Properties

Label 4725.2.a.cc.1.4
Level $4725$
Weight $2$
Character 4725.1
Self dual yes
Analytic conductor $37.729$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4725,2,Mod(1,4725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4725 = 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,6,0,0,5,-3,0,0,-9,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7293149551\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.2161212.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} - x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 945)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.66057\) of defining polynomial
Character \(\chi\) \(=\) 4725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.66057 q^{2} +0.757487 q^{4} +1.00000 q^{7} -2.06328 q^{8} -4.48133 q^{11} +1.64522 q^{13} +1.66057 q^{14} -4.94119 q^{16} +3.24698 q^{17} +6.66503 q^{19} -7.44156 q^{22} -8.79528 q^{23} +2.73200 q^{26} +0.757487 q^{28} -9.08678 q^{29} +0.903081 q^{31} -4.07862 q^{32} +5.39183 q^{34} +1.50779 q^{37} +11.0677 q^{38} +4.51466 q^{41} -4.51466 q^{43} -3.39455 q^{44} -14.6052 q^{46} -3.86256 q^{47} +1.00000 q^{49} +1.24623 q^{52} -5.81910 q^{53} -2.06328 q^{56} -15.0892 q^{58} -6.21734 q^{59} +4.54461 q^{61} +1.49963 q^{62} +3.10954 q^{64} -13.5681 q^{67} +2.45954 q^{68} -8.00000 q^{71} +0.170766 q^{73} +2.50378 q^{74} +5.04868 q^{76} -4.48133 q^{77} -7.37353 q^{79} +7.49691 q^{82} +1.56124 q^{83} -7.49691 q^{86} +9.24623 q^{88} -14.9851 q^{89} +1.64522 q^{91} -6.66231 q^{92} -6.41405 q^{94} -13.3399 q^{97} +1.66057 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 6 q^{4} + 5 q^{7} - 3 q^{8} - 9 q^{11} + 7 q^{13} - 4 q^{16} - 14 q^{17} - 3 q^{19} - 5 q^{22} - 2 q^{23} - 21 q^{26} + 6 q^{28} - 12 q^{29} - 6 q^{31} - 6 q^{32} + 7 q^{34} + 20 q^{38} - 7 q^{41}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66057 1.17420 0.587100 0.809515i \(-0.300270\pi\)
0.587100 + 0.809515i \(0.300270\pi\)
\(3\) 0 0
\(4\) 0.757487 0.378743
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −2.06328 −0.729479
\(9\) 0 0
\(10\) 0 0
\(11\) −4.48133 −1.35117 −0.675586 0.737281i \(-0.736109\pi\)
−0.675586 + 0.737281i \(0.736109\pi\)
\(12\) 0 0
\(13\) 1.64522 0.456303 0.228151 0.973626i \(-0.426732\pi\)
0.228151 + 0.973626i \(0.426732\pi\)
\(14\) 1.66057 0.443806
\(15\) 0 0
\(16\) −4.94119 −1.23530
\(17\) 3.24698 0.787508 0.393754 0.919216i \(-0.371176\pi\)
0.393754 + 0.919216i \(0.371176\pi\)
\(18\) 0 0
\(19\) 6.66503 1.52906 0.764532 0.644586i \(-0.222970\pi\)
0.764532 + 0.644586i \(0.222970\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −7.44156 −1.58655
\(23\) −8.79528 −1.83394 −0.916972 0.398953i \(-0.869374\pi\)
−0.916972 + 0.398953i \(0.869374\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.73200 0.535790
\(27\) 0 0
\(28\) 0.757487 0.143152
\(29\) −9.08678 −1.68737 −0.843687 0.536836i \(-0.819619\pi\)
−0.843687 + 0.536836i \(0.819619\pi\)
\(30\) 0 0
\(31\) 0.903081 0.162198 0.0810991 0.996706i \(-0.474157\pi\)
0.0810991 + 0.996706i \(0.474157\pi\)
\(32\) −4.07862 −0.721006
\(33\) 0 0
\(34\) 5.39183 0.924691
\(35\) 0 0
\(36\) 0 0
\(37\) 1.50779 0.247879 0.123939 0.992290i \(-0.460447\pi\)
0.123939 + 0.992290i \(0.460447\pi\)
\(38\) 11.0677 1.79542
\(39\) 0 0
\(40\) 0 0
\(41\) 4.51466 0.705072 0.352536 0.935798i \(-0.385319\pi\)
0.352536 + 0.935798i \(0.385319\pi\)
\(42\) 0 0
\(43\) −4.51466 −0.688480 −0.344240 0.938882i \(-0.611863\pi\)
−0.344240 + 0.938882i \(0.611863\pi\)
\(44\) −3.39455 −0.511748
\(45\) 0 0
\(46\) −14.6052 −2.15341
\(47\) −3.86256 −0.563413 −0.281706 0.959501i \(-0.590900\pi\)
−0.281706 + 0.959501i \(0.590900\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 1.24623 0.172822
\(53\) −5.81910 −0.799314 −0.399657 0.916665i \(-0.630871\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.06328 −0.275717
\(57\) 0 0
\(58\) −15.0892 −1.98131
\(59\) −6.21734 −0.809429 −0.404714 0.914443i \(-0.632629\pi\)
−0.404714 + 0.914443i \(0.632629\pi\)
\(60\) 0 0
\(61\) 4.54461 0.581878 0.290939 0.956742i \(-0.406032\pi\)
0.290939 + 0.956742i \(0.406032\pi\)
\(62\) 1.49963 0.190453
\(63\) 0 0
\(64\) 3.10954 0.388693
\(65\) 0 0
\(66\) 0 0
\(67\) −13.5681 −1.65761 −0.828805 0.559538i \(-0.810978\pi\)
−0.828805 + 0.559538i \(0.810978\pi\)
\(68\) 2.45954 0.298263
