Properties

Label 4767.2.a.g.1.12
Level $4767$
Weight $2$
Character 4767.1
Self dual yes
Analytic conductor $38.065$
Analytic rank $0$
Dimension $35$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4767,2,Mod(1,4767)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4767, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4767.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4767 = 3 \cdot 7 \cdot 227 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4767.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [35,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0646866435\)
Analytic rank: \(0\)
Dimension: \(35\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 4767.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.858119 q^{2} -1.00000 q^{3} -1.26363 q^{4} -3.59592 q^{5} +0.858119 q^{6} +1.00000 q^{7} +2.80058 q^{8} +1.00000 q^{9} +3.08573 q^{10} -6.36982 q^{11} +1.26363 q^{12} +5.24936 q^{13} -0.858119 q^{14} +3.59592 q^{15} +0.124027 q^{16} +5.50648 q^{17} -0.858119 q^{18} -2.56012 q^{19} +4.54392 q^{20} -1.00000 q^{21} +5.46606 q^{22} -3.17274 q^{23} -2.80058 q^{24} +7.93067 q^{25} -4.50458 q^{26} -1.00000 q^{27} -1.26363 q^{28} -8.19228 q^{29} -3.08573 q^{30} -0.845913 q^{31} -5.70760 q^{32} +6.36982 q^{33} -4.72521 q^{34} -3.59592 q^{35} -1.26363 q^{36} -1.86570 q^{37} +2.19689 q^{38} -5.24936 q^{39} -10.0707 q^{40} +12.3860 q^{41} +0.858119 q^{42} +3.25218 q^{43} +8.04910 q^{44} -3.59592 q^{45} +2.72259 q^{46} +0.370523 q^{47} -0.124027 q^{48} +1.00000 q^{49} -6.80546 q^{50} -5.50648 q^{51} -6.63326 q^{52} -4.98085 q^{53} +0.858119 q^{54} +22.9054 q^{55} +2.80058 q^{56} +2.56012 q^{57} +7.02996 q^{58} -14.3700 q^{59} -4.54392 q^{60} +8.91417 q^{61} +0.725894 q^{62} +1.00000 q^{63} +4.64975 q^{64} -18.8763 q^{65} -5.46606 q^{66} -10.2434 q^{67} -6.95816 q^{68} +3.17274 q^{69} +3.08573 q^{70} -4.13821 q^{71} +2.80058 q^{72} -0.948252 q^{73} +1.60099 q^{74} -7.93067 q^{75} +3.23505 q^{76} -6.36982 q^{77} +4.50458 q^{78} -15.7242 q^{79} -0.445992 q^{80} +1.00000 q^{81} -10.6286 q^{82} -10.8144 q^{83} +1.26363 q^{84} -19.8009 q^{85} -2.79076 q^{86} +8.19228 q^{87} -17.8392 q^{88} +0.302857 q^{89} +3.08573 q^{90} +5.24936 q^{91} +4.00917 q^{92} +0.845913 q^{93} -0.317953 q^{94} +9.20601 q^{95} +5.70760 q^{96} -14.3858 q^{97} -0.858119 q^{98} -6.36982 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 35 q + 7 q^{2} - 35 q^{3} + 45 q^{4} - 4 q^{5} - 7 q^{6} + 35 q^{7} + 21 q^{8} + 35 q^{9} + 11 q^{10} - 3 q^{11} - 45 q^{12} + 19 q^{13} + 7 q^{14} + 4 q^{15} + 65 q^{16} + 20 q^{17} + 7 q^{18} + 9 q^{19}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.858119 −0.606782 −0.303391 0.952866i \(-0.598119\pi\)
−0.303391 + 0.952866i \(0.598119\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.26363 −0.631816
\(5\) −3.59592 −1.60815 −0.804073 0.594531i \(-0.797338\pi\)
−0.804073 + 0.594531i \(0.797338\pi\)
\(6\) 0.858119 0.350326
\(7\) 1.00000 0.377964
\(8\) 2.80058 0.990156
\(9\) 1.00000 0.333333
\(10\) 3.08573 0.975794
\(11\) −6.36982 −1.92057 −0.960286 0.279017i \(-0.909991\pi\)
−0.960286 + 0.279017i \(0.909991\pi\)
\(12\) 1.26363 0.364779
\(13\) 5.24936 1.45591 0.727955 0.685625i \(-0.240471\pi\)
0.727955 + 0.685625i \(0.240471\pi\)
\(14\) −0.858119 −0.229342
\(15\) 3.59592 0.928464
\(16\) 0.124027 0.0310068
\(17\) 5.50648 1.33552 0.667758 0.744378i \(-0.267254\pi\)
0.667758 + 0.744378i \(0.267254\pi\)
\(18\) −0.858119 −0.202261
\(19\) −2.56012 −0.587333 −0.293666 0.955908i \(-0.594875\pi\)
−0.293666 + 0.955908i \(0.594875\pi\)
\(20\) 4.54392 1.01605
\(21\) −1.00000 −0.218218
\(22\) 5.46606 1.16537
\(23\) −3.17274 −0.661562 −0.330781 0.943708i \(-0.607312\pi\)
−0.330781 + 0.943708i \(0.607312\pi\)
\(24\) −2.80058 −0.571667
\(25\) 7.93067 1.58613
\(26\) −4.50458 −0.883420
\(27\) −1.00000 −0.192450
\(28\) −1.26363 −0.238804
\(29\) −8.19228 −1.52127 −0.760634 0.649180i \(-0.775112\pi\)
−0.760634 + 0.649180i \(0.775112\pi\)
\(30\) −3.08573 −0.563375
\(31\) −0.845913 −0.151930 −0.0759652 0.997110i \(-0.524204\pi\)
−0.0759652 + 0.997110i \(0.524204\pi\)
\(32\) −5.70760 −1.00897
\(33\) 6.36982 1.10884
\(34\) −4.72521 −0.810368
\(35\) −3.59592 −0.607822
\(36\) −1.26363 −0.210605
\(37\) −1.86570 −0.306719 −0.153359 0.988170i \(-0.549009\pi\)
−0.153359 + 0.988170i \(0.549009\pi\)
\(38\) 2.19689 0.356383
\(39\) −5.24936 −0.840570
\(40\) −10.0707 −1.59232
\(41\) 12.3860 1.93436 0.967181 0.254088i \(-0.0817754\pi\)
0.967181 + 0.254088i \(0.0817754\pi\)
\(42\) 0.858119 0.132411
\(43\) 3.25218 0.495953 0.247976 0.968766i \(-0.420235\pi\)
0.247976 + 0.968766i \(0.420235\pi\)
\(44\) 8.04910 1.21345
\(45\) −3.59592 −0.536049
\(46\) 2.72259 0.401424
\(47\) 0.370523 0.0540463 0.0270232 0.999635i \(-0.491397\pi\)
0.0270232 + 0.999635i \(0.491397\pi\)
\(48\) −0.124027 −0.0179018
\(49\) 1.00000 0.142857
\(50\) −6.80546 −0.962437
\(51\) −5.50648 −0.771061
\(52\) −6.63326 −0.919867
\(53\) −4.98085 −0.684172 −0.342086 0.939669i \(-0.611133\pi\)
−0.342086 + 0.939669i \(0.611133\pi\)
\(54\) 0.858119 0.116775
\(55\) 22.9054 3.08856
\(56\) 2.80058 0.374244
\(57\) 2.56012 0.339097
\(58\) 7.02996 0.923078
