466i \(-0.809468\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(284\) −4.57534 −0.271497
\(285\) −2.69934 −0.159895
\(286\) 12.2459 0.724113
\(287\) 1.72646 0.101910
\(288\) −5.76014 −0.339420
\(289\) −15.3868 −0.905104
\(290\) −7.22452 −0.424238
\(291\) 4.98685 0.292334
\(292\) 17.2840 1.01147
\(293\) 33.0167 1.92886 0.964429 0.264342i \(-0.0851547\pi\)
0.964429 + 0.264342i \(0.0851547\pi\)
\(294\) 0.838531 0.0489041
\(295\) 18.2165 1.06061
\(296\) −16.2261 −0.943126
\(297\) −3.24608 −0.188357
\(298\) 6.22906 0.360840
\(299\) −29.0238 −1.67849
\(300\) 1.64587 0.0950245
\(301\) −0.382430 −0.0220429
\(302\) 4.32134 0.248665
\(303\) −0.473401 −0.0271962
\(304\) 0.297110 0.0170404
\(305\) −23.9606 −1.37198
\(306\) −1.06505 −0.0608846
\(307\) 19.2005 1.09583 0.547915 0.836534i \(-0.315422\pi\)
0.547915 + 0.836534i \(0.315422\pi\)
\(308\) −4.20972 −0.239871
\(309\) 6.55626 0.372973
\(310\) −9.25569 −0.525688
\(311\) 31.9360 1.81093 0.905463 0.424425i \(-0.139524\pi\)
0.905463 + 0.424425i \(0.139524\pi\)
\(312\) 12.4375 0.704133
\(313\) 7.55326 0.426935 0.213468 0.976950i \(-0.431524\pi\)
0.213468 + 0.976950i \(0.431524\pi\)
\(314\) 5.52799 0.311963
\(315\) 2.50382 0.141074
\(316\) 14.0337 0.789459
\(317\) −16.1376 −0.906378 −0.453189 0.891415i \(-0.649714\pi\)
−0.453189 + 0.891415i \(0.649714\pi\)
\(318\) 9.73837 0.546101
\(319\) 11.1698 0.625389
\(320\) 10.7135 0.598906
\(321\) −6.01726 −0.335851
\(322\) −5.40957 −0.301463
\(323\) 1.36932 0.0761908
\(324\) −1.29687 −0.0720481
\(325\) −5.70969 −0.316717
\(326\) −8.37933 −0.464088
\(327\) −15.0384 −0.831626
\(328\) 4.77285 0.263537
\(329\) 7.24286 0.399312
\(330\) 6.81524 0.375167
\(331\) 12.0473 0.662180 0.331090 0.943599i \(-0.392584\pi\)
0.331090 + 0.943599i \(0.392584\pi\)
\(332\) −16.2668 −0.892756
\(333\) −5.86942 −0.321642
\(334\) 11.8691 0.649446
\(335\) 15.1341 0.826864
\(336\) −0.275589 −0.0150346
\(337\) 23.7765 1.29519 0.647593 0.761986i \(-0.275776\pi\)
0.647593 + 0.761986i \(0.275776\pi\)
\(338\) −6.07144 −0.330243
\(339\) −2.34409 −0.127314
\(340\) −4.12427 −0.223670
\(341\) 14.3102 0.774940
\(342\) −0.904012 −0.0488833
\(343\) 1.00000 0.0539949
\(344\) −1.05724 −0.0570025
\(345\) −16.1527 −0.869635
\(346\) −2.84982 −0.153207
\(347\) −7.42452 −0.398569 −0.199285 0.979942i \(-0.563862\pi\)
−0.199285 + 0.979942i \(0.563862\pi\)
\(348\) 4.46253 0.239217
\(349\) 3.83777 0.205431 0.102715 0.994711i \(-0.467247\pi\)
0.102715 + 0.994711i \(0.467247\pi\)
\(350\) −1.06419 −0.0568836
\(351\) 4.49895 0.240136
\(352\) −18.6979 −0.996599
\(353\) −10.6396 −0.566288 −0.283144 0.959077i \(-0.591378\pi\)
−0.283144 + 0.959077i \(0.591378\pi\)
\(354\) 6.10073 0.324250
\(355\) 8.83348 0.468833
\(356\) 7.06265 0.374320
\(357\) −1.27013 −0.0672225
\(358\) 19.1490 1.01206
\(359\) −0.228010 −0.0120339 −0.00601696 0.999982i \(-0.501915\pi\)
−0.00601696 + 0.999982i \(0.501915\pi\)
\(360\) 6.92187 0.364815
\(361\) −17.8377 −0.938828
\(362\) −17.2898 −0.908734
\(363\) 0.462979 0.0243001
\(364\) 5.83453 0.305813
\(365\) −33.3697 −1.74665
\(366\) −8.02442 −0.419443
\(367\) −5.69691 −0.297376 −0.148688 0.988884i \(-0.547505\pi\)
−0.148688 + 0.988884i \(0.547505\pi\)
\(368\) 1.77789 0.0926790
\(369\) 1.72646 0.0898761
\(370\) 12.3230 0.640644
\(371\) 11.6136 0.602948
\(372\) 5.71717 0.296421
\(373\) 15.2891 0.791642 0.395821 0.918328i \(-0.370460\pi\)