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 0.170766 0.0199867 0.00999333 0.999950i \(-0.496819\pi\)
0.00999333 + 0.999950i \(0.496819\pi\)
\(74\) 2.50378 0.291059
\(75\) 0 0
\(76\) 5.04868 0.579123
\(77\) −4.48133 −0.510695
\(78\) 0 0
\(79\) −7.37353 −0.829587 −0.414794 0.909915i \(-0.636146\pi\)
−0.414794 + 0.909915i \(0.636146\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.49691 0.827895
\(83\) 1.56124 0.171368 0.0856841 0.996322i \(-0.472692\pi\)
0.0856841 + 0.996322i \(0.472692\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −7.49691 −0.808412
\(87\) 0 0
\(88\) 9.24623 0.985652
\(89\) −14.9851 −1.58842 −0.794210 0.607644i \(-0.792115\pi\)
−0.794210 + 0.607644i \(0.792115\pi\)
\(90\) 0 0
\(91\) 1.64522 0.172466
\(92\) −6.66231 −0.694594
\(93\) 0 0
\(94\) −6.41405 −0.661559
\(95\) 0 0
\(96\) 0 0
\(97\) −13.3399 −1.35446 −0.677230 0.735771i \(-0.736820\pi\)
−0.677230 + 0.735771i \(0.736820\pi\)
\(98\) 1.66057 0.167743
\(99\) 0 0
\(100\) 0 0
\(101\) −16.4042 −1.63228 −0.816141 0.577853i \(-0.803891\pi\)
−0.816141 + 0.577853i \(0.803891\pi\)
\(102\) 0 0
\(103\) 2.83611 0.279450 0.139725 0.990190i \(-0.455378\pi\)
0.139725 + 0.990190i \(0.455378\pi\)
\(104\) −3.39455 −0.332863
\(105\) 0 0
\(106\) −9.66301 −0.938554
\(107\) 13.3973 1.29517 0.647585 0.761993i \(-0.275779\pi\)
0.647585 + 0.761993i \(0.275779\pi\)
\(108\) 0 0
\(109\) 1.08103 0.103544 0.0517722 0.998659i \(-0.483513\pi\)
0.0517722 + 0.998659i \(0.483513\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.94119 −0.466898
\(113\) 20.1392 1.89453 0.947267 0.320444i \(-0.103832\pi\)
0.947267 + 0.320444i \(0.103832\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.88312 −0.639082
\(117\) 0 0
\(118\) −10.3243 −0.950431
\(119\) 3.24698 0.297650
\(120\) 0 0
\(121\) 9.08234 0.825668
\(122\) 7.54664 0.683240
\(123\) 0 0
\(124\) 0.684072 0.0614315
\(125\) 0 0
\(126\) 0 0
\(127\) −17.0012 −1.50862 −0.754308 0.656521i \(-0.772027\pi\)
−0.754308 + 0.656521i \(0.772027\pi\)
\(128\) 13.3209 1.17741
\(129\) 0 0
\(130\) 0 0
\(131\) 13.9723 1.22077 0.610385 0.792105i \(-0.291015\pi\)
0.610385 + 0.792105i \(0.291015\pi\)
\(132\) 0 0
\(133\) 6.66503 0.577932
\(134\) −22.5308 −1.94636
\(135\) 0 0
\(136\) −6.69942 −0.574470
\(137\) −7.69498 −0.657427 −0.328713 0.944430i \(-0.606615\pi\)
−0.328713 + 0.944430i \(0.606615\pi\)
\(138\) 0 0
\(139\) −15.9229 −1.35056 −0.675281 0.737561i \(-0.735978\pi\)
−0.675281 + 0.737561i \(0.735978\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −13.2845 −1.11481
\(143\) −7.37279 −0.616544
\(144\) 0 0
\(145\) 0 0
\(146\) 0.283569 0.0234683
\(147\) 0 0
\(148\) 1.14213 0.0938824
\(149\) 16.8638 1.38154 0.690768 0.723076i \(-0.257273\pi\)
0.690768 + 0.723076i \(0.257273\pi\)
\(150\) 0 0
\(151\) 16.2668 1.32377 0.661886 0.749604i \(-0.269756\pi\)
0.661886 + 0.749604i \(0.269756\pi\)
\(152\) −13.7518 −1.11542
\(153\) 0 0
\(154\) −7.44156 −0.599658
\(155\) 0 0
\(156\) 0 0
\(157\) 14.2093 1.13402 0.567011 0.823710i \(-0.308100\pi\)
0.567011 + 0.823710i \(0.308100\pi\)
\(158\) −12.2443 −0.974101
\(159\) 0 0
\(160\) 0 0
\(161\) −8.79528 −0.693165
\(162\) 0 0
\(163\) −15.8678 −1.24286 −0.621431 0.783469i \(-0.713448\pi\)
−0.621431 + 0.783469i \(0.713448\pi\)
\(164\) 3.41980 0.267041
\(165\) 0 0
\(166\) 2.59254 0.201220
\(167\) 3.74638 0.289904 0.144952 0.989439i \(-0.453697\pi\)
0.144952 + 0.989439i \(0.453697\pi\)
\(168\) 0 0
\(169\) −10.2932 −0.791788
\(170\) 0 0
\(171\) 0 0
\(172\) −3.41980 −0.260757
\(173\) −11.7490 −0.893261 −0.446631 0.894718i \(-0.647376\pi\)
−0.446631 + 0.894718i \(0.647376\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 22.1431 1.66910
\(177\) 0 0
\(178\) −24.8838 −1.86512
\(179\) −3.97300 −0.296956 −0.148478 0.988916i \(-0.547437\pi\)
−0.148478 + 0.988916i \(0.547437\pi\)
\(180\) 0 0
\(181\) 1.74420 0.129645 0.0648225 0.997897i \(-0.479352\pi\)
0.0648225 + 0.997897i \(0.479352\pi\)
\(182\) 2.73200 0.202510
\(183\) 0 0
\(184\) 18.1471 1.33782
\(185\) 0 0
\(186\) 0 0
\(187\) −14.5508 −1.06406
\(188\) −2.92584 −0.213389
\(189\) 0 0
\(190\) 0 0
\(191\) −16.7458 −1.21168 −0.605840 0.795586i \(-0.707163\pi\)
−0.605840 + 0.795586i \(0.707163\pi\)
\(192\) 0 0
\(193\) 2.01612 0.145123 0.0725617 0.997364i \(-0.476883\pi\)
0.0725617 + 0.997364i \(0.476883\pi\)
\(194\) −22.1518 −1.59041
\(195\) 0 0
\(196\) 0.757487 0.0541062