\(59\) −14.3700 −1.87081 −0.935406 0.353575i \(-0.884966\pi\)
−0.935406 + 0.353575i \(0.884966\pi\)
\(60\) −4.54392 −0.586618
\(61\) 8.91417 1.14134 0.570671 0.821179i \(-0.306683\pi\)
0.570671 + 0.821179i \(0.306683\pi\)
\(62\) 0.725894 0.0921886
\(63\) 1.00000 0.125988
\(64\) 4.64975 0.581218
\(65\) −18.8763 −2.34132
\(66\) −5.46606 −0.672826
\(67\) −10.2434 −1.25144 −0.625718 0.780049i \(-0.715194\pi\)
−0.625718 + 0.780049i \(0.715194\pi\)
\(68\) −6.95816 −0.843801
\(69\) 3.17274 0.381953
\(70\) 3.08573 0.368815
\(71\) −4.13821 −0.491116 −0.245558 0.969382i \(-0.578971\pi\)
−0.245558 + 0.969382i \(0.578971\pi\)
\(72\) 2.80058 0.330052
\(73\) −0.948252 −0.110985 −0.0554923 0.998459i \(-0.517673\pi\)
−0.0554923 + 0.998459i \(0.517673\pi\)
\(74\) 1.60099 0.186111
\(75\) −7.93067 −0.915755
\(76\) 3.23505 0.371086
\(77\) −6.36982 −0.725908
\(78\) 4.50458 0.510043
\(79\) −15.7242 −1.76911 −0.884555 0.466437i \(-0.845538\pi\)
−0.884555 + 0.466437i \(0.845538\pi\)
\(80\) −0.445992 −0.0498635
\(81\) 1.00000 0.111111
\(82\) −10.6286 −1.17374
\(83\) −10.8144 −1.18703 −0.593515 0.804823i \(-0.702260\pi\)
−0.593515 + 0.804823i \(0.702260\pi\)
\(84\) 1.26363 0.137873
\(85\) −19.8009 −2.14771
\(86\) −2.79076 −0.300935
\(87\) 8.19228 0.878305
\(88\) −17.8392 −1.90167
\(89\) 0.302857 0.0321027 0.0160514 0.999871i \(-0.494890\pi\)
0.0160514 + 0.999871i \(0.494890\pi\)
\(90\) 3.08573 0.325265
\(91\) 5.24936 0.550282
\(92\) 4.00917 0.417985
\(93\) 0.845913 0.0877170
\(94\) −0.317953 −0.0327943
\(95\) 9.20601 0.944517
\(96\) 5.70760 0.582529
\(97\) −14.3858 −1.46065 −0.730327 0.683098i \(-0.760632\pi\)
−0.730327 + 0.683098i \(0.760632\pi\)
\(98\) −0.858119 −0.0866831
\(99\) −6.36982 −0.640191
\(100\) −10.0214 −1.00214
\(101\) −17.6642 −1.75766 −0.878828 0.477138i \(-0.841674\pi\)
−0.878828 + 0.477138i \(0.841674\pi\)
\(102\) 4.72521 0.467866
\(103\) −2.06602 −0.203571 −0.101785 0.994806i \(-0.532455\pi\)
−0.101785 + 0.994806i \(0.532455\pi\)
\(104\) 14.7013 1.44158
\(105\) 3.59592 0.350926
\(106\) 4.27416 0.415143
\(107\) 5.63536 0.544791 0.272396 0.962185i \(-0.412184\pi\)
0.272396 + 0.962185i \(0.412184\pi\)
\(108\) 1.26363 0.121593
\(109\) 11.2571 1.07824 0.539119 0.842230i \(-0.318757\pi\)
0.539119 + 0.842230i \(0.318757\pi\)
\(110\) −19.6555 −1.87408
\(111\) 1.86570 0.177084
\(112\) 0.124027 0.0117195
\(113\) −0.509211 −0.0479026 −0.0239513 0.999713i \(-0.507625\pi\)
−0.0239513 + 0.999713i \(0.507625\pi\)
\(114\) −2.19689 −0.205758
\(115\) 11.4089 1.06389
\(116\) 10.3520 0.961162
\(117\) 5.24936 0.485304
\(118\) 12.3312 1.13518
\(119\) 5.50648 0.504778
\(120\) 10.0707 0.919324
\(121\) 29.5746 2.68860
\(122\) −7.64942 −0.692546
\(123\) −12.3860 −1.11680
\(124\) 1.06892 0.0959920
\(125\) −10.5385 −0.942589
\(126\) −0.858119 −0.0764473
\(127\) −12.2757 −1.08929 −0.544647 0.838665i \(-0.683336\pi\)
−0.544647 + 0.838665i \(0.683336\pi\)
\(128\) 7.42516 0.656298
\(129\) −3.25218 −0.286338
\(130\) 16.1981 1.42067
\(131\) −8.84530 −0.772818 −0.386409 0.922328i \(-0.626285\pi\)
−0.386409 + 0.922328i \(0.626285\pi\)
\(132\) −8.04910 −0.700584
\(133\) −2.56012 −0.221991
\(134\) 8.79010 0.759349
\(135\) 3.59592 0.309488
\(136\) 15.4214 1.32237
\(137\) 19.9387 1.70348 0.851741 0.523964i \(-0.175547\pi\)
0.851741 + 0.523964i \(0.175547\pi\)
\(138\) −2.72259 −0.231762
\(139\) 19.1611 1.62522 0.812612 0.582806i \(-0.198045\pi\)
0.812612 + 0.582806i \(0.198045\pi\)
\(140\) 4.54392 0.384032
\(141\) −0.370523 −0.0312037
\(142\) 3.55108 0.298000
\(143\) −33.4375 −2.79618
\(144\) 0.124027 0.0103356
\(145\) 29.4588 2.44642
\(146\) 0.813714 0.0673434
\(147\) −1.00000 −0.0824786
\(148\) 2.35755 0.193790
\(149\) 4.94804 0.405359 0.202679 0.979245i \(-0.435035\pi\)
0.202679 + 0.979245i \(0.435035\pi\)
\(150\) 6.80546 0.555663
\(151\) −9.32633 −0.758966 −0.379483 0.925199i \(-0.623898\pi\)
−0.379483 + 0.925199i \(0.623898\pi\)
\(152\) −7.16984 −0.581551
\(153\) 5.50648 0.445172
\(154\) 5.46606 0.440468
\(155\) 3.04184 0.244326
\(156\) 6.63326 0.531086
\(157\) −17.8217 −1.42232 −0.711162 0.703029i \(-0.751831\pi\)
−0.711162 + 0.703029i \(0.751831\pi\)
\(158\) 13.4932 1.07346
\(159\) 4.98085 0.395007
\(160\) 20.5241 1.62257
\(161\) −3.17274 −0.250047
\(162\) −0.858119 −0.0674202
\(163\) −11.9029 −0.932308 −0.466154 0.884704i \(-0.654361\pi\)
−0.466154 + 0.884704i \(0.654361\pi\)
\(164\) −15.6513 −1.22216
\(165\) −22.9054 −1.78318
\(166\) 9.28001 0.720269
\(167\) 11.7249 0.907298 0.453649 0.891181i \(-0.350122\pi\)
0.453649 + 0.891181i \(0.350122\pi\)
\(168\) −2.80058 −0.216070
\(169\) 14.5558 1.11968
\(170\) 16.9915 1.30319
\(171\) −2.56012 −0.195778
\(172\) −4.10955 −0.313351
\(173\) 1.43439 0.109055 0.0545273 0.998512i \(-0.482635\pi\)
0.0545273 + 0.998512i \(0.482635\pi\)
\(174\) −7.02996 −0.532940
\(175\) 7.93067 0.599502
\(176\) −0.790030 −0.0595508
\(177\) 14.3700 1.08011
\(178\) −0.259887 −0.0194794
\(179\) −2.95643 −0.220974 −0.110487 0.993878i \(-0.535241\pi\)
−0.110487 + 0.993878i \(0.535241\pi\)
\(180\) 4.54392 0.338684
\(181\) 12.0629 0.896625 0.448312 0.893877i \(-0.352025\pi\)
0.448312 + 0.893877i \(0.352025\pi\)
\(182\) −4.50458 −0.333901
\(183\) −8.91417 −0.658954