0.395821 + 0.918328i \(0.370460\pi\)
\(374\) −3.45722 −0.178769
\(375\) 9.34146 0.482391
\(376\) 20.0231 1.03261
\(377\) −15.4810 −0.797310
\(378\) 0.838531 0.0431294
\(379\) −25.4296 −1.30623 −0.653116 0.757258i \(-0.726539\pi\)
−0.653116 + 0.757258i \(0.726539\pi\)
\(380\) −3.50068 −0.179581
\(381\) −2.83049 −0.145011
\(382\) 22.4954 1.15096
\(383\) 23.2298 1.18699 0.593493 0.804839i \(-0.297748\pi\)
0.593493 + 0.804839i \(0.297748\pi\)
\(384\) −7.93230 −0.404794
\(385\) 8.12760 0.414221
\(386\) −2.77444 −0.141215
\(387\) −0.382430 −0.0194400
\(388\) 6.46727 0.328326
\(389\) −0.726311 −0.0368254 −0.0184127 0.999830i \(-0.505861\pi\)
−0.0184127 + 0.999830i \(0.505861\pi\)
\(390\) −9.44569 −0.478301
\(391\) 8.19393 0.414385
\(392\) 2.76452 0.139630
\(393\) 0.0553473 0.00279190
\(394\) −12.3801 −0.623702
\(395\) −27.0945 −1.36327
\(396\) −4.20972 −0.211547
\(397\) 25.8604 1.29790 0.648948 0.760833i \(-0.275209\pi\)
0.648948 + 0.760833i \(0.275209\pi\)
\(398\) 4.95443 0.248343
\(399\) −1.07809 −0.0539720
\(400\) 0.349755 0.0174877
\(401\) 5.49207 0.274261 0.137131 0.990553i \(-0.456212\pi\)
0.137131 + 0.990553i \(0.456212\pi\)
\(402\) 5.06842 0.252790
\(403\) −19.8334 −0.987973
\(404\) −0.613938 −0.0305445
\(405\) 2.50382 0.124416
\(406\) −2.88540 −0.143200
\(407\) −19.0526 −0.944401
\(408\) −3.51131 −0.173836
\(409\) 26.0734 1.28925 0.644624 0.764500i \(-0.277014\pi\)
0.644624 + 0.764500i \(0.277014\pi\)
\(410\) −3.62476 −0.179014
\(411\) −8.25886 −0.407379
\(412\) 8.50259 0.418892
\(413\) 7.27550 0.358004
\(414\) −5.40957 −0.265866
\(415\) 31.4058 1.54165
\(416\) 25.9146 1.27057
\(417\) 20.4447 1.00118
\(418\) −2.93449 −0.143531
\(419\) −27.6585 −1.35121 −0.675604 0.737265i \(-0.736117\pi\)
−0.675604 + 0.737265i \(0.736117\pi\)
\(420\) 3.24712 0.158443
\(421\) −25.7456 −1.25476 −0.627382 0.778712i \(-0.715873\pi\)
−0.627382 + 0.778712i \(0.715873\pi\)
\(422\) −6.70599 −0.326443
\(423\) 7.24286 0.352160
\(424\) 32.1061 1.55921
\(425\) 1.61195 0.0781908
\(426\) 2.95834 0.143332
\(427\) −9.56962 −0.463106
\(428\) −7.80358 −0.377200
\(429\) 14.6039 0.705085
\(430\) 0.802925 0.0387205
\(431\) 25.7361 1.23967 0.619833 0.784734i \(-0.287200\pi\)
0.619833 + 0.784734i \(0.287200\pi\)
\(432\) −0.275589 −0.0132593
\(433\) 27.6109 1.32689 0.663447 0.748223i \(-0.269093\pi\)
0.663447 + 0.748223i \(0.269093\pi\)
\(434\) −3.69663 −0.177444
\(435\) −8.61568 −0.413090
\(436\) −19.5028 −0.934014
\(437\) 6.95501 0.332703
\(438\) −11.1755 −0.533987
\(439\) 3.13406 0.149580 0.0747902 0.997199i \(-0.476171\pi\)
0.0747902 + 0.997199i \(0.476171\pi\)
\(440\) 22.4689 1.07116
\(441\) 1.00000 0.0476190
\(442\) 4.79159 0.227913
\(443\) −4.06227 −0.193004 −0.0965022 0.995333i \(-0.530765\pi\)
−0.0965022 + 0.995333i \(0.530765\pi\)
\(444\) −7.61184 −0.361242
\(445\) −13.6357 −0.646392
\(446\) 11.5016 0.544617
\(447\) 7.42854 0.351358
\(448\) 4.27888 0.202158
\(449\) 23.2762 1.09847 0.549235 0.835668i \(-0.314919\pi\)
0.549235 + 0.835668i \(0.314919\pi\)
\(450\) −1.06419 −0.0501666
\(451\) 5.60423 0.263893
\(452\) −3.03997 −0.142988
\(453\) 5.15346 0.242131
\(454\) 0.838531 0.0393542
\(455\) −11.2646 −0.528091
\(456\) −2.98040 −0.139570
\(457\) −5.06757 −0.237051 −0.118526 0.992951i \(-0.537817\pi\)
−0.118526 + 0.992951i \(0.537817\pi\)
\(458\) −12.5019 −0.584178
\(459\) −1.27013 −0.0592847
\(460\) −20.9479 −0.976702