\(197\) 10.8371 0.772112 0.386056 0.922475i \(-0.373837\pi\)
0.386056 + 0.922475i \(0.373837\pi\)
\(198\) 0 0
\(199\) −15.4934 −1.09830 −0.549151 0.835723i \(-0.685049\pi\)
−0.549151 + 0.835723i \(0.685049\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −27.2403 −1.91662
\(203\) −9.08678 −0.637767
\(204\) 0 0
\(205\) 0 0
\(206\) 4.70955 0.328130
\(207\) 0 0
\(208\) −8.12935 −0.563669
\(209\) −29.8682 −2.06603
\(210\) 0 0
\(211\) −19.4661 −1.34010 −0.670052 0.742314i \(-0.733728\pi\)
−0.670052 + 0.742314i \(0.733728\pi\)
\(212\) −4.40789 −0.302735
\(213\) 0 0
\(214\) 22.2472 1.52079
\(215\) 0 0
\(216\) 0 0
\(217\) 0.903081 0.0613052
\(218\) 1.79513 0.121582
\(219\) 0 0
\(220\) 0 0
\(221\) 5.34200 0.359342
\(222\) 0 0
\(223\) 15.4468 1.03439 0.517197 0.855866i \(-0.326975\pi\)
0.517197 + 0.855866i \(0.326975\pi\)
\(224\) −4.07862 −0.272514
\(225\) 0 0
\(226\) 33.4425 2.22456
\(227\) −6.36402 −0.422395 −0.211197 0.977443i \(-0.567736\pi\)
−0.211197 + 0.977443i \(0.567736\pi\)
\(228\) 0 0
\(229\) 2.50892 0.165794 0.0828969 0.996558i \(-0.473583\pi\)
0.0828969 + 0.996558i \(0.473583\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 18.7486 1.23090
\(233\) −3.17651 −0.208100 −0.104050 0.994572i \(-0.533180\pi\)
−0.104050 + 0.994572i \(0.533180\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.70955 −0.306566
\(237\) 0 0
\(238\) 5.39183 0.349500
\(239\) 9.59511 0.620656 0.310328 0.950630i \(-0.399561\pi\)
0.310328 + 0.950630i \(0.399561\pi\)
\(240\) 0 0
\(241\) 13.5998 0.876040 0.438020 0.898965i \(-0.355680\pi\)
0.438020 + 0.898965i \(0.355680\pi\)
\(242\) 15.0819 0.969498
\(243\) 0 0
\(244\) 3.44248 0.220382
\(245\) 0 0
\(246\) 0 0
\(247\) 10.9655 0.697716
\(248\) −1.86331 −0.118320
\(249\) 0 0
\(250\) 0 0
\(251\) 3.43312 0.216697 0.108348 0.994113i \(-0.465444\pi\)
0.108348 + 0.994113i \(0.465444\pi\)
\(252\) 0 0
\(253\) 39.4146 2.47797
\(254\) −28.2317 −1.77141
\(255\) 0 0
\(256\) 15.9011 0.993819
\(257\) 9.36134 0.583945 0.291972 0.956427i \(-0.405689\pi\)
0.291972 + 0.956427i \(0.405689\pi\)
\(258\) 0 0
\(259\) 1.50779 0.0936893
\(260\) 0 0
\(261\) 0 0
\(262\) 23.2020 1.43343
\(263\) 4.12412 0.254304 0.127152 0.991883i \(-0.459416\pi\)
0.127152 + 0.991883i \(0.459416\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 11.0677 0.678607
\(267\) 0 0
\(268\) −10.2777 −0.627809
\(269\) 10.4705 0.638395 0.319197 0.947688i \(-0.396587\pi\)
0.319197 + 0.947688i \(0.396587\pi\)
\(270\) 0 0
\(271\) 16.7219 1.01578 0.507891 0.861422i \(-0.330425\pi\)
0.507891 + 0.861422i \(0.330425\pi\)
\(272\) −16.0439 −0.972806
\(273\) 0 0
\(274\) −12.7780 −0.771950
\(275\) 0 0
\(276\) 0 0
\(277\) 9.12011 0.547974 0.273987 0.961733i \(-0.411657\pi\)
0.273987 + 0.961733i \(0.411657\pi\)
\(278\) −26.4410 −1.58583
\(279\) 0 0
\(280\) 0 0
\(281\) −7.88720 −0.470511 −0.235255 0.971934i \(-0.575593\pi\)
−0.235255 + 0.971934i \(0.575593\pi\)
\(282\) 0 0
\(283\) −1.88738 −0.112193 −0.0560965 0.998425i \(-0.517865\pi\)
−0.0560965 + 0.998425i \(0.517865\pi\)
\(284\) −6.05990 −0.359589
\(285\) 0 0
\(286\) −12.2430 −0.723945
\(287\) 4.51466 0.266492
\(288\) 0 0
\(289\) −6.45713 −0.379831
\(290\) 0 0
\(291\) 0 0
\(292\) 0.129353 0.00756982
\(293\) 1.24698 0.0728492 0.0364246 0.999336i \(-0.488403\pi\)
0.0364246 + 0.999336i \(0.488403\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.11098 −0.180822
\(297\) 0 0
\(298\) 28.0035 1.62220
\(299\) −14.4702 −0.836833
\(300\) 0 0
\(301\) −4.51466 −0.260221
\(302\) 27.0121 1.55437
\(303\) 0 0
\(304\) −32.9332 −1.88885
\(305\) 0 0
\(306\) 0 0
\(307\) 28.1403 1.60605 0.803026 0.595944i \(-0.203222\pi\)
0.803026 + 0.595944i \(0.203222\pi\)
\(308\) −3.39455 −0.193423
\(309\) 0 0
\(310\) 0 0
\(311\) 14.2692 0.809134 0.404567 0.914508i \(-0.367422\pi\)
0.404567 + 0.914508i \(0.367422\pi\)
\(312\) 0 0
\(313\) 22.0743 1.24772 0.623858 0.781538i \(-0.285564\pi\)
0.623858 + 0.781538i \(0.285564\pi\)
\(314\) 23.5954 1.33157
\(315\) 0 0
\(316\) −5.58536 −0.314201
\(317\) 1.11016 0.0623530 0.0311765 0.999514i \(-0.490075\pi\)
0.0311765 + 0.999514i \(0.490075\pi\)
\(318\) 0 0
\(319\) 40.7209 2.27993
\(320\) 0 0
\(321\) 0 0
\(322\) −14.6052 −0.813914
\(323\) 21.6412 1.20415
\(324\) 0 0
\(325\) 0 0
\(326\) −26.3496 −1.45937
\(327\) 0 0
\(328\) −9.31500 −0.514335
\(329\) −3.86256 −0.212950
\(330\) 0 0
\(331\) −25.6641 −1.41063 −0.705314 0.708895i \(-0.749194\pi\)