\(184\) −8.88553 −0.655050
\(185\) 6.70891 0.493249
\(186\) −0.725894 −0.0532251
\(187\) −35.0753 −2.56496
\(188\) −0.468205 −0.0341473
\(189\) −1.00000 −0.0727393
\(190\) −7.89986 −0.573116
\(191\) −4.31775 −0.312421 −0.156211 0.987724i \(-0.549928\pi\)
−0.156211 + 0.987724i \(0.549928\pi\)
\(192\) −4.64975 −0.335567
\(193\) 7.47287 0.537909 0.268954 0.963153i \(-0.413322\pi\)
0.268954 + 0.963153i \(0.413322\pi\)
\(194\) 12.3447 0.886298
\(195\) 18.8763 1.35176
\(196\) −1.26363 −0.0902594
\(197\) 9.80925 0.698880 0.349440 0.936959i \(-0.386372\pi\)
0.349440 + 0.936959i \(0.386372\pi\)
\(198\) 5.46606 0.388456
\(199\) 16.3031 1.15569 0.577847 0.816145i \(-0.303893\pi\)
0.577847 + 0.816145i \(0.303893\pi\)
\(200\) 22.2105 1.57052
\(201\) 10.2434 0.722517
\(202\) 15.1580 1.06651
\(203\) −8.19228 −0.574986
\(204\) 6.95816 0.487169
\(205\) −44.5390 −3.11074
\(206\) 1.77289 0.123523
\(207\) −3.17274 −0.220521
\(208\) 0.651063 0.0451431
\(209\) 16.3075 1.12801
\(210\) −3.08573 −0.212936
\(211\) 18.3928 1.26621 0.633106 0.774065i \(-0.281780\pi\)
0.633106 + 0.774065i \(0.281780\pi\)
\(212\) 6.29396 0.432271
\(213\) 4.13821 0.283546
\(214\) −4.83581 −0.330569
\(215\) −11.6946 −0.797564
\(216\) −2.80058 −0.190556
\(217\) −0.845913 −0.0574243
\(218\) −9.65997 −0.654255
\(219\) 0.948252 0.0640770
\(220\) −28.9440 −1.95140
\(221\) 28.9055 1.94439
\(222\) −1.60099 −0.107451
\(223\) −20.1971 −1.35250 −0.676249 0.736673i \(-0.736396\pi\)
−0.676249 + 0.736673i \(0.736396\pi\)
\(224\) −5.70760 −0.381355
\(225\) 7.93067 0.528711
\(226\) 0.436964 0.0290664
\(227\) −1.00000 −0.0663723
\(228\) −3.23505 −0.214247
\(229\) 10.0676 0.665285 0.332642 0.943053i \(-0.392060\pi\)
0.332642 + 0.943053i \(0.392060\pi\)
\(230\) −9.79022 −0.645548
\(231\) 6.36982 0.419103
\(232\) −22.9432 −1.50629
\(233\) 12.9857 0.850724 0.425362 0.905023i \(-0.360147\pi\)
0.425362 + 0.905023i \(0.360147\pi\)
\(234\) −4.50458 −0.294473
\(235\) −1.33237 −0.0869144
\(236\) 18.1584 1.18201
\(237\) 15.7242 1.02140
\(238\) −4.72521 −0.306290
\(239\) −16.0344 −1.03718 −0.518589 0.855024i \(-0.673543\pi\)
−0.518589 + 0.855024i \(0.673543\pi\)
\(240\) 0.445992 0.0287887
\(241\) 23.1859 1.49354 0.746768 0.665085i \(-0.231605\pi\)
0.746768 + 0.665085i \(0.231605\pi\)
\(242\) −25.3785 −1.63139
\(243\) −1.00000 −0.0641500
\(244\) −11.2642 −0.721118
\(245\) −3.59592 −0.229735
\(246\) 10.6286 0.677657
\(247\) −13.4390 −0.855104
\(248\) −2.36905 −0.150435
\(249\) 10.8144 0.685332
\(250\) 9.04326 0.571946
\(251\) 18.9770 1.19782 0.598909 0.800817i \(-0.295601\pi\)
0.598909 + 0.800817i \(0.295601\pi\)
\(252\) −1.26363 −0.0796013
\(253\) 20.2098 1.27058
\(254\) 10.5340 0.660964
\(255\) 19.8009 1.23998
\(256\) −15.6712 −0.979448
\(257\) 16.3061 1.01715 0.508574 0.861018i \(-0.330173\pi\)
0.508574 + 0.861018i \(0.330173\pi\)
\(258\) 2.79076 0.173745
\(259\) −1.86570 −0.115929
\(260\) 23.8527 1.47928
\(261\) −8.19228 −0.507090
\(262\) 7.59033 0.468932
\(263\) 24.4644 1.50854 0.754269 0.656566i \(-0.227992\pi\)
0.754269 + 0.656566i \(0.227992\pi\)
\(264\) 17.8392 1.09793
\(265\) 17.9108 1.10025
\(266\) 2.19689 0.134700
\(267\) −0.302857 −0.0185345
\(268\) 12.9439 0.790677
\(269\) −12.1876 −0.743093 −0.371547 0.928414i \(-0.621172\pi\)
−0.371547 + 0.928414i \(0.621172\pi\)
\(270\) −3.08573 −0.187792
\(271\) −20.5377 −1.24758 −0.623789 0.781593i \(-0.714407\pi\)
−0.623789 + 0.781593i \(0.714407\pi\)
\(272\) 0.682953 0.0414101
\(273\) −5.24936 −0.317706
\(274\) −17.1098 −1.03364
\(275\) −50.5169 −3.04628
\(276\) −4.00917 −0.241324
\(277\) −3.47993 −0.209089 −0.104544 0.994520i \(-0.533338\pi\)
−0.104544 + 0.994520i \(0.533338\pi\)
\(278\) −16.4425 −0.986156
\(279\) −0.845913 −0.0506435
\(280\) −10.0707 −0.601839
\(281\) 0.634486 0.0378503 0.0189251 0.999821i \(-0.493976\pi\)
0.0189251 + 0.999821i \(0.493976\pi\)
\(282\) 0.317953 0.0189338
\(283\) 7.54092 0.448261 0.224130 0.974559i \(-0.428046\pi\)
0.224130 + 0.974559i \(0.428046\pi\)
\(284\) 5.22918 0.310295
\(285\) −9.20601 −0.545317
\(286\) 28.6933 1.69667
\(287\) 12.3860 0.731120
\(288\) −5.70760 −0.336324
\(289\) 13.3213 0.783606
\(290\) −25.2792 −1.48444
\(291\) 14.3858 0.843309
\(292\) 1.19824 0.0701218
\(293\) 18.0394 1.05387 0.526937 0.849905i \(-0.323340\pi\)
0.526937 + 0.849905i \(0.323340\pi\)
\(294\) 0.858119 0.0500465
\(295\) 51.6734 3.00854
\(296\) −5.22504 −0.303700
\(297\) 6.36982 0.369614
\(298\) −4.24601 −0.245964
\(299\) −16.6549 −0.963175
\(300\) 10.0214 0.578588
\(301\) 3.25218 0.187452
\(302\) 8.00310 0.460527
\(303\) 17.6642 1.01478
\(304\) −0.317525 −0.0182113
\(305\) −32.0547 −1.83545
\(306\) −4.72521 −0.270123
\(307\) −6.69835 −0.382295 −0.191147 0.981561i \(-0.561221\pi\)
−0.191147 + 0.981561i \(0.561221\pi\)
\(308\) 8.04910 0.458640
\(309\) 2.06602 0.117532
\(310\) −2.61026 −0.148253
\(311\) 12.5116 0.709470 0.354735 0.934967i \(-0.384571\pi\)
0.354735 + 0.934967i \(0.384571\pi\)
\(312\) −14.7013 −0.832296
\(313\) −33.7758 −1.90912 −0.954562 0.298013i \(-0.903676\pi\)
−0.954562 + 0.298013i \(0.903676\pi\)
\(314\) 15.2931 0.863040
\(315\) −3.59592 −0.202607
\(316\) 19.8696 1.11775