\(461\) −1.78034 −0.0829186 −0.0414593 0.999140i \(-0.513201\pi\)
−0.0414593 + 0.999140i \(0.513201\pi\)
\(462\) 2.72194 0.126636
\(463\) 31.2690 1.45319 0.726596 0.687065i \(-0.241101\pi\)
0.726596 + 0.687065i \(0.241101\pi\)
\(464\) 0.948306 0.0440240
\(465\) −11.0380 −0.511874
\(466\) −6.48140 −0.300245
\(467\) −2.11201 −0.0977321 −0.0488660 0.998805i \(-0.515561\pi\)
−0.0488660 + 0.998805i \(0.515561\pi\)
\(468\) 5.83453 0.269701
\(469\) 6.04440 0.279105
\(470\) −15.2066 −0.701429
\(471\) 6.59247 0.303765
\(472\) 20.1133 0.925789
\(473\) −1.24140 −0.0570796
\(474\) −9.07398 −0.416782
\(475\) 1.36822 0.0627783
\(476\) −1.64719 −0.0754988
\(477\) 11.6136 0.531750
\(478\) −16.6643 −0.762207
\(479\) −10.4476 −0.477362 −0.238681 0.971098i \(-0.576715\pi\)
−0.238681 + 0.971098i \(0.576715\pi\)
\(480\) 14.4224 0.658287
\(481\) 26.4062 1.20402
\(482\) −15.9574 −0.726840
\(483\) −6.45124 −0.293542
\(484\) 0.600422 0.0272919
\(485\) −12.4862 −0.566968
\(486\) 0.838531 0.0380366
\(487\) −32.9514 −1.49317 −0.746585 0.665290i \(-0.768308\pi\)
−0.746585 + 0.665290i \(0.768308\pi\)
\(488\) −26.4554 −1.19758
\(489\) −9.99286 −0.451893
\(490\) −2.09953 −0.0948472
\(491\) 32.1505 1.45093 0.725466 0.688258i \(-0.241624\pi\)
0.725466 + 0.688258i \(0.241624\pi\)
\(492\) 2.23899 0.100941
\(493\) 4.37054 0.196839
\(494\) 4.06710 0.182988
\(495\) 8.12760 0.365308
\(496\) 1.21492 0.0545516
\(497\) 3.52800 0.158253
\(498\) 10.5178 0.471315
\(499\) −29.6690 −1.32817 −0.664084 0.747658i \(-0.731178\pi\)
−0.664084 + 0.747658i \(0.731178\pi\)
\(500\) 12.1146 0.541782
\(501\) 14.1546 0.632380
\(502\) 17.4384 0.778312
\(503\) 35.9066 1.60099 0.800497 0.599337i \(-0.204569\pi\)
0.800497 + 0.599337i \(0.204569\pi\)
\(504\) 2.76452 0.123142
\(505\) 1.18531 0.0527457
\(506\) −17.5599 −0.780632
\(507\) −7.24056 −0.321565
\(508\) −3.67077 −0.162864
\(509\) −44.9314 −1.99155 −0.995775 0.0918254i \(-0.970730\pi\)
−0.995775 + 0.0918254i \(0.970730\pi\)
\(510\) 2.66668 0.118083
\(511\) −13.3275 −0.589574
\(512\) −3.11118 −0.137496
\(513\) −1.07809 −0.0475988
\(514\) −23.1856 −1.02267
\(515\) −16.4157 −0.723362
\(516\) −0.495961 −0.0218334
\(517\) 23.5109 1.03401
\(518\) 4.92169 0.216247
\(519\) −3.39858 −0.149181
\(520\) −31.1412 −1.36563
\(521\) −5.76642 −0.252631 −0.126316 0.991990i \(-0.540315\pi\)
−0.126316 + 0.991990i \(0.540315\pi\)
\(522\) −2.88540 −0.126290
\(523\) −16.4520 −0.719397 −0.359698 0.933069i \(-0.617120\pi\)
−0.359698 + 0.933069i \(0.617120\pi\)
\(524\) 0.0717779 0.00313563
\(525\) −1.26912 −0.0553888
\(526\) −14.3563 −0.625965
\(527\) 5.59932 0.243910
\(528\) −0.894583 −0.0389317
\(529\) 18.6185 0.809500
\(530\) −24.3831 −1.05914
\(531\) 7.27550 0.315730
\(532\) −1.39814 −0.0606169
\(533\) −7.76727 −0.336438
\(534\) −4.56659 −0.197616
\(535\) 15.0661 0.651366
\(536\) 16.7099 0.721758
\(537\) 22.8363 0.985460
\(538\) −5.11398 −0.220479
\(539\) 3.24608 0.139818
\(540\) 3.24712 0.139734
\(541\) 11.5347 0.495914 0.247957 0.968771i \(-0.420241\pi\)
0.247957 + 0.968771i \(0.420241\pi\)
\(542\) −13.4883 −0.579373
\(543\) −20.6192 −0.884855
\(544\) −7.31614 −0.313677
\(545\) 37.6535 1.61290
\(546\) −3.77251 −0.161449
\(547\) 26.4267 1.12992 0.564961 0.825117i \(-0.308891\pi\)
0.564961 + 0.825117i \(0.308891\pi\)
\(548\) −10.7106 −0.457535
\(549\) −9.56962 −0.408421
\(550\) −3.45446 −0.147299
\(551\) 3.70972 0.158039
\(552\) −17.8346 −0.759092