−0.705314 + 0.708895i \(0.749194\pi\)
\(332\) 1.18262 0.0649046
\(333\) 0 0
\(334\) 6.22112 0.340404
\(335\) 0 0
\(336\) 0 0
\(337\) −29.7195 −1.61892 −0.809462 0.587173i \(-0.800241\pi\)
−0.809462 + 0.587173i \(0.800241\pi\)
\(338\) −17.0926 −0.929717
\(339\) 0 0
\(340\) 0 0
\(341\) −4.04701 −0.219158
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 9.31500 0.502231
\(345\) 0 0
\(346\) −19.5100 −1.04887
\(347\) 4.76490 0.255793 0.127897 0.991787i \(-0.459177\pi\)
0.127897 + 0.991787i \(0.459177\pi\)
\(348\) 0 0
\(349\) −28.4595 −1.52340 −0.761701 0.647929i \(-0.775635\pi\)
−0.761701 + 0.647929i \(0.775635\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18.2777 0.974203
\(353\) 2.24682 0.119586 0.0597931 0.998211i \(-0.480956\pi\)
0.0597931 + 0.998211i \(0.480956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −11.3510 −0.601603
\(357\) 0 0
\(358\) −6.59744 −0.348686
\(359\) −16.7919 −0.886243 −0.443121 0.896462i \(-0.646129\pi\)
−0.443121 + 0.896462i \(0.646129\pi\)
\(360\) 0 0
\(361\) 25.4227 1.33804
\(362\) 2.89636 0.152229
\(363\) 0 0
\(364\) 1.24623 0.0653204
\(365\) 0 0
\(366\) 0 0
\(367\) 24.0771 1.25682 0.628408 0.777884i \(-0.283707\pi\)
0.628408 + 0.777884i \(0.283707\pi\)
\(368\) 43.4591 2.26546
\(369\) 0 0
\(370\) 0 0
\(371\) −5.81910 −0.302112
\(372\) 0 0
\(373\) 4.89364 0.253383 0.126692 0.991942i \(-0.459564\pi\)
0.126692 + 0.991942i \(0.459564\pi\)
\(374\) −24.1626 −1.24942
\(375\) 0 0
\(376\) 7.96954 0.410998
\(377\) −14.9498 −0.769953
\(378\) 0 0
\(379\) −16.4390 −0.844414 −0.422207 0.906499i \(-0.638745\pi\)
−0.422207 + 0.906499i \(0.638745\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −27.8075 −1.42275
\(383\) 24.9874 1.27680 0.638398 0.769706i \(-0.279597\pi\)
0.638398 + 0.769706i \(0.279597\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.34790 0.170404
\(387\) 0 0
\(388\) −10.1048 −0.512993
\(389\) −0.217416 −0.0110234 −0.00551172 0.999985i \(-0.501754\pi\)
−0.00551172 + 0.999985i \(0.501754\pi\)
\(390\) 0 0
\(391\) −28.5581 −1.44424
\(392\) −2.06328 −0.104211
\(393\) 0 0
\(394\) 17.9958 0.906613
\(395\) 0 0
\(396\) 0 0
\(397\) 31.7330 1.59263 0.796316 0.604880i \(-0.206779\pi\)
0.796316 + 0.604880i \(0.206779\pi\)
\(398\) −25.7279 −1.28962
\(399\) 0 0
\(400\) 0 0
\(401\) −11.3618 −0.567383 −0.283691 0.958916i \(-0.591559\pi\)
−0.283691 + 0.958916i \(0.591559\pi\)
\(402\) 0 0
\(403\) 1.48577 0.0740115
\(404\) −12.4260 −0.618216
\(405\) 0 0
\(406\) −15.0892 −0.748865
\(407\) −6.75689 −0.334927
\(408\) 0 0
\(409\) −5.53886 −0.273879 −0.136940 0.990579i \(-0.543727\pi\)
−0.136940 + 0.990579i \(0.543727\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.14832 0.105840
\(413\) −6.21734 −0.305935
\(414\) 0 0
\(415\) 0 0
\(416\) −6.71024 −0.328997
\(417\) 0 0
\(418\) −49.5982 −2.42593
\(419\) −27.7747 −1.35688 −0.678440 0.734656i \(-0.737344\pi\)
−0.678440 + 0.734656i \(0.737344\pi\)
\(420\) 0 0
\(421\) 0.639289 0.0311570 0.0155785 0.999879i \(-0.495041\pi\)
0.0155785 + 0.999879i \(0.495041\pi\)
\(422\) −32.3248 −1.57355
\(423\) 0 0
\(424\) 12.0064 0.583083
\(425\) 0 0
\(426\) 0 0
\(427\) 4.54461 0.219929
\(428\) 10.1483 0.490537
\(429\) 0 0
\(430\) 0 0
\(431\) 11.0321 0.531399 0.265699 0.964056i \(-0.414397\pi\)
0.265699 + 0.964056i \(0.414397\pi\)
\(432\) 0 0
\(433\) 16.3489 0.785677 0.392838 0.919607i \(-0.371493\pi\)
0.392838 + 0.919607i \(0.371493\pi\)
\(434\) 1.49963 0.0719845
\(435\) 0 0
\(436\) 0.818870 0.0392167
\(437\) −58.6208 −2.80422
\(438\) 0 0
\(439\) 31.1015 1.48440 0.742198 0.670181i \(-0.233784\pi\)
0.742198 + 0.670181i \(0.233784\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 8.87076 0.421939
\(443\) 3.70111 0.175845 0.0879226 0.996127i \(-0.471977\pi\)
0.0879226 + 0.996127i \(0.471977\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 25.6505 1.21458
\(447\) 0 0
\(448\) 3.10954 0.146912
\(449\) 17.3869 0.820539 0.410269 0.911964i \(-0.365435\pi\)
0.410269 + 0.911964i \(0.365435\pi\)
\(450\) 0 0
\(451\) −20.2317 −0.952674
\(452\) 15.2552 0.717543
\(453\) 0 0
\(454\) −10.5679 −0.495976
\(455\) 0 0
\(456\) 0 0
\(457\) 14.1806 0.663338 0.331669 0.943396i \(-0.392388\pi\)
0.331669 + 0.943396i \(0.392388\pi\)
\(458\) 4.16623 0.194675
\(459\) 0 0
\(460\) 0 0
\(461\) −16.5364 −0.770178 −0.385089 0.922879i \(-0.625829\pi\)