\(317\) −13.0600 −0.733523 −0.366762 0.930315i \(-0.619534\pi\)
−0.366762 + 0.930315i \(0.619534\pi\)
\(318\) −4.27416 −0.239683
\(319\) 52.1833 2.92171
\(320\) −16.7201 −0.934684
\(321\) −5.63536 −0.314535
\(322\) 2.72259 0.151724
\(323\) −14.0973 −0.784393
\(324\) −1.26363 −0.0702017
\(325\) 41.6309 2.30927
\(326\) 10.2141 0.565708
\(327\) −11.2571 −0.622521
\(328\) 34.6879 1.91532
\(329\) 0.370523 0.0204276
\(330\) 19.6555 1.08200
\(331\) 2.88649 0.158656 0.0793279 0.996849i \(-0.474723\pi\)
0.0793279 + 0.996849i \(0.474723\pi\)
\(332\) 13.6654 0.749984
\(333\) −1.86570 −0.102240
\(334\) −10.0613 −0.550532
\(335\) 36.8347 2.01249
\(336\) −0.124027 −0.00676624
\(337\) 28.1439 1.53310 0.766548 0.642187i \(-0.221973\pi\)
0.766548 + 0.642187i \(0.221973\pi\)
\(338\) −12.4906 −0.679399
\(339\) 0.509211 0.0276566
\(340\) 25.0210 1.35695
\(341\) 5.38831 0.291793
\(342\) 2.19689 0.118794
\(343\) 1.00000 0.0539949
\(344\) 9.10800 0.491070
\(345\) −11.4089 −0.614236
\(346\) −1.23088 −0.0661723
\(347\) −0.178187 −0.00956559 −0.00478279 0.999989i \(-0.501522\pi\)
−0.00478279 + 0.999989i \(0.501522\pi\)
\(348\) −10.3520 −0.554927
\(349\) −8.99653 −0.481573 −0.240787 0.970578i \(-0.577405\pi\)
−0.240787 + 0.970578i \(0.577405\pi\)
\(350\) −6.80546 −0.363767
\(351\) −5.24936 −0.280190
\(352\) 36.3564 1.93780
\(353\) −15.2438 −0.811347 −0.405673 0.914018i \(-0.632963\pi\)
−0.405673 + 0.914018i \(0.632963\pi\)
\(354\) −12.3312 −0.655394
\(355\) 14.8807 0.789786
\(356\) −0.382699 −0.0202830
\(357\) −5.50648 −0.291434
\(358\) 2.53697 0.134083
\(359\) 2.83983 0.149880 0.0749401 0.997188i \(-0.476123\pi\)
0.0749401 + 0.997188i \(0.476123\pi\)
\(360\) −10.0707 −0.530772
\(361\) −12.4458 −0.655040
\(362\) −10.3514 −0.544056
\(363\) −29.5746 −1.55226
\(364\) −6.63326 −0.347677
\(365\) 3.40984 0.178479
\(366\) 7.64942 0.399842
\(367\) 2.38991 0.124753 0.0623763 0.998053i \(-0.480132\pi\)
0.0623763 + 0.998053i \(0.480132\pi\)
\(368\) −0.393506 −0.0205129
\(369\) 12.3860 0.644787
\(370\) −5.75704 −0.299294
\(371\) −4.98085 −0.258593
\(372\) −1.06892 −0.0554210
\(373\) 8.02396 0.415465 0.207733 0.978186i \(-0.433392\pi\)
0.207733 + 0.978186i \(0.433392\pi\)
\(374\) 30.0988 1.55637
\(375\) 10.5385 0.544204
\(376\) 1.03768 0.0535143
\(377\) −43.0042 −2.21483
\(378\) 0.858119 0.0441369
\(379\) 11.5658 0.594096 0.297048 0.954863i \(-0.403998\pi\)
0.297048 + 0.954863i \(0.403998\pi\)
\(380\) −11.6330 −0.596761
\(381\) 12.2757 0.628904
\(382\) 3.70514 0.189572
\(383\) −34.0916 −1.74200 −0.871000 0.491283i \(-0.836528\pi\)
−0.871000 + 0.491283i \(0.836528\pi\)
\(384\) −7.42516 −0.378914
\(385\) 22.9054 1.16737
\(386\) −6.41261 −0.326393
\(387\) 3.25218 0.165318
\(388\) 18.1783 0.922864
\(389\) 16.1876 0.820745 0.410373 0.911918i \(-0.365399\pi\)
0.410373 + 0.911918i \(0.365399\pi\)
\(390\) −16.1981 −0.820223
\(391\) −17.4706 −0.883527
\(392\) 2.80058 0.141451
\(393\) 8.84530 0.446187
\(394\) −8.41750 −0.424068
\(395\) 56.5430 2.84499
\(396\) 8.04910 0.404483
\(397\) 20.4509 1.02640 0.513201 0.858269i \(-0.328460\pi\)
0.513201 + 0.858269i \(0.328460\pi\)
\(398\) −13.9900 −0.701255
\(399\) 2.56012 0.128167
\(400\) 0.983618 0.0491809
\(401\) −19.6918 −0.983359 −0.491680 0.870776i \(-0.663617\pi\)
−0.491680 + 0.870776i \(0.663617\pi\)
\(402\) −8.79010 −0.438410
\(403\) −4.44050 −0.221197
\(404\) 22.3211 1.11051
\(405\) −3.59592 −0.178683
\(406\) 7.02996 0.348891
\(407\) 11.8842 0.589076
\(408\) −15.4214 −0.763471
\(409\) −16.8029 −0.830852 −0.415426 0.909627i \(-0.636367\pi\)
−0.415426 + 0.909627i \(0.636367\pi\)
\(410\) 38.2197 1.88754
\(411\) −19.9387 −0.983505
\(412\) 2.61068 0.128619
\(413\) −14.3700 −0.707101
\(414\) 2.72259 0.133808
\(415\) 38.8876 1.90892
\(416\) −29.9612 −1.46897
\(417\) −19.1611 −0.938323
\(418\) −13.9938 −0.684459
\(419\) −17.0909 −0.834944 −0.417472 0.908690i \(-0.637084\pi\)
−0.417472 + 0.908690i \(0.637084\pi\)
\(420\) −4.54392 −0.221721
\(421\) −14.1586 −0.690047 −0.345024 0.938594i \(-0.612129\pi\)
−0.345024 + 0.938594i \(0.612129\pi\)
\(422\) −15.7832 −0.768315
\(423\) 0.370523 0.0180154
\(424\) −13.9493 −0.677438
\(425\) 43.6701 2.11831
\(426\) −3.55108 −0.172050
\(427\) 8.91417 0.431387
\(428\) −7.12102 −0.344208
\(429\) 33.4375 1.61438
\(430\) 10.0353 0.483947
\(431\) 33.0440 1.59167 0.795837 0.605511i \(-0.207031\pi\)
0.795837 + 0.605511i \(0.207031\pi\)
\(432\) −0.124027 −0.00596726
\(433\) −18.9572 −0.911025 −0.455512 0.890229i \(-0.650544\pi\)
−0.455512 + 0.890229i \(0.650544\pi\)
\(434\) 0.725894 0.0348440
\(435\) −29.4588 −1.41244
\(436\) −14.2249 −0.681248
\(437\) 8.12261 0.388557
\(438\) −0.813714 −0.0388807
\(439\) 34.6634 1.65439 0.827196 0.561914i \(-0.189935\pi\)
0.827196 + 0.561914i \(0.189935\pi\)
\(440\) 64.1485 3.05816
\(441\) 1.00000 0.0476190
\(442\) −24.8044 −1.17982
\(443\) 26.9689 1.28133 0.640665 0.767821i \(-0.278659\pi\)
0.640665 + 0.767821i \(0.278659\pi\)
\(444\) −2.35755 −0.111885
\(445\) −1.08905 −0.0516259
\(446\) 17.3315 0.820672
\(447\) −4.94804 −0.234034
\(448\) 4.64975 0.219680
\(449\) −14.1238 −0.666544 −0.333272 0.942831i \(-0.608153\pi\)
−0.333272 + 0.942831i \(0.608153\pi\)
\(450\) −6.80546 −0.320812