\(553\) −10.8213 −0.460167
\(554\) −13.0181 −0.553085
\(555\) 14.6960 0.623809
\(556\) 26.5140 1.12444
\(557\) −29.6431 −1.25602 −0.628009 0.778206i \(-0.716130\pi\)
−0.628009 + 0.778206i \(0.716130\pi\)
\(558\) −3.69663 −0.156491
\(559\) 1.72054 0.0727709
\(560\) 0.690025 0.0291589
\(561\) −4.12295 −0.174071
\(562\) −22.5842 −0.952656
\(563\) 1.82456 0.0768961 0.0384480 0.999261i \(-0.487759\pi\)
0.0384480 + 0.999261i \(0.487759\pi\)
\(564\) 9.39302 0.395517
\(565\) 5.86919 0.246919
\(566\) 23.3075 0.979687
\(567\) 1.00000 0.0419961
\(568\) 9.75325 0.409237
\(569\) −26.2758 −1.10154 −0.550769 0.834658i \(-0.685665\pi\)
−0.550769 + 0.834658i \(0.685665\pi\)
\(570\) 2.26348 0.0948069
\(571\) 15.0746 0.630854 0.315427 0.948950i \(-0.397852\pi\)
0.315427 + 0.948950i \(0.397852\pi\)
\(572\) 18.9393 0.791894
\(573\) 26.8271 1.12072
\(574\) −1.44769 −0.0604255
\(575\) 8.18738 0.341437
\(576\) 4.27888 0.178287
\(577\) −0.0530706 −0.00220936 −0.00110468 0.999999i \(-0.500352\pi\)
−0.00110468 + 0.999999i \(0.500352\pi\)
\(578\) 12.9023 0.536664
\(579\) −3.30869 −0.137504
\(580\) −11.1734 −0.463949
\(581\) 12.5432 0.520378
\(582\) −4.18163 −0.173334
\(583\) 37.6986 1.56132
\(584\) −36.8442 −1.52462
\(585\) −11.2646 −0.465732
\(586\) −27.6856 −1.14368
\(587\) −32.4035 −1.33744 −0.668719 0.743515i \(-0.733157\pi\)
−0.668719 + 0.743515i \(0.733157\pi\)
\(588\) 1.29687 0.0534818
\(589\) 4.75270 0.195832
\(590\) −15.2751 −0.628867
\(591\) −14.7641 −0.607312
\(592\) −1.61755 −0.0664807
\(593\) −20.9758 −0.861372 −0.430686 0.902502i \(-0.641728\pi\)
−0.430686 + 0.902502i \(0.641728\pi\)
\(594\) 2.72194 0.111682
\(595\) 3.18018 0.130375
\(596\) 9.63381 0.394616
\(597\) 5.90846 0.241817
\(598\) 24.3374 0.995230
\(599\) 21.2539 0.868409 0.434205 0.900814i \(-0.357030\pi\)
0.434205 + 0.900814i \(0.357030\pi\)
\(600\) −3.50850 −0.143234
\(601\) 22.8237 0.930999 0.465499 0.885048i \(-0.345875\pi\)
0.465499 + 0.885048i \(0.345875\pi\)
\(602\) 0.320680 0.0130699
\(603\) 6.04440 0.246147
\(604\) 6.68334 0.271941
\(605\) −1.15922 −0.0471289
\(606\) 0.396962 0.0161255
\(607\) −33.3136 −1.35216 −0.676079 0.736829i \(-0.736322\pi\)
−0.676079 + 0.736829i \(0.736322\pi\)
\(608\) −6.20994 −0.251846
\(609\) −3.44101 −0.139437
\(610\) 20.0917 0.813490
\(611\) −32.5853 −1.31826
\(612\) −1.64719 −0.0665837
\(613\) 25.9004 1.04611 0.523053 0.852300i \(-0.324793\pi\)
0.523053 + 0.852300i \(0.324793\pi\)
\(614\) −16.1002 −0.649752
\(615\) −4.32275 −0.174310
\(616\) 8.97386 0.361567
\(617\) 36.5533 1.47158 0.735791 0.677209i \(-0.236811\pi\)
0.735791 + 0.677209i \(0.236811\pi\)
\(618\) −5.49763 −0.221147
\(619\) 10.3253 0.415009 0.207504 0.978234i \(-0.433466\pi\)
0.207504 + 0.978234i \(0.433466\pi\)
\(620\) −14.3148 −0.574895
\(621\) −6.45124 −0.258879
\(622\) −26.7794 −1.07375
\(623\) −5.44594 −0.218187
\(624\) 1.23986 0.0496342
\(625\) −29.7349 −1.18940
\(626\) −6.33364 −0.253143
\(627\) −3.49956 −0.139759
\(628\) 8.54954 0.341164
\(629\) −7.45493 −0.297248
\(630\) −2.09953 −0.0836474
\(631\) −10.2516 −0.408110 −0.204055 0.978959i \(-0.565412\pi\)
−0.204055 + 0.978959i \(0.565412\pi\)
\(632\) −29.9157 −1.18998
\(633\) −7.99730 −0.317864
\(634\) 13.5319 0.537420
\(635\) 7.08705 0.281241
\(636\) 15.0613 0.597218
\(637\) −4.49895 −0.178255
\(638\) −9.36623 −0.370813
\(639\) 3.52800 0.139566
\(640\) 19.8611 0.785078
\(641\) −19.3301 −0.763492 −0.381746 0.924267i \(-0.624677\pi\)