−0.385089 + 0.922879i \(0.625829\pi\)
\(462\) 0 0
\(463\) 14.6216 0.679522 0.339761 0.940512i \(-0.389654\pi\)
0.339761 + 0.940512i \(0.389654\pi\)
\(464\) 44.8995 2.08441
\(465\) 0 0
\(466\) −5.27482 −0.244351
\(467\) −37.3100 −1.72650 −0.863250 0.504777i \(-0.831575\pi\)
−0.863250 + 0.504777i \(0.831575\pi\)
\(468\) 0 0
\(469\) −13.5681 −0.626517
\(470\) 0 0
\(471\) 0 0
\(472\) 12.8281 0.590461
\(473\) 20.2317 0.930255
\(474\) 0 0
\(475\) 0 0
\(476\) 2.45954 0.112733
\(477\) 0 0
\(478\) 15.9333 0.728774
\(479\) −8.94065 −0.408509 −0.204254 0.978918i \(-0.565477\pi\)
−0.204254 + 0.978918i \(0.565477\pi\)
\(480\) 0 0
\(481\) 2.48064 0.113108
\(482\) 22.5834 1.02865
\(483\) 0 0
\(484\) 6.87976 0.312716
\(485\) 0 0
\(486\) 0 0
\(487\) 24.4709 1.10888 0.554441 0.832223i \(-0.312932\pi\)
0.554441 + 0.832223i \(0.312932\pi\)
\(488\) −9.37679 −0.424468
\(489\) 0 0
\(490\) 0 0
\(491\) −27.8794 −1.25818 −0.629089 0.777333i \(-0.716572\pi\)
−0.629089 + 0.777333i \(0.716572\pi\)
\(492\) 0 0
\(493\) −29.5046 −1.32882
\(494\) 18.2089 0.819257
\(495\) 0 0
\(496\) −4.46229 −0.200363
\(497\) −8.00000 −0.358849
\(498\) 0 0
\(499\) 2.26317 0.101314 0.0506568 0.998716i \(-0.483869\pi\)
0.0506568 + 0.998716i \(0.483869\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5.70093 0.254445
\(503\) −14.1184 −0.629507 −0.314753 0.949173i \(-0.601922\pi\)
−0.314753 + 0.949173i \(0.601922\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 65.4506 2.90963
\(507\) 0 0
\(508\) −12.8782 −0.571378
\(509\) 37.5605 1.66484 0.832421 0.554144i \(-0.186954\pi\)
0.832421 + 0.554144i \(0.186954\pi\)
\(510\) 0 0
\(511\) 0.170766 0.00755425
\(512\) −0.236841 −0.0104670
\(513\) 0 0
\(514\) 15.5451 0.685667
\(515\) 0 0
\(516\) 0 0
\(517\) 17.3094 0.761268
\(518\) 2.50378 0.110010
\(519\) 0 0
\(520\) 0 0
\(521\) −17.6119 −0.771591 −0.385796 0.922584i \(-0.626073\pi\)
−0.385796 + 0.922584i \(0.626073\pi\)
\(522\) 0 0
\(523\) 3.80434 0.166352 0.0831762 0.996535i \(-0.473494\pi\)
0.0831762 + 0.996535i \(0.473494\pi\)
\(524\) 10.5839 0.462358
\(525\) 0 0
\(526\) 6.84838 0.298603
\(527\) 2.93229 0.127732
\(528\) 0 0
\(529\) 54.3570 2.36335
\(530\) 0 0
\(531\) 0 0
\(532\) 5.04868 0.218888
\(533\) 7.42763 0.321726
\(534\) 0 0
\(535\) 0 0
\(536\) 27.9948 1.20919
\(537\) 0 0
\(538\) 17.3869 0.749603
\(539\) −4.48133 −0.193025
\(540\) 0 0
\(541\) −23.4002 −1.00605 −0.503027 0.864271i \(-0.667780\pi\)
−0.503027 + 0.864271i \(0.667780\pi\)
\(542\) 27.7678 1.19273
\(543\) 0 0
\(544\) −13.2432 −0.567798
\(545\) 0 0
\(546\) 0 0
\(547\) 10.6578 0.455693 0.227847 0.973697i \(-0.426832\pi\)
0.227847 + 0.973697i \(0.426832\pi\)
\(548\) −5.82885 −0.248996
\(549\) 0 0
\(550\) 0 0
\(551\) −60.5637 −2.58010
\(552\) 0 0
\(553\) −7.37353 −0.313555
\(554\) 15.1446 0.643431
\(555\) 0 0
\(556\) −12.0614 −0.511517
\(557\) 19.3186 0.818554 0.409277 0.912410i \(-0.365781\pi\)
0.409277 + 0.912410i \(0.365781\pi\)
\(558\) 0 0
\(559\) −7.42763 −0.314155
\(560\) 0 0
\(561\) 0 0
\(562\) −13.0972 −0.552473
\(563\) 2.49855 0.105301 0.0526506 0.998613i \(-0.483233\pi\)
0.0526506 + 0.998613i \(0.483233\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −3.13412 −0.131737
\(567\) 0 0
\(568\) 16.5062 0.692586
\(569\) −20.9949 −0.880152 −0.440076 0.897961i \(-0.645049\pi\)
−0.440076 + 0.897961i \(0.645049\pi\)
\(570\) 0 0
\(571\) −24.5019 −1.02537 −0.512686 0.858576i \(-0.671350\pi\)
−0.512686 + 0.858576i \(0.671350\pi\)
\(572\) −5.58479 −0.233512
\(573\) 0 0
\(574\) 7.49691 0.312915
\(575\) 0 0
\(576\) 0 0
\(577\) −2.55043 −0.106176 −0.0530879 0.998590i \(-0.516906\pi\)
−0.0530879 + 0.998590i \(0.516906\pi\)
\(578\) −10.7225 −0.445998
\(579\) 0 0
\(580\) 0 0
\(581\) 1.56124 0.0647711
\(582\) 0 0
\(583\) 26.0773 1.08001
\(584\) −0.352338 −0.0145798
\(585\) 0 0
\(586\) 2.07069 0.0855395
\(587\) 45.9024 1.89459 0.947297 0.320358i \(-0.103803\pi\)
0.947297 + 0.320358i \(0.103803\pi\)
\(588\) 0 0
\(589\) 6.01907 0.248011
\(590\) 0 0
\(591\) 0 0
\(592\) −7.45026 −0.306204
\(593\) −28.7110 −1.17902 −0.589509 0.807761i \(-0.700679\pi\)
−0.589509 + 0.807761i \(0.700679\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.7741 0.523248
\(597\) 0 0
\(598\) −24.0287 −0.982609
\(599\) −42.5917 −1.74025 −0.870125 0.492831i \(-0.835962\pi\)
−0.870125 + 0.492831i \(0.835962\pi\)
\(600\) 0 0