\(451\) −78.8963 −3.71508
\(452\) 0.643455 0.0302656
\(453\) 9.32633 0.438189
\(454\) 0.858119 0.0402735
\(455\) −18.8763 −0.884935
\(456\) 7.16984 0.335759
\(457\) 0.734288 0.0343485 0.0171743 0.999853i \(-0.494533\pi\)
0.0171743 + 0.999853i \(0.494533\pi\)
\(458\) −8.63919 −0.403683
\(459\) −5.50648 −0.257020
\(460\) −14.4167 −0.672181
\(461\) −14.0614 −0.654903 −0.327451 0.944868i \(-0.606190\pi\)
−0.327451 + 0.944868i \(0.606190\pi\)
\(462\) −5.46606 −0.254304
\(463\) 32.2080 1.49683 0.748416 0.663229i \(-0.230814\pi\)
0.748416 + 0.663229i \(0.230814\pi\)
\(464\) −1.01607 −0.0471697
\(465\) −3.04184 −0.141062
\(466\) −11.1433 −0.516204
\(467\) −27.4513 −1.27029 −0.635147 0.772392i \(-0.719060\pi\)
−0.635147 + 0.772392i \(0.719060\pi\)
\(468\) −6.63326 −0.306622
\(469\) −10.2434 −0.472998
\(470\) 1.14333 0.0527381
\(471\) 17.8217 0.821179
\(472\) −40.2444 −1.85240
\(473\) −20.7158 −0.952513
\(474\) −13.4932 −0.619764
\(475\) −20.3035 −0.931588
\(476\) −6.95816 −0.318927
\(477\) −4.98085 −0.228057
\(478\) 13.7594 0.629341
\(479\) 25.9579 1.18605 0.593023 0.805186i \(-0.297934\pi\)
0.593023 + 0.805186i \(0.297934\pi\)
\(480\) −20.5241 −0.936792
\(481\) −9.79372 −0.446555
\(482\) −19.8963 −0.906250
\(483\) 3.17274 0.144365
\(484\) −37.3714 −1.69870
\(485\) 51.7301 2.34894
\(486\) 0.858119 0.0389251
\(487\) −3.06321 −0.138807 −0.0694037 0.997589i \(-0.522110\pi\)
−0.0694037 + 0.997589i \(0.522110\pi\)
\(488\) 24.9649 1.13011
\(489\) 11.9029 0.538268
\(490\) 3.08573 0.139399
\(491\) 10.9237 0.492981 0.246491 0.969145i \(-0.420723\pi\)
0.246491 + 0.969145i \(0.420723\pi\)
\(492\) 15.6513 0.705615
\(493\) −45.1106 −2.03168
\(494\) 11.5323 0.518862
\(495\) 22.9054 1.02952
\(496\) −0.104916 −0.00471087
\(497\) −4.13821 −0.185624
\(498\) −9.28001 −0.415847
\(499\) 22.8497 1.02289 0.511447 0.859315i \(-0.329110\pi\)
0.511447 + 0.859315i \(0.329110\pi\)
\(500\) 13.3167 0.595542
\(501\) −11.7249 −0.523829
\(502\) −16.2845 −0.726814
\(503\) −15.8780 −0.707963 −0.353981 0.935252i \(-0.615172\pi\)
−0.353981 + 0.935252i \(0.615172\pi\)
\(504\) 2.80058 0.124748
\(505\) 63.5192 2.82657
\(506\) −17.3424 −0.770964
\(507\) −14.5558 −0.646445
\(508\) 15.5120 0.688233
\(509\) −20.6645 −0.915936 −0.457968 0.888969i \(-0.651423\pi\)
−0.457968 + 0.888969i \(0.651423\pi\)
\(510\) −16.9915 −0.752397
\(511\) −0.948252 −0.0419482
\(512\) −1.40259 −0.0619865
\(513\) 2.56012 0.113032
\(514\) −13.9926 −0.617187
\(515\) 7.42923 0.327371
\(516\) 4.10955 0.180913
\(517\) −2.36016 −0.103800
\(518\) 1.60099 0.0703435
\(519\) −1.43439 −0.0629627
\(520\) −52.8647 −2.31827
\(521\) 5.80196 0.254189 0.127094 0.991891i \(-0.459435\pi\)
0.127094 + 0.991891i \(0.459435\pi\)
\(522\) 7.02996 0.307693
\(523\) 23.1217 1.01104 0.505521 0.862814i \(-0.331300\pi\)
0.505521 + 0.862814i \(0.331300\pi\)
\(524\) 11.1772 0.488278
\(525\) −7.93067 −0.346123
\(526\) −20.9933 −0.915353
\(527\) −4.65800 −0.202906
\(528\) 0.790030 0.0343817
\(529\) −12.9337 −0.562336
\(530\) −15.3696 −0.667611
\(531\) −14.3700 −0.623604
\(532\) 3.23505 0.140257
\(533\) 65.0184 2.81626
\(534\) 0.259887 0.0112464
\(535\) −20.2643 −0.876104
\(536\) −28.6876 −1.23912
\(537\) 2.95643 0.127579
\(538\) 10.4584 0.450896
\(539\) −6.36982 −0.274367
\(540\) −4.54392 −0.195539
\(541\) 26.4987 1.13927 0.569635 0.821898i \(-0.307085\pi\)
0.569635 + 0.821898i \(0.307085\pi\)
\(542\) 17.6238 0.757008
\(543\) −12.0629 −0.517667
\(544\) −31.4288 −1.34750
\(545\) −40.4798 −1.73396
\(546\) 4.50458 0.192778
\(547\) −25.9856 −1.11106 −0.555531 0.831496i \(-0.687485\pi\)
−0.555531 + 0.831496i \(0.687485\pi\)
\(548\) −25.1952 −1.07629
\(549\) 8.91417 0.380448
\(550\) 43.3495 1.84843
\(551\) 20.9733 0.893491
\(552\) 8.88553 0.378193
\(553\) −15.7242 −0.668660
\(554\) 2.98620 0.126871
\(555\) −6.70891 −0.284777
\(556\) −24.2126 −1.02684
\(557\) −23.1885 −0.982529 −0.491264 0.871010i \(-0.663465\pi\)
−0.491264 + 0.871010i \(0.663465\pi\)
\(558\) 0.725894 0.0307295
\(559\) 17.0719 0.722063
\(560\) −0.445992 −0.0188466
\(561\) 35.0753 1.48088
\(562\) −0.544465 −0.0229668
\(563\) 36.7706 1.54970 0.774848 0.632148i \(-0.217826\pi\)
0.774848 + 0.632148i \(0.217826\pi\)
\(564\) 0.468205 0.0197150
\(565\) 1.83109 0.0770343
\(566\) −6.47100 −0.271997
\(567\) 1.00000 0.0419961
\(568\) −11.5894 −0.486281
\(569\) 6.33929 0.265757 0.132878 0.991132i \(-0.457578\pi\)
0.132878 + 0.991132i \(0.457578\pi\)
\(570\) 7.89986 0.330889
\(571\) −17.4718 −0.731174 −0.365587 0.930777i \(-0.619132\pi\)
−0.365587 + 0.930777i \(0.619132\pi\)
\(572\) 42.2526 1.76667
\(573\) 4.31775 0.180376
\(574\) −10.6286 −0.443630
\(575\) −25.1620 −1.04933
\(576\) 4.64975 0.193739
\(577\) 28.8297 1.20020 0.600098 0.799926i \(-0.295128\pi\)
0.600098 + 0.799926i \(0.295128\pi\)
\(578\) −11.4313 −0.475478
\(579\) −7.47287 −0.310562
\(580\) −37.2251 −1.54569
\(581\) −10.8144 −0.448655
\(582\) −12.3447 −0.511705
\(583\) 31.7271 1.31400
\(584\) −2.65566 −0.109892
\(585\) −18.8763 −0.780439
\(586\) −15.4800 −0.639471
\(587\) 29.1005 1.20111 0.600554 0.799584i \(-0.294947\pi\)
0.600554 + 0.799584i \(0.294947\pi\)
\(588\) 1.26363 0.0521113
\(589\) 2.16564 0.0892337
\(590\) −44.3419 −1.82553