−0.381746 + 0.924267i \(0.624677\pi\)
\(642\) 5.04566 0.199136
\(643\) −37.3089 −1.47132 −0.735660 0.677351i \(-0.763128\pi\)
−0.735660 + 0.677351i \(0.763128\pi\)
\(644\) −8.36639 −0.329682
\(645\) 0.957537 0.0377030
\(646\) −1.14821 −0.0451759
\(647\) 18.8313 0.740334 0.370167 0.928965i \(-0.379301\pi\)
0.370167 + 0.928965i \(0.379301\pi\)
\(648\) 2.76452 0.108601
\(649\) 23.6168 0.927041
\(650\) 4.78776 0.187791
\(651\) −4.40845 −0.172781
\(652\) −12.9594 −0.507529
\(653\) 29.2543 1.14481 0.572404 0.819972i \(-0.306011\pi\)
0.572404 + 0.819972i \(0.306011\pi\)
\(654\) 12.6102 0.493097
\(655\) −0.138580 −0.00541475
\(656\) 0.475794 0.0185766
\(657\) −13.3275 −0.519955
\(658\) −6.07337 −0.236765
\(659\) 14.3624 0.559481 0.279740 0.960076i \(-0.409752\pi\)
0.279740 + 0.960076i \(0.409752\pi\)
\(660\) 10.5404 0.410284
\(661\) −11.5933 −0.450929 −0.225464 0.974251i \(-0.572390\pi\)
−0.225464 + 0.974251i \(0.572390\pi\)
\(662\) −10.1020 −0.392627
\(663\) 5.71426 0.221924
\(664\) 34.6759 1.34568
\(665\) 2.69934 0.104676
\(666\) 4.92169 0.190712
\(667\) 22.1988 0.859541
\(668\) 18.3566 0.710237
\(669\) 13.7164 0.530305
\(670\) −12.6904 −0.490274
\(671\) −31.0637 −1.19920
\(672\) 5.76014 0.222202
\(673\) −43.6572 −1.68286 −0.841431 0.540365i \(-0.818286\pi\)
−0.841431 + 0.540365i \(0.818286\pi\)
\(674\) −19.9373 −0.767957
\(675\) −1.26912 −0.0488483
\(676\) −9.39003 −0.361155
\(677\) −27.2502 −1.04731 −0.523656 0.851930i \(-0.675432\pi\)
−0.523656 + 0.851930i \(0.675432\pi\)
\(678\) 1.96560 0.0754883
\(679\) −4.98685 −0.191378
\(680\) 8.79169 0.337146
\(681\) 1.00000 0.0383201
\(682\) −11.9995 −0.459486
\(683\) 5.54103 0.212022 0.106011 0.994365i \(-0.466192\pi\)
0.106011 + 0.994365i \(0.466192\pi\)
\(684\) −1.39814 −0.0534591
\(685\) 20.6787 0.790093
\(686\) −0.838531 −0.0320153
\(687\) −14.9093 −0.568827
\(688\) −0.105394 −0.00401809
\(689\) −52.2490 −1.99053
\(690\) 13.5446 0.515634
\(691\) 41.1679 1.56610 0.783051 0.621958i \(-0.213663\pi\)
0.783051 + 0.621958i \(0.213663\pi\)
\(692\) −4.40751 −0.167548
\(693\) 3.24608 0.123308
\(694\) 6.22570 0.236324
\(695\) −51.1898 −1.94174
\(696\) −9.51277 −0.360581
\(697\) 2.19284 0.0830596
\(698\) −3.21809 −0.121806
\(699\) −7.72947 −0.292355
\(700\) −1.64587 −0.0622081
\(701\) −4.00556 −0.151288 −0.0756440 0.997135i \(-0.524101\pi\)
−0.0756440 + 0.997135i \(0.524101\pi\)
\(702\) −3.77251 −0.142384
\(703\) −6.32775 −0.238656
\(704\) 13.8896 0.523483
\(705\) −18.1348 −0.682997
\(706\) 8.92163 0.335770
\(707\) 0.473401 0.0178041
\(708\) 9.43534 0.354602
\(709\) −31.1569 −1.17012 −0.585062 0.810989i \(-0.698930\pi\)
−0.585062 + 0.810989i \(0.698930\pi\)
\(710\) −7.40715 −0.277986
\(711\) −10.8213 −0.405829
\(712\) −15.0554 −0.564227
\(713\) 28.4400 1.06509
\(714\) 1.06505 0.0398583
\(715\) −36.5657 −1.36748
\(716\) 29.6156 1.10679
\(717\) −19.8732 −0.742178
\(718\) 0.191194 0.00713528
\(719\) −31.9709 −1.19231 −0.596157 0.802868i \(-0.703306\pi\)
−0.596157 + 0.802868i \(0.703306\pi\)
\(720\) 0.690025 0.0257157
\(721\) −6.55626 −0.244168
\(722\) 14.9575 0.556660
\(723\) −19.0302 −0.707740
\(724\) −26.7403 −0.993796
\(725\) 4.36705 0.162188
\(726\) −0.388223 −0.0144083
\(727\) −34.7208 −1.28772 −0.643862 0.765141i \(-0.722669\pi\)
−0.643862 + 0.765141i \(0.722669\pi\)
\(728\) −12.4375 −0.460963
\(729\) 1.00000 0.0370370
\(730\) 27.9815 1.03564