\(601\) 13.1065 0.534624 0.267312 0.963610i \(-0.413865\pi\)
0.267312 + 0.963610i \(0.413865\pi\)
\(602\) −7.49691 −0.305551
\(603\) 0 0
\(604\) 12.3219 0.501370
\(605\) 0 0
\(606\) 0 0
\(607\) −3.52736 −0.143171 −0.0715856 0.997434i \(-0.522806\pi\)
−0.0715856 + 0.997434i \(0.522806\pi\)
\(608\) −27.1842 −1.10246
\(609\) 0 0
\(610\) 0 0
\(611\) −6.35478 −0.257087
\(612\) 0 0
\(613\) −7.75038 −0.313035 −0.156517 0.987675i \(-0.550027\pi\)
−0.156517 + 0.987675i \(0.550027\pi\)
\(614\) 46.7289 1.88583
\(615\) 0 0
\(616\) 9.24623 0.372541
\(617\) 16.3117 0.656686 0.328343 0.944559i \(-0.393510\pi\)
0.328343 + 0.944559i \(0.393510\pi\)
\(618\) 0 0
\(619\) −17.5794 −0.706577 −0.353288 0.935514i \(-0.614937\pi\)
−0.353288 + 0.935514i \(0.614937\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 23.6950 0.950084
\(623\) −14.9851 −0.600366
\(624\) 0 0
\(625\) 0 0
\(626\) 36.6559 1.46507
\(627\) 0 0
\(628\) 10.7633 0.429504
\(629\) 4.89575 0.195206
\(630\) 0 0
\(631\) −42.2819 −1.68322 −0.841608 0.540089i \(-0.818391\pi\)
−0.841608 + 0.540089i \(0.818391\pi\)
\(632\) 15.2136 0.605166
\(633\) 0 0
\(634\) 1.84350 0.0732149
\(635\) 0 0
\(636\) 0 0
\(637\) 1.64522 0.0651861
\(638\) 67.6198 2.67709
\(639\) 0 0
\(640\) 0 0
\(641\) 9.59300 0.378901 0.189450 0.981890i \(-0.439329\pi\)
0.189450 + 0.981890i \(0.439329\pi\)
\(642\) 0 0
\(643\) 31.9586 1.26032 0.630162 0.776464i \(-0.282989\pi\)
0.630162 + 0.776464i \(0.282989\pi\)
\(644\) −6.66231 −0.262532
\(645\) 0 0
\(646\) 35.9367 1.41391
\(647\) 10.0574 0.395396 0.197698 0.980263i \(-0.436653\pi\)
0.197698 + 0.980263i \(0.436653\pi\)
\(648\) 0 0
\(649\) 27.8620 1.09368
\(650\) 0 0
\(651\) 0 0
\(652\) −12.0197 −0.470726
\(653\) 10.4588 0.409283 0.204641 0.978837i \(-0.434397\pi\)
0.204641 + 0.978837i \(0.434397\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −22.3078 −0.870973
\(657\) 0 0
\(658\) −6.41405 −0.250046
\(659\) −34.7947 −1.35541 −0.677704 0.735334i \(-0.737025\pi\)
−0.677704 + 0.735334i \(0.737025\pi\)
\(660\) 0 0
\(661\) 40.3945 1.57116 0.785581 0.618758i \(-0.212364\pi\)
0.785581 + 0.618758i \(0.212364\pi\)
\(662\) −42.6171 −1.65636
\(663\) 0 0
\(664\) −3.22127 −0.125009
\(665\) 0 0
\(666\) 0 0
\(667\) 79.9208 3.09455
\(668\) 2.83783 0.109799
\(669\) 0 0
\(670\) 0 0
\(671\) −20.3659 −0.786217
\(672\) 0 0
\(673\) −46.7268 −1.80119 −0.900593 0.434664i \(-0.856867\pi\)
−0.900593 + 0.434664i \(0.856867\pi\)
\(674\) −49.3512 −1.90094
\(675\) 0 0
\(676\) −7.79700 −0.299884
\(677\) 33.6084 1.29168 0.645838 0.763474i \(-0.276508\pi\)
0.645838 + 0.763474i \(0.276508\pi\)
\(678\) 0 0
\(679\) −13.3399 −0.511938
\(680\) 0 0
\(681\) 0 0
\(682\) −6.72033 −0.257335
\(683\) 8.44720 0.323223 0.161612 0.986854i \(-0.448331\pi\)
0.161612 + 0.986854i \(0.448331\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.66057 0.0634008
\(687\) 0 0
\(688\) 22.3078 0.850477
\(689\) −9.57371 −0.364729
\(690\) 0 0
\(691\) −25.8453 −0.983201 −0.491601 0.870821i \(-0.663588\pi\)
−0.491601 + 0.870821i \(0.663588\pi\)
\(692\) −8.89973 −0.338317
\(693\) 0 0
\(694\) 7.91244 0.300352
\(695\) 0 0
\(696\) 0 0
\(697\) 14.6590 0.555250
\(698\) −47.2589 −1.78878
\(699\) 0 0
\(700\) 0 0
\(701\) −12.5440 −0.473781 −0.236891 0.971536i \(-0.576128\pi\)
−0.236891 + 0.971536i \(0.576128\pi\)
\(702\) 0 0
\(703\) 10.0494 0.379022
\(704\) −13.9349 −0.525191
\(705\) 0 0
\(706\) 3.73100 0.140418
\(707\) −16.4042 −0.616944
\(708\) 0 0
\(709\) −14.5033 −0.544685 −0.272342 0.962200i \(-0.587798\pi\)
−0.272342 + 0.962200i \(0.587798\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 30.9185 1.15872
\(713\) −7.94286 −0.297462
\(714\) 0 0
\(715\) 0 0
\(716\) −3.00950 −0.112470
\(717\) 0 0
\(718\) −27.8841 −1.04063
\(719\) 51.9206 1.93631 0.968155 0.250352i \(-0.0805462\pi\)
0.968155 + 0.250352i \(0.0805462\pi\)
\(720\) 0 0
\(721\) 2.83611 0.105622
\(722\) 42.2161 1.57112
\(723\) 0 0
\(724\) 1.32121 0.0491022
\(725\) 0 0
\(726\) 0 0
\(727\) −26.2289 −0.972776 −0.486388 0.873743i \(-0.661686\pi\)
−0.486388 + 0.873743i \(0.661686\pi\)
\(728\) −3.39455 −0.125810
\(729\) 0 0
\(730\) 0 0
\(731\) −14.6590 −0.542183
\(732\) 0 0
\(733\) 48.4814 1.79070 0.895350 0.445363i \(-0.146925\pi\)
0.895350 + 0.445363i \(0.146925\pi\)
\(734\) 39.9817 1.47575
\(735\) 0 0
\(736\) 35.8726 1.32228
\(737\) 60.8032 2.23972
\(738\) 0 0
\(739\) 37.5127 1.37993 0.689964 0.723843i \(-0.257626\pi\)