\(591\) −9.80925 −0.403498
\(592\) −0.231397 −0.00951037
\(593\) −8.55688 −0.351389 −0.175694 0.984445i \(-0.556217\pi\)
−0.175694 + 0.984445i \(0.556217\pi\)
\(594\) −5.46606 −0.224275
\(595\) −19.8009 −0.811757
\(596\) −6.25249 −0.256112
\(597\) −16.3031 −0.667241
\(598\) 14.2919 0.584437
\(599\) 15.6349 0.638823 0.319412 0.947616i \(-0.396515\pi\)
0.319412 + 0.947616i \(0.396515\pi\)
\(600\) −22.2105 −0.906740
\(601\) 10.3561 0.422433 0.211216 0.977439i \(-0.432258\pi\)
0.211216 + 0.977439i \(0.432258\pi\)
\(602\) −2.79076 −0.113743
\(603\) −10.2434 −0.417145
\(604\) 11.7850 0.479527
\(605\) −106.348 −4.32366
\(606\) −15.1580 −0.615752
\(607\) 38.7606 1.57324 0.786621 0.617436i \(-0.211829\pi\)
0.786621 + 0.617436i \(0.211829\pi\)
\(608\) 14.6122 0.592601
\(609\) 8.19228 0.331968
\(610\) 27.5067 1.11372
\(611\) 1.94501 0.0786866
\(612\) −6.95816 −0.281267
\(613\) −3.92855 −0.158673 −0.0793363 0.996848i \(-0.525280\pi\)
−0.0793363 + 0.996848i \(0.525280\pi\)
\(614\) 5.74798 0.231970
\(615\) 44.5390 1.79598
\(616\) −17.8392 −0.718762
\(617\) 14.3173 0.576391 0.288196 0.957572i \(-0.406945\pi\)
0.288196 + 0.957572i \(0.406945\pi\)
\(618\) −1.77289 −0.0713160
\(619\) 28.2618 1.13594 0.567968 0.823050i \(-0.307730\pi\)
0.567968 + 0.823050i \(0.307730\pi\)
\(620\) −3.84376 −0.154369
\(621\) 3.17274 0.127318
\(622\) −10.7365 −0.430493
\(623\) 0.302857 0.0121337
\(624\) −0.651063 −0.0260634
\(625\) −1.75784 −0.0703134
\(626\) 28.9837 1.15842
\(627\) −16.3075 −0.651260
\(628\) 22.5200 0.898646
\(629\) −10.2734 −0.409628
\(630\) 3.08573 0.122938
\(631\) 23.9782 0.954559 0.477279 0.878752i \(-0.341623\pi\)
0.477279 + 0.878752i \(0.341623\pi\)
\(632\) −44.0369 −1.75169
\(633\) −18.3928 −0.731048
\(634\) 11.2070 0.445089
\(635\) 44.1426 1.75174
\(636\) −6.29396 −0.249572
\(637\) 5.24936 0.207987
\(638\) −44.7795 −1.77284
\(639\) −4.13821 −0.163705
\(640\) −26.7003 −1.05542
\(641\) 33.3309 1.31649 0.658246 0.752803i \(-0.271299\pi\)
0.658246 + 0.752803i \(0.271299\pi\)
\(642\) 4.83581 0.190854
\(643\) −5.44038 −0.214548 −0.107274 0.994230i \(-0.534212\pi\)
−0.107274 + 0.994230i \(0.534212\pi\)
\(644\) 4.00917 0.157984
\(645\) 11.6946 0.460474
\(646\) 12.0971 0.475955
\(647\) −44.8436 −1.76298 −0.881491 0.472200i \(-0.843460\pi\)
−0.881491 + 0.472200i \(0.843460\pi\)
\(648\) 2.80058 0.110017
\(649\) 91.5342 3.59303
\(650\) −35.7243 −1.40122
\(651\) 0.845913 0.0331539
\(652\) 15.0409 0.589047
\(653\) −28.7870 −1.12652 −0.563262 0.826279i \(-0.690454\pi\)
−0.563262 + 0.826279i \(0.690454\pi\)
\(654\) 9.65997 0.377735
\(655\) 31.8070 1.24280
\(656\) 1.53620 0.0599784
\(657\) −0.948252 −0.0369949
\(658\) −0.317953 −0.0123951
\(659\) 4.33009 0.168676 0.0843382 0.996437i \(-0.473122\pi\)
0.0843382 + 0.996437i \(0.473122\pi\)
\(660\) 28.9440 1.12664
\(661\) −0.750752 −0.0292009 −0.0146004 0.999893i \(-0.504648\pi\)
−0.0146004 + 0.999893i \(0.504648\pi\)
\(662\) −2.47695 −0.0962695
\(663\) −28.9055 −1.12260
\(664\) −30.2865 −1.17535
\(665\) 9.20601 0.356994
\(666\) 1.60099 0.0620371
\(667\) 25.9920 1.00641
\(668\) −14.8159 −0.573245
\(669\) 20.1971 0.780865
\(670\) −31.6085 −1.22114
\(671\) −56.7816 −2.19203
\(672\) 5.70760 0.220175
\(673\) −41.0075 −1.58072 −0.790361 0.612641i \(-0.790107\pi\)
−0.790361 + 0.612641i \(0.790107\pi\)
\(674\) −24.1508 −0.930255
\(675\) −7.93067 −0.305252
\(676\) −18.3931 −0.707429
\(677\) −46.3125 −1.77993 −0.889967 0.456024i \(-0.849273\pi\)
−0.889967 + 0.456024i \(0.849273\pi\)
\(678\) −0.436964 −0.0167815
\(679\) −14.3858 −0.552075
\(680\) −55.4540 −2.12656
\(681\) 1.00000 0.0383201
\(682\) −4.62381 −0.177055
\(683\) 14.3392 0.548674 0.274337 0.961634i \(-0.411542\pi\)
0.274337 + 0.961634i \(0.411542\pi\)
\(684\) 3.23505 0.123695
\(685\) −71.6982 −2.73945
\(686\) −0.858119 −0.0327631
\(687\) −10.0676 −0.384102
\(688\) 0.403358 0.0153779
\(689\) −26.1463 −0.996094
\(690\) 9.79022 0.372707
\(691\) 8.89038 0.338206 0.169103 0.985598i \(-0.445913\pi\)
0.169103 + 0.985598i \(0.445913\pi\)
\(692\) −1.81254 −0.0689024
\(693\) −6.36982 −0.241969
\(694\) 0.152906 0.00580423
\(695\) −68.9019 −2.61360
\(696\) 22.9432 0.869659
\(697\) 68.2030 2.58337
\(698\) 7.72010 0.292210
\(699\) −12.9857 −0.491166
\(700\) −10.0214 −0.378775
\(701\) 39.1656 1.47927 0.739633 0.673011i \(-0.234999\pi\)
0.739633 + 0.673011i \(0.234999\pi\)
\(702\) 4.50458 0.170014
\(703\) 4.77642 0.180146
\(704\) −29.6180 −1.11627
\(705\) 1.33237 0.0501801
\(706\) 13.0810 0.492311
\(707\) −17.6642 −0.664332
\(708\) −18.1584 −0.682433
\(709\) −13.8617 −0.520586 −0.260293 0.965530i \(-0.583819\pi\)
−0.260293 + 0.965530i \(0.583819\pi\)
\(710\) −12.7694 −0.479228
\(711\) −15.7242 −0.589703
\(712\) 0.848176 0.0317867
\(713\) 2.68386 0.100511
\(714\) 4.72521 0.176837
\(715\) 120.239 4.49667
\(716\) 3.73584 0.139615
\(717\) 16.0344 0.598815
\(718\) −2.43691 −0.0909446
\(719\) −23.0610 −0.860031 −0.430016 0.902821i \(-0.641492\pi\)
−0.430016 + 0.902821i \(0.641492\pi\)
\(720\) −0.445992 −0.0166212
\(721\) −2.06602 −0.0769424
\(722\) 10.6799 0.397467
\(723\) −23.1859 −0.862293
\(724\) −15.2430 −0.566502
\(725\) −64.9703 −2.41294
\(726\) 25.3785 0.941885