\(731\) −0.485737 −0.0179656
\(732\) −12.4105 −0.458705
\(733\) −24.6689 −0.911166 −0.455583 0.890193i \(-0.650569\pi\)
−0.455583 + 0.890193i \(0.650569\pi\)
\(734\) 4.77704 0.176324
\(735\) −2.50382 −0.0923548
\(736\) −37.1600 −1.36974
\(737\) 19.6206 0.722734
\(738\) −1.44769 −0.0532903
\(739\) 44.9930 1.65510 0.827548 0.561396i \(-0.189735\pi\)
0.827548 + 0.561396i \(0.189735\pi\)
\(740\) 19.0587 0.700611
\(741\) 4.85027 0.178179
\(742\) −9.73837 −0.357507
\(743\) 51.5279 1.89037 0.945187 0.326530i \(-0.105879\pi\)
0.945187 + 0.326530i \(0.105879\pi\)
\(744\) −12.1873 −0.446807
\(745\) −18.5997 −0.681441
\(746\) −12.8204 −0.469389
\(747\) 12.5432 0.458930
\(748\) −5.34691 −0.195502
\(749\) 6.01726 0.219866
\(750\) −7.83311 −0.286025
\(751\) −5.00188 −0.182521 −0.0912606 0.995827i \(-0.529090\pi\)
−0.0912606 + 0.995827i \(0.529090\pi\)
\(752\) 1.99605 0.0727886
\(753\) 20.7963 0.757860
\(754\) 12.9813 0.472750
\(755\) −12.9033 −0.469601
\(756\) 1.29687 0.0471665
\(757\) −25.7247 −0.934979 −0.467489 0.883999i \(-0.654841\pi\)
−0.467489 + 0.883999i \(0.654841\pi\)
\(758\) 21.3235 0.774506
\(759\) −20.9412 −0.760118
\(760\) 7.46240 0.270690
\(761\) 7.10941 0.257716 0.128858 0.991663i \(-0.458869\pi\)
0.128858 + 0.991663i \(0.458869\pi\)
\(762\) 2.37346 0.0859813
\(763\) 15.0384 0.544427
\(764\) 34.7911 1.25870
\(765\) 3.18018 0.114980
\(766\) −19.4789 −0.703801
\(767\) −32.7321 −1.18189
\(768\) 15.2092 0.548816
\(769\) 0.319272 0.0115132 0.00575661 0.999983i \(-0.498168\pi\)
0.00575661 + 0.999983i \(0.498168\pi\)
\(770\) −6.81524 −0.245604
\(771\) −27.6502 −0.995798
\(772\) −4.29092 −0.154434
\(773\) 5.34474 0.192237 0.0961185 0.995370i \(-0.469357\pi\)
0.0961185 + 0.995370i \(0.469357\pi\)
\(774\) 0.320680 0.0115266
\(775\) 5.59484 0.200973
\(776\) −13.7863 −0.494898
\(777\) 5.86942 0.210564
\(778\) 0.609035 0.0218350
\(779\) 1.86128 0.0666873
\(780\) −14.6086 −0.523073
\(781\) 11.4522 0.409791
\(782\) −6.87087 −0.245702
\(783\) −3.44101 −0.122972
\(784\) 0.275589 0.00984246
\(785\) −16.5064 −0.589137
\(786\) −0.0464104 −0.00165540
\(787\) 10.2156 0.364149 0.182074 0.983285i \(-0.441719\pi\)
0.182074 + 0.983285i \(0.441719\pi\)
\(788\) −19.1470 −0.682084
\(789\) −17.1208 −0.609516
\(790\) 22.7196 0.808327
\(791\) 2.34409 0.0833464
\(792\) 8.97386 0.318872
\(793\) 43.0532 1.52887
\(794\) −21.6847 −0.769563
\(795\) −29.0784 −1.03130
\(796\) 7.66247 0.271589
\(797\) −21.1132 −0.747867 −0.373933 0.927456i \(-0.621991\pi\)
−0.373933 + 0.927456i \(0.621991\pi\)
\(798\) 0.904012 0.0320017
\(799\) 9.19940 0.325451
\(800\) −7.31029 −0.258458
\(801\) −5.44594 −0.192423
\(802\) −4.60528 −0.162618
\(803\) −43.2621 −1.52669
\(804\) 7.83877 0.276452
\(805\) 16.1527 0.569310
\(806\) 16.6309 0.585800
\(807\) −6.09874 −0.214686
\(808\) 1.30873 0.0460410
\(809\) 16.4336 0.577775 0.288888 0.957363i \(-0.406715\pi\)
0.288888 + 0.957363i \(0.406715\pi\)
\(810\) −2.09953 −0.0737700
\(811\) 33.7609 1.18551 0.592753 0.805385i \(-0.298041\pi\)
0.592753 + 0.805385i \(0.298041\pi\)
\(812\) −4.46253 −0.156604
\(813\) −16.0857 −0.564149
\(814\) 15.9762 0.559965
\(815\) 25.0203 0.876424
\(816\) −0.350034 −0.0122537
\(817\) −0.412294 −0.0144243
\(818\) −21.8634 −0.764435
\(819\) −4.49895 −0.157206
\(820\) −5.60603 −0.195771
\(821\) 17.6987 0.617690 0.308845 0.951112i \(-0.400058\pi\)
0.308845 + 0.951112i \(0.400058\pi\)