0.689964 + 0.723843i \(0.257626\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −9.66301 −0.354740
\(743\) −16.4544 −0.603652 −0.301826 0.953363i \(-0.597596\pi\)
−0.301826 + 0.953363i \(0.597596\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.12622 0.297522
\(747\) 0 0
\(748\) −11.0220 −0.403005
\(749\) 13.3973 0.489528
\(750\) 0 0
\(751\) 18.9510 0.691533 0.345767 0.938321i \(-0.387619\pi\)
0.345767 + 0.938321i \(0.387619\pi\)
\(752\) 19.0857 0.695982
\(753\) 0 0
\(754\) −24.8251 −0.904078
\(755\) 0 0
\(756\) 0 0
\(757\) −20.3544 −0.739792 −0.369896 0.929073i \(-0.620607\pi\)
−0.369896 + 0.929073i \(0.620607\pi\)
\(758\) −27.2981 −0.991511
\(759\) 0 0
\(760\) 0 0
\(761\) −2.63252 −0.0954288 −0.0477144 0.998861i \(-0.515194\pi\)
−0.0477144 + 0.998861i \(0.515194\pi\)
\(762\) 0 0
\(763\) 1.08103 0.0391361
\(764\) −12.6847 −0.458916
\(765\) 0 0
\(766\) 41.4933 1.49921
\(767\) −10.2289 −0.369345
\(768\) 0 0
\(769\) −15.9262 −0.574315 −0.287157 0.957883i \(-0.592710\pi\)
−0.287157 + 0.957883i \(0.592710\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.52718 0.0549645
\(773\) 31.7879 1.14333 0.571666 0.820486i \(-0.306297\pi\)
0.571666 + 0.820486i \(0.306297\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 27.5239 0.988051
\(777\) 0 0
\(778\) −0.361034 −0.0129437
\(779\) 30.0904 1.07810
\(780\) 0 0
\(781\) 35.8507 1.28284
\(782\) −47.4227 −1.69583
\(783\) 0 0
\(784\) −4.94119 −0.176471
\(785\) 0 0
\(786\) 0 0
\(787\) −47.1832 −1.68190 −0.840950 0.541112i \(-0.818003\pi\)
−0.840950 + 0.541112i \(0.818003\pi\)
\(788\) 8.20897 0.292432
\(789\) 0 0
\(790\) 0 0
\(791\) 20.1392 0.716067
\(792\) 0 0
\(793\) 7.47690 0.265512
\(794\) 52.6948 1.87007
\(795\) 0 0
\(796\) −11.7361 −0.415974
\(797\) −51.0233 −1.80734 −0.903669 0.428232i \(-0.859137\pi\)
−0.903669 + 0.428232i \(0.859137\pi\)
\(798\) 0 0
\(799\) −12.5417 −0.443692
\(800\) 0 0
\(801\) 0 0
\(802\) −18.8671 −0.666221
\(803\) −0.765260 −0.0270054
\(804\) 0 0
\(805\) 0 0
\(806\) 2.46722 0.0869042
\(807\) 0 0
\(808\) 33.8465 1.19071
\(809\) 11.8135 0.415342 0.207671 0.978199i \(-0.433412\pi\)
0.207671 + 0.978199i \(0.433412\pi\)
\(810\) 0 0
\(811\) −2.58613 −0.0908112 −0.0454056 0.998969i \(-0.514458\pi\)
−0.0454056 + 0.998969i \(0.514458\pi\)
\(812\) −6.88312 −0.241550
\(813\) 0 0
\(814\) −11.2203 −0.393271
\(815\) 0 0
\(816\) 0 0
\(817\) −30.0904 −1.05273
\(818\) −9.19766 −0.321589
\(819\) 0 0
\(820\) 0 0
\(821\) 16.2587 0.567433 0.283716 0.958908i \(-0.408433\pi\)
0.283716 + 0.958908i \(0.408433\pi\)
\(822\) 0 0
\(823\) −0.909326 −0.0316971 −0.0158486 0.999874i \(-0.505045\pi\)
−0.0158486 + 0.999874i \(0.505045\pi\)
\(824\) −5.85168 −0.203853
\(825\) 0 0
\(826\) −10.3243 −0.359229
\(827\) −9.62855 −0.334818 −0.167409 0.985888i \(-0.553540\pi\)
−0.167409 + 0.985888i \(0.553540\pi\)
\(828\) 0 0
\(829\) 7.01313 0.243576 0.121788 0.992556i \(-0.461137\pi\)
0.121788 + 0.992556i \(0.461137\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.11589 0.177362
\(833\) 3.24698 0.112501
\(834\) 0 0
\(835\) 0 0
\(836\) −22.6248 −0.782495
\(837\) 0 0
\(838\) −46.1217 −1.59325
\(839\) −6.61287 −0.228302 −0.114151 0.993463i \(-0.536415\pi\)
−0.114151 + 0.993463i \(0.536415\pi\)
\(840\) 0 0
\(841\) 53.5696 1.84723
\(842\) 1.06158 0.0365846
\(843\) 0 0
\(844\) −14.7453 −0.507556
\(845\) 0 0
\(846\) 0 0
\(847\) 9.08234 0.312073
\(848\) 28.7532 0.987391
\(849\) 0 0
\(850\) 0 0
\(851\) −13.2614 −0.454595
\(852\) 0 0
\(853\) −27.2511 −0.933061 −0.466531 0.884505i \(-0.654496\pi\)
−0.466531 + 0.884505i \(0.654496\pi\)
\(854\) 7.54664 0.258241
\(855\) 0 0
\(856\) −27.6425 −0.944800
\(857\) 10.2478 0.350057 0.175029 0.984563i \(-0.443998\pi\)
0.175029 + 0.984563i \(0.443998\pi\)
\(858\) 0 0
\(859\) 18.8887 0.644473 0.322236 0.946659i \(-0.395565\pi\)
0.322236 + 0.946659i \(0.395565\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 18.3196 0.623968
\(863\) −12.4734 −0.424600 −0.212300 0.977205i \(-0.568095\pi\)
−0.212300 + 0.977205i \(0.568095\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 27.1484 0.922541
\(867\) 0 0
\(868\) 0.684072 0.0232189
\(869\) 33.0433 1.12092
\(870\) 0 0
\(871\) −22.3226 −0.756371
\(872\) −2.23047 −0.0755334
\(873\) 0 0
\(874\) −97.3439 −3.29271
\(875\) 0 0
\(876\) 0 0
\(877\) −41.5409 −1.40274 −0.701368 0.712799i \(-0.747427\pi\)