\(727\) −3.35089 −0.124278 −0.0621388 0.998068i \(-0.519792\pi\)
−0.0621388 + 0.998068i \(0.519792\pi\)
\(728\) 14.7013 0.544866
\(729\) 1.00000 0.0370370
\(730\) −2.92605 −0.108298
\(731\) 17.9080 0.662353
\(732\) 11.2642 0.416338
\(733\) −32.0853 −1.18510 −0.592549 0.805534i \(-0.701878\pi\)
−0.592549 + 0.805534i \(0.701878\pi\)
\(734\) −2.05083 −0.0756976
\(735\) 3.59592 0.132638
\(736\) 18.1087 0.667497
\(737\) 65.2489 2.40347
\(738\) −10.6286 −0.391245
\(739\) 15.4100 0.566866 0.283433 0.958992i \(-0.408527\pi\)
0.283433 + 0.958992i \(0.408527\pi\)
\(740\) −8.47758 −0.311642
\(741\) 13.4390 0.493695
\(742\) 4.27416 0.156909
\(743\) 40.0262 1.46842 0.734210 0.678923i \(-0.237553\pi\)
0.734210 + 0.678923i \(0.237553\pi\)
\(744\) 2.36905 0.0868536
\(745\) −17.7928 −0.651876
\(746\) −6.88552 −0.252097
\(747\) −10.8144 −0.395677
\(748\) 44.3222 1.62058
\(749\) 5.63536 0.205912
\(750\) −9.04326 −0.330213
\(751\) 21.0935 0.769712 0.384856 0.922977i \(-0.374251\pi\)
0.384856 + 0.922977i \(0.374251\pi\)
\(752\) 0.0459549 0.00167580
\(753\) −18.9770 −0.691560
\(754\) 36.9028 1.34392
\(755\) 33.5368 1.22053
\(756\) 1.26363 0.0459578
\(757\) −35.6810 −1.29685 −0.648424 0.761279i \(-0.724572\pi\)
−0.648424 + 0.761279i \(0.724572\pi\)
\(758\) −9.92484 −0.360486
\(759\) −20.2098 −0.733568
\(760\) 25.7822 0.935219
\(761\) −20.3509 −0.737721 −0.368860 0.929485i \(-0.620252\pi\)
−0.368860 + 0.929485i \(0.620252\pi\)
\(762\) −10.5340 −0.381608
\(763\) 11.2571 0.407536
\(764\) 5.45604 0.197393
\(765\) −19.8009 −0.715902
\(766\) 29.2547 1.05701
\(767\) −75.4332 −2.72374
\(768\) 15.6712 0.565485
\(769\) −31.9317 −1.15149 −0.575744 0.817630i \(-0.695287\pi\)
−0.575744 + 0.817630i \(0.695287\pi\)
\(770\) −19.6555 −0.708337
\(771\) −16.3061 −0.587251
\(772\) −9.44295 −0.339859
\(773\) −1.49574 −0.0537980 −0.0268990 0.999638i \(-0.508563\pi\)
−0.0268990 + 0.999638i \(0.508563\pi\)
\(774\) −2.79076 −0.100312
\(775\) −6.70865 −0.240982
\(776\) −40.2886 −1.44628
\(777\) 1.86570 0.0669315
\(778\) −13.8909 −0.498013
\(779\) −31.7096 −1.13611
\(780\) −23.8527 −0.854063
\(781\) 26.3597 0.943223
\(782\) 14.9919 0.536108
\(783\) 8.19228 0.292768
\(784\) 0.124027 0.00442954
\(785\) 64.0853 2.28730
\(786\) −7.59033 −0.270738
\(787\) 20.9446 0.746595 0.373298 0.927712i \(-0.378227\pi\)
0.373298 + 0.927712i \(0.378227\pi\)
\(788\) −12.3953 −0.441563
\(789\) −24.4644 −0.870954
\(790\) −48.5206 −1.72629
\(791\) −0.509211 −0.0181055
\(792\) −17.8392 −0.633889
\(793\) 46.7937 1.66169
\(794\) −17.5493 −0.622802
\(795\) −17.9108 −0.635229
\(796\) −20.6011 −0.730186
\(797\) −18.2914 −0.647915 −0.323957 0.946072i \(-0.605013\pi\)
−0.323957 + 0.946072i \(0.605013\pi\)
\(798\) −2.19689 −0.0777691
\(799\) 2.04028 0.0721798
\(800\) −45.2651 −1.60036
\(801\) 0.302857 0.0107009
\(802\) 16.8979 0.596685
\(803\) 6.04020 0.213154
\(804\) −12.9439 −0.456498
\(805\) 11.4089 0.402112
\(806\) 3.81048 0.134218
\(807\) 12.1876 0.429025
\(808\) −49.4702 −1.74035
\(809\) −21.6360 −0.760682 −0.380341 0.924846i \(-0.624193\pi\)
−0.380341 + 0.924846i \(0.624193\pi\)
\(810\) 3.08573 0.108422
\(811\) −11.2153 −0.393823 −0.196912 0.980421i \(-0.563091\pi\)
−0.196912 + 0.980421i \(0.563091\pi\)
\(812\) 10.3520 0.363285
\(813\) 20.5377 0.720289
\(814\) −10.1980 −0.357440
\(815\) 42.8020 1.49929
\(816\) −0.682953 −0.0239081
\(817\) −8.32598 −0.291289
\(818\) 14.4189 0.504146
\(819\) 5.24936 0.183427
\(820\) 56.2808 1.96541
\(821\) 10.5172 0.367052 0.183526 0.983015i \(-0.441249\pi\)
0.183526 + 0.983015i \(0.441249\pi\)
\(822\) 17.1098 0.596773
\(823\) 6.05346 0.211010 0.105505 0.994419i \(-0.466354\pi\)
0.105505 + 0.994419i \(0.466354\pi\)
\(824\) −5.78605 −0.201567
\(825\) 50.5169 1.75877
\(826\) 12.3312 0.429056
\(827\) −20.6206 −0.717047 −0.358524 0.933521i \(-0.616720\pi\)
−0.358524 + 0.933521i \(0.616720\pi\)
\(828\) 4.00917 0.139328
\(829\) 13.7155 0.476357 0.238179 0.971221i \(-0.423450\pi\)
0.238179 + 0.971221i \(0.423450\pi\)
\(830\) −33.3702 −1.15830
\(831\) 3.47993 0.120717
\(832\) 24.4082 0.846202
\(833\) 5.50648 0.190788
\(834\) 16.4425 0.569357
\(835\) −42.1617 −1.45907
\(836\) −20.6067 −0.712698
\(837\) 0.845913 0.0292390
\(838\) 14.6660 0.506629
\(839\) −16.2868 −0.562282 −0.281141 0.959667i \(-0.590713\pi\)
−0.281141 + 0.959667i \(0.590713\pi\)
\(840\) 10.0707 0.347472
\(841\) 38.1135 1.31426
\(842\) 12.1498 0.418708
\(843\) −0.634486 −0.0218529
\(844\) −23.2417 −0.800013
\(845\) −52.3415 −1.80060
\(846\) −0.317953 −0.0109314
\(847\) 29.5746 1.01619
\(848\) −0.617761 −0.0212140
\(849\) −7.54092 −0.258804
\(850\) −37.4741 −1.28535
\(851\) 5.91937 0.202914
\(852\) −5.22918 −0.179149
\(853\) 29.2972 1.00312 0.501559 0.865123i \(-0.332760\pi\)
0.501559 + 0.865123i \(0.332760\pi\)
\(854\) −7.64942 −0.261758
\(855\) 9.20601 0.314839
\(856\) 15.7823 0.539428
\(857\) 2.04384 0.0698164 0.0349082 0.999391i \(-0.488886\pi\)
0.0349082 + 0.999391i \(0.488886\pi\)
\(858\) −28.6933 −0.979574
\(859\) 47.7055 1.62769 0.813846 0.581081i \(-0.197370\pi\)
0.813846 + 0.581081i \(0.197370\pi\)
\(860\) 14.7776 0.503914
\(861\) −12.3860 −0.422112
\(862\) −28.3557 −0.965799