\(822\) 6.92531 0.241548
\(823\) −13.9331 −0.485679 −0.242839 0.970067i \(-0.578079\pi\)
−0.242839 + 0.970067i \(0.578079\pi\)
\(824\) −18.1249 −0.631413
\(825\) −4.11965 −0.143428
\(826\) −6.10073 −0.212272
\(827\) 21.3924 0.743885 0.371942 0.928256i \(-0.378692\pi\)
0.371942 + 0.928256i \(0.378692\pi\)
\(828\) −8.36639 −0.290752
\(829\) 8.79504 0.305464 0.152732 0.988268i \(-0.451193\pi\)
0.152732 + 0.988268i \(0.451193\pi\)
\(830\) −26.3348 −0.914093
\(831\) −15.5248 −0.538551
\(832\) −19.2505 −0.667390
\(833\) 1.27013 0.0440075
\(834\) −17.1435 −0.593631
\(835\) −35.4405 −1.22647
\(836\) −4.53846 −0.156966
\(837\) −4.40845 −0.152378
\(838\) 23.1925 0.801173
\(839\) −14.1418 −0.488230 −0.244115 0.969746i \(-0.578497\pi\)
−0.244115 + 0.969746i \(0.578497\pi\)
\(840\) −6.92187 −0.238827
\(841\) −17.1594 −0.591704
\(842\) 21.5885 0.743988
\(843\) −26.9330 −0.927622
\(844\) −10.3714 −0.356999
\(845\) 18.1291 0.623659
\(846\) −6.07337 −0.208807
\(847\) −0.462979 −0.0159082
\(848\) 3.20058 0.109908
\(849\) 27.7956 0.953943
\(850\) −1.35167 −0.0463618
\(851\) −37.8650 −1.29800
\(852\) 4.57534 0.156749
\(853\) 34.1272 1.16849 0.584246 0.811577i \(-0.301390\pi\)
0.584246 + 0.811577i \(0.301390\pi\)
\(854\) 8.02442 0.274590
\(855\) 2.69934 0.0923155
\(856\) 16.6349 0.568568
\(857\) 30.6559 1.04719 0.523593 0.851968i \(-0.324591\pi\)
0.523593 + 0.851968i \(0.324591\pi\)
\(858\) −12.2459 −0.418067
\(859\) 42.9934 1.46692 0.733459 0.679734i \(-0.237905\pi\)
0.733459 + 0.679734i \(0.237905\pi\)
\(860\) 1.24180 0.0423449
\(861\) −1.72646 −0.0588377
\(862\) −21.5806 −0.735037
\(863\) 4.11633 0.140122 0.0700608 0.997543i \(-0.477681\pi\)
0.0700608 + 0.997543i \(0.477681\pi\)
\(864\) 5.76014 0.195964
\(865\) 8.50945 0.289330
\(866\) −23.1526 −0.786757
\(867\) 15.3868 0.522562
\(868\) −5.71717 −0.194053
\(869\) −35.1267 −1.19159
\(870\) 7.22452 0.244934
\(871\) −27.1935 −0.921416
\(872\) 41.5741 1.40788
\(873\) −4.98685 −0.168779
\(874\) −5.83200 −0.197270
\(875\) −9.34146 −0.315799
\(876\) −17.2840 −0.583971
\(877\) 1.31427 0.0443799 0.0221899 0.999754i \(-0.492936\pi\)
0.0221899 + 0.999754i \(0.492936\pi\)
\(878\) −2.62801 −0.0886909
\(879\) −33.0167 −1.11363
\(880\) 2.23988 0.0755062
\(881\) 26.8956 0.906137 0.453068 0.891476i \(-0.350329\pi\)
0.453068 + 0.891476i \(0.350329\pi\)
\(882\) −0.838531 −0.0282348
\(883\) −59.0137 −1.98597 −0.992985 0.118239i \(-0.962275\pi\)
−0.992985 + 0.118239i \(0.962275\pi\)
\(884\) 7.41063 0.249246
\(885\) −18.2165 −0.612342
\(886\) 3.40634 0.114438
\(887\) 1.05992 0.0355886 0.0177943 0.999842i \(-0.494336\pi\)
0.0177943 + 0.999842i \(0.494336\pi\)
\(888\) 16.2261 0.544514
\(889\) 2.83049 0.0949317
\(890\) 11.4339 0.383266
\(891\) 3.24608 0.108748
\(892\) 17.7883 0.595595
\(893\) 7.80845 0.261300
\(894\) −6.22906 −0.208331
\(895\) −57.1781 −1.91125
\(896\) 7.93230 0.265000
\(897\) 29.0238 0.969077
\(898\) −19.5178 −0.651317
\(899\) 15.1695 0.505933
\(900\) −1.64587 −0.0548624
\(901\) 14.7508 0.491421
\(902\) −4.69932 −0.156470
\(903\) 0.382430 0.0127265
\(904\) 6.48031 0.215532
\(905\) 51.6268 1.71613
\(906\) −4.32134 −0.143567
\(907\) 7.97735 0.264884 0.132442 0.991191i \(-0.457718\pi\)
0.132442 + 0.991191i \(0.457718\pi\)
\(908\) 1.29687 0.0430380
\(909\) 0.473401 0.0157017
\(910\) 9.44569 0.313122
\(911\) 26.5751 0.880472 0.440236 0.897882i \(-0.354895\pi\)
0.440236 + 0.897882i \(0.354895\pi\)