−0.701368 + 0.712799i \(0.747427\pi\)
\(878\) 51.6462 1.74298
\(879\) 0 0
\(880\) 0 0
\(881\) 43.4363 1.46341 0.731704 0.681623i \(-0.238725\pi\)
0.731704 + 0.681623i \(0.238725\pi\)
\(882\) 0 0
\(883\) 18.0849 0.608605 0.304302 0.952575i \(-0.401577\pi\)
0.304302 + 0.952575i \(0.401577\pi\)
\(884\) 4.04650 0.136098
\(885\) 0 0
\(886\) 6.14595 0.206477
\(887\) 41.8481 1.40512 0.702560 0.711624i \(-0.252040\pi\)
0.702560 + 0.711624i \(0.252040\pi\)
\(888\) 0 0
\(889\) −17.0012 −0.570203
\(890\) 0 0
\(891\) 0 0
\(892\) 11.7007 0.391770
\(893\) −25.7441 −0.861494
\(894\) 0 0
\(895\) 0 0
\(896\) 13.3209 0.445018
\(897\) 0 0
\(898\) 28.8721 0.963476
\(899\) −8.20610 −0.273689
\(900\) 0 0
\(901\) −18.8945 −0.629466
\(902\) −33.5961 −1.11863
\(903\) 0 0
\(904\) −41.5527 −1.38202
\(905\) 0 0
\(906\) 0 0
\(907\) −19.3725 −0.643254 −0.321627 0.946866i \(-0.604230\pi\)
−0.321627 + 0.946866i \(0.604230\pi\)
\(908\) −4.82066 −0.159979
\(909\) 0 0
\(910\) 0 0
\(911\) −2.68932 −0.0891012 −0.0445506 0.999007i \(-0.514186\pi\)
−0.0445506 + 0.999007i \(0.514186\pi\)
\(912\) 0 0
\(913\) −6.99643 −0.231548
\(914\) 23.5478 0.778891
\(915\) 0 0
\(916\) 1.90047 0.0627933
\(917\) 13.9723 0.461407
\(918\) 0 0
\(919\) 41.8192 1.37949 0.689744 0.724053i \(-0.257723\pi\)
0.689744 + 0.724053i \(0.257723\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −27.4599 −0.904342
\(923\) −13.1618 −0.433225
\(924\) 0 0
\(925\) 0 0
\(926\) 24.2801 0.797894
\(927\) 0 0
\(928\) 37.0616 1.21661
\(929\) 39.9284 1.31001 0.655004 0.755625i \(-0.272667\pi\)
0.655004 + 0.755625i \(0.272667\pi\)
\(930\) 0 0
\(931\) 6.66503 0.218438
\(932\) −2.40617 −0.0788166
\(933\) 0 0
\(934\) −61.9558 −2.02725
\(935\) 0 0
\(936\) 0 0
\(937\) −18.1074 −0.591543 −0.295772 0.955259i \(-0.595577\pi\)
−0.295772 + 0.955259i \(0.595577\pi\)
\(938\) −22.5308 −0.735656
\(939\) 0 0
\(940\) 0 0
\(941\) 52.9402 1.72580 0.862900 0.505375i \(-0.168646\pi\)
0.862900 + 0.505375i \(0.168646\pi\)
\(942\) 0 0
\(943\) −39.7077 −1.29306
\(944\) 30.7210 0.999885
\(945\) 0 0
\(946\) 33.5961 1.09230
\(947\) −48.4854 −1.57556 −0.787781 0.615955i \(-0.788770\pi\)
−0.787781 + 0.615955i \(0.788770\pi\)
\(948\) 0 0
\(949\) 0.280948 0.00911996
\(950\) 0 0
\(951\) 0 0
\(952\) −6.69942 −0.217129
\(953\) −9.76963 −0.316469 −0.158235 0.987402i \(-0.550580\pi\)
−0.158235 + 0.987402i \(0.550580\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7.26817 0.235070
\(957\) 0 0
\(958\) −14.8466 −0.479671
\(959\) −7.69498 −0.248484
\(960\) 0 0
\(961\) −30.1844 −0.973692
\(962\) 4.11928 0.132811
\(963\) 0 0
\(964\) 10.3017 0.331795
\(965\) 0 0
\(966\) 0 0
\(967\) 40.0858 1.28907 0.644537 0.764573i \(-0.277050\pi\)
0.644537 + 0.764573i \(0.277050\pi\)
\(968\) −18.7394 −0.602307
\(969\) 0 0
\(970\) 0 0
\(971\) −36.2290 −1.16264 −0.581322 0.813674i \(-0.697464\pi\)
−0.581322 + 0.813674i \(0.697464\pi\)
\(972\) 0 0
\(973\) −15.9229 −0.510464
\(974\) 40.6356 1.30205
\(975\) 0 0
\(976\) −22.4558 −0.718792
\(977\) −27.6379 −0.884214 −0.442107 0.896962i \(-0.645769\pi\)
−0.442107 + 0.896962i \(0.645769\pi\)
\(978\) 0 0
\(979\) 67.1533 2.14623
\(980\) 0 0
\(981\) 0 0
\(982\) −46.2956 −1.47735
\(983\) 43.8409 1.39831 0.699154 0.714971i \(-0.253560\pi\)
0.699154 + 0.714971i \(0.253560\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −48.9944 −1.56030
\(987\) 0 0
\(988\) 8.30620 0.264255
\(989\) 39.7077 1.26263
\(990\) 0 0
\(991\) 27.6085 0.877012 0.438506 0.898728i \(-0.355508\pi\)
0.438506 + 0.898728i \(0.355508\pi\)
\(992\) −3.68333 −0.116946
\(993\) 0 0
\(994\) −13.2845 −0.421360
\(995\) 0 0
\(996\) 0 0
\(997\) 22.5255 0.713391 0.356696 0.934221i \(-0.383903\pi\)
0.356696 + 0.934221i \(0.383903\pi\)
\(998\) 3.75815 0.118962
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4725.2.a.cc.1.4 5
3.2 odd 2 4725.2.a.cd.1.2 5
5.2 odd 4 945.2.d.e.379.8 yes 10
5.3 odd 4 945.2.d.e.379.3 yes 10
5.4 even 2 4725.2.a.cb.1.2 5
15.2 even 4 945.2.d.d.379.3 10
15.8 even 4 945.2.d.d.379.8 yes 10
15.14 odd 2 4725.2.a.ca.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
945.2.d.d.379.3 10 15.2 even 4
945.2.d.d.379.8 yes 10 15.8 even 4
945.2.d.e.379.3 yes 10 5.3 odd 4
945.2.d.e.379.8 yes 10 5.2 odd 4
4725.2.a.ca.1.4 5 15.14 odd 2
4725.2.a.cb.1.2 5 5.4 even 2
4725.2.a.cc.1.4 5 1.1 even 1 trivial
4725.2.a.cd.1.2 5 3.2 odd 2