\(863\) 56.9590 1.93891 0.969454 0.245272i \(-0.0788774\pi\)
0.969454 + 0.245272i \(0.0788774\pi\)
\(864\) 5.70760 0.194176
\(865\) −5.15795 −0.175376
\(866\) 16.2675 0.552793
\(867\) −13.3213 −0.452415
\(868\) 1.06892 0.0362816
\(869\) 100.160 3.39770
\(870\) 25.2792 0.857045
\(871\) −53.7715 −1.82198
\(872\) 31.5266 1.06762
\(873\) −14.3858 −0.486885
\(874\) −6.97017 −0.235769
\(875\) −10.5385 −0.356265
\(876\) −1.19824 −0.0404848
\(877\) 42.4335 1.43288 0.716439 0.697650i \(-0.245771\pi\)
0.716439 + 0.697650i \(0.245771\pi\)
\(878\) −29.7453 −1.00385
\(879\) −18.0394 −0.608454
\(880\) 2.84089 0.0957664
\(881\) 25.3379 0.853657 0.426828 0.904333i \(-0.359631\pi\)
0.426828 + 0.904333i \(0.359631\pi\)
\(882\) −0.858119 −0.0288944
\(883\) 16.0388 0.539749 0.269875 0.962895i \(-0.413018\pi\)
0.269875 + 0.962895i \(0.413018\pi\)
\(884\) −36.5259 −1.22850
\(885\) −51.6734 −1.73698
\(886\) −23.1425 −0.777487
\(887\) 38.3214 1.28671 0.643353 0.765569i \(-0.277543\pi\)
0.643353 + 0.765569i \(0.277543\pi\)
\(888\) 5.22504 0.175341
\(889\) −12.2757 −0.411714
\(890\) 0.934534 0.0313257
\(891\) −6.36982 −0.213397
\(892\) 25.5217 0.854530
\(893\) −0.948585 −0.0317432
\(894\) 4.24601 0.142008
\(895\) 10.6311 0.355358
\(896\) 7.42516 0.248057
\(897\) 16.6549 0.556089
\(898\) 12.1199 0.404447
\(899\) 6.92995 0.231127
\(900\) −10.0214 −0.334048
\(901\) −27.4269 −0.913724
\(902\) 67.7024 2.25424
\(903\) −3.25218 −0.108226
\(904\) −1.42609 −0.0474310
\(905\) −43.3771 −1.44190
\(906\) −8.00310 −0.265885
\(907\) 16.8323 0.558906 0.279453 0.960159i \(-0.409847\pi\)
0.279453 + 0.960159i \(0.409847\pi\)
\(908\) 1.26363 0.0419351
\(909\) −17.6642 −0.585886
\(910\) 16.1981 0.536962
\(911\) −49.4625 −1.63877 −0.819383 0.573247i \(-0.805683\pi\)
−0.819383 + 0.573247i \(0.805683\pi\)
\(912\) 0.317525 0.0105143
\(913\) 68.8855 2.27978
\(914\) −0.630107 −0.0208421
\(915\) 32.0547 1.05969
\(916\) −12.7217 −0.420337
\(917\) −8.84530 −0.292098
\(918\) 4.72521 0.155955
\(919\) 17.8441 0.588623 0.294311 0.955710i \(-0.404910\pi\)
0.294311 + 0.955710i \(0.404910\pi\)
\(920\) 31.9517 1.05342
\(921\) 6.69835 0.220718
\(922\) 12.0663 0.397383
\(923\) −21.7230 −0.715021
\(924\) −8.04910 −0.264796
\(925\) −14.7962 −0.486497
\(926\) −27.6383 −0.908251
\(927\) −2.06602 −0.0678569
\(928\) 46.7583 1.53492
\(929\) 36.7677 1.20631 0.603154 0.797625i \(-0.293910\pi\)
0.603154 + 0.797625i \(0.293910\pi\)
\(930\) 2.61026 0.0855938
\(931\) −2.56012 −0.0839047
\(932\) −16.4092 −0.537501
\(933\) −12.5116 −0.409612
\(934\) 23.5565 0.770791
\(935\) 126.128 4.12483
\(936\) 14.7013 0.480526
\(937\) −0.818637 −0.0267437 −0.0133718 0.999911i \(-0.504257\pi\)
−0.0133718 + 0.999911i \(0.504257\pi\)
\(938\) 8.79010 0.287007
\(939\) 33.7758 1.10223
\(940\) 1.68363 0.0549139
\(941\) −12.6648 −0.412860 −0.206430 0.978461i \(-0.566185\pi\)
−0.206430 + 0.978461i \(0.566185\pi\)
\(942\) −15.2931 −0.498276
\(943\) −39.2974 −1.27970
\(944\) −1.78227 −0.0580079
\(945\) 3.59592 0.116975
\(946\) 17.7766 0.577967
\(947\) −40.6386 −1.32058 −0.660289 0.751011i \(-0.729566\pi\)
−0.660289 + 0.751011i \(0.729566\pi\)
\(948\) −19.8696 −0.645334
\(949\) −4.97772 −0.161584
\(950\) 17.4228 0.565271
\(951\) 13.0600 0.423500
\(952\) 15.4214 0.499809
\(953\) 54.6442 1.77010 0.885049 0.465498i \(-0.154125\pi\)
0.885049 + 0.465498i \(0.154125\pi\)
\(954\) 4.27416 0.138381
\(955\) 15.5263 0.502419
\(956\) 20.2616 0.655305
\(957\) −52.1833 −1.68685
\(958\) −22.2750 −0.719671
\(959\) 19.9387 0.643855
\(960\) 16.7201 0.539640
\(961\) −30.2844 −0.976917
\(962\) 8.40418 0.270962
\(963\) 5.63536 0.181597
\(964\) −29.2984 −0.943639
\(965\) −26.8719 −0.865036
\(966\) −2.72259 −0.0875979
\(967\) −36.1505 −1.16252 −0.581261 0.813717i \(-0.697441\pi\)
−0.581261 + 0.813717i \(0.697441\pi\)
\(968\) 82.8261 2.66213
\(969\) 14.0973 0.452869
\(970\) −44.3906 −1.42530
\(971\) −5.60797 −0.179968 −0.0899842 0.995943i \(-0.528682\pi\)
−0.0899842 + 0.995943i \(0.528682\pi\)
\(972\) 1.26363 0.0405310
\(973\) 19.1611 0.614277
\(974\) 2.62860 0.0842258
\(975\) −41.6309 −1.33326
\(976\) 1.10560 0.0353894
\(977\) 24.8392 0.794677 0.397338 0.917672i \(-0.369934\pi\)
0.397338 + 0.917672i \(0.369934\pi\)
\(978\) −10.2141 −0.326611
\(979\) −1.92914 −0.0616556
\(980\) 4.54392 0.145150
\(981\) 11.2571 0.359413
\(982\) −9.37387 −0.299132
\(983\) 1.54871 0.0493961 0.0246980 0.999695i \(-0.492138\pi\)
0.0246980 + 0.999695i \(0.492138\pi\)
\(984\) −34.6879 −1.10581
\(985\) −35.2733 −1.12390
\(986\) 38.7103 1.23279
\(987\) −0.370523 −0.0117939
\(988\) 16.9820 0.540268
\(989\) −10.3183 −0.328103
\(990\) −19.6555 −0.624694
\(991\) 26.5102 0.842123 0.421061 0.907032i \(-0.361658\pi\)
0.421061 + 0.907032i \(0.361658\pi\)
\(992\) 4.82813 0.153293
\(993\) −2.88649 −0.0916000
\(994\) 3.55108 0.112633
\(995\) −58.6246 −1.85853
\(996\) −13.6654 −0.433004
\(997\) 32.8474 1.04029 0.520143 0.854079i \(-0.325878\pi\)
0.520143 + 0.854079i \(0.325878\pi\)
\(998\) −19.6078 −0.620674
\(999\) 1.86570 0.0590281
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4767.2.a.g.1.12 35
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4767.2.a.g.1.12 35 1.1 even 1 trivial