\(912\) −0.297110 −0.00983828
\(913\) 40.7161 1.34751
\(914\) 4.24932 0.140555
\(915\) 23.9606 0.792113
\(916\) −19.3354 −0.638859
\(917\) −0.0553473 −0.00182773
\(918\) 1.06505 0.0351517
\(919\) −9.54484 −0.314855 −0.157428 0.987531i \(-0.550320\pi\)
−0.157428 + 0.987531i \(0.550320\pi\)
\(920\) 44.6547 1.47222
\(921\) −19.2005 −0.632678
\(922\) 1.49287 0.0491651
\(923\) −15.8723 −0.522443
\(924\) 4.20972 0.138490
\(925\) −7.44897 −0.244921
\(926\) −26.2200 −0.861643
\(927\) −6.55626 −0.215336
\(928\) −19.8207 −0.650647
\(929\) −19.3866 −0.636054 −0.318027 0.948082i \(-0.603020\pi\)
−0.318027 + 0.948082i \(0.603020\pi\)
\(930\) 9.25569 0.303506
\(931\) 1.07809 0.0353329
\(932\) −10.0241 −0.328349
\(933\) −31.9360 −1.04554
\(934\) 1.77099 0.0579484
\(935\) 10.3231 0.337602
\(936\) −12.4375 −0.406531
\(937\) 33.7796 1.10353 0.551765 0.834000i \(-0.313955\pi\)
0.551765 + 0.834000i \(0.313955\pi\)
\(938\) −5.06842 −0.165490
\(939\) −7.55326 −0.246491
\(940\) −23.5184 −0.767087
\(941\) −42.0505 −1.37081 −0.685403 0.728164i \(-0.740374\pi\)
−0.685403 + 0.728164i \(0.740374\pi\)
\(942\) −5.52799 −0.180112
\(943\) 11.1378 0.362698
\(944\) 2.00505 0.0652587
\(945\) −2.50382 −0.0814493
\(946\) 1.04095 0.0338443
\(947\) 12.9333 0.420276 0.210138 0.977672i \(-0.432609\pi\)
0.210138 + 0.977672i \(0.432609\pi\)
\(948\) −14.0337 −0.455794
\(949\) 59.9598 1.94638
\(950\) −1.14730 −0.0372232
\(951\) 16.1376 0.523297
\(952\) 3.51131 0.113802
\(953\) 24.7227 0.800845 0.400423 0.916331i \(-0.368863\pi\)
0.400423 + 0.916331i \(0.368863\pi\)
\(954\) −9.73837 −0.315291
\(955\) −67.1703 −2.17358
\(956\) −25.7729 −0.833554
\(957\) −11.1698 −0.361068
\(958\) 8.76063 0.283043
\(959\) 8.25886 0.266692
\(960\) −10.7135 −0.345778
\(961\) −11.5655 −0.373082
\(962\) −22.1424 −0.713901
\(963\) 6.01726 0.193904
\(964\) −24.6796 −0.794876
\(965\) 8.28436 0.266683
\(966\) 5.40957 0.174050
\(967\) −47.2747 −1.52025 −0.760126 0.649776i \(-0.774863\pi\)
−0.760126 + 0.649776i \(0.774863\pi\)
\(968\) −1.27992 −0.0411381
\(969\) −1.36932 −0.0439888
\(970\) 10.4701 0.336173
\(971\) 12.6570 0.406184 0.203092 0.979160i \(-0.434901\pi\)
0.203092 + 0.979160i \(0.434901\pi\)
\(972\) 1.29687 0.0415970
\(973\) −20.4447 −0.655426
\(974\) 27.6308 0.885347
\(975\) 5.70969 0.182857
\(976\) −2.63728 −0.0844173
\(977\) 24.0096 0.768134 0.384067 0.923305i \(-0.374523\pi\)
0.384067 + 0.923305i \(0.374523\pi\)
\(978\) 8.37933 0.267941
\(979\) −17.6780 −0.564990
\(980\) −3.24712 −0.103725
\(981\) 15.0384 0.480140
\(982\) −26.9592 −0.860303
\(983\) −37.5203 −1.19671 −0.598356 0.801230i \(-0.704179\pi\)
−0.598356 + 0.801230i \(0.704179\pi\)
\(984\) −4.77285 −0.152153
\(985\) 36.9666 1.17785
\(986\) −3.66484 −0.116712
\(987\) −7.24286 −0.230543
\(988\) 6.29015 0.200116
\(989\) −2.46715 −0.0784508
\(990\) −6.81524 −0.216603
\(991\) 28.7670 0.913815 0.456908 0.889514i \(-0.348957\pi\)
0.456908 + 0.889514i \(0.348957\pi\)
\(992\) −25.3933 −0.806238
\(993\) −12.0473 −0.382310
\(994\) −2.95834 −0.0938329
\(995\) −14.7937 −0.468992
\(996\) 16.2668 0.515433
\(997\) −37.4511 −1.18609 −0.593044 0.805170i \(-0.702074\pi\)
−0.593044 + 0.805170i \(0.702074\pi\)
\(998\) 24.8784 0.787512
\(999\) 5.86942 0.185700
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4767.2.a.g.1.13 35
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4767.2.a.g.1.13 35 1.1 even 1 trivial