Properties

Label 4725.2.a.cc
Level $4725$
Weight $2$
Character orbit 4725.a
Self dual yes
Analytic conductor $37.729$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4725,2,Mod(1,4725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4725 = 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,6,0,0,5,-3,0,0,-9,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7293149551\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.2161212.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} - x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 945)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + q^{7} + ( - \beta_{3} - \beta_1 - 1) q^{8} + ( - \beta_{3} - \beta_{2} - 2) q^{11} + (\beta_{3} - \beta_{2} + 2 \beta_1 + 2) q^{13} - \beta_1 q^{14} + (\beta_{4} + \beta_{3} + \beta_1) q^{16}+ \cdots - \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 6 q^{4} + 5 q^{7} - 3 q^{8} - 9 q^{11} + 7 q^{13} - 4 q^{16} - 14 q^{17} - 3 q^{19} - 5 q^{22} - 2 q^{23} - 21 q^{26} + 6 q^{28} - 12 q^{29} - 6 q^{31} - 6 q^{32} + 7 q^{34} + 20 q^{38} - 7 q^{41}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 8x^{3} - x^{2} + 14x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 4\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 6\beta_{2} + \beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.42873
1.57529
−0.143064
−1.66057
−2.20040
−2.42873 0 3.89875 0 0 1.00000 −4.61157 0 0
1.2 −1.57529 0 0.481550 0 0 1.00000 2.39200 0 0
1.3 0.143064 0 −1.97953 0 0 1.00000 −0.569328 0 0
1.4 1.66057 0 0.757487 0 0 1.00000 −2.06328 0 0
1.5 2.20040 0 2.84174 0 0 1.00000 1.85217 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4725.2.a.cc 5
3.b odd 2 1 4725.2.a.cd 5
5.b even 2 1 4725.2.a.cb 5
5.c odd 4 2 945.2.d.e yes 10
15.d odd 2 1 4725.2.a.ca 5
15.e even 4 2 945.2.d.d 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
945.2.d.d 10 15.e even 4 2
945.2.d.e yes 10 5.c odd 4 2
4725.2.a.ca 5 15.d odd 2 1
4725.2.a.cb 5 5.b even 2 1
4725.2.a.cc 5 1.a even 1 1 trivial
4725.2.a.cd 5 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4725))\):

\( T_{2}^{5} - 8T_{2}^{3} + T_{2}^{2} + 14T_{2} - 2 \) Copy content Toggle raw display
\( T_{11}^{5} + 9T_{11}^{4} - 142T_{11}^{2} - 144T_{11} + 384 \) Copy content Toggle raw display
\( T_{13}^{5} - 7T_{13}^{4} - 12T_{13}^{3} + 162T_{13}^{2} - 288T_{13} + 128 \) Copy content Toggle raw display
\( T_{37}^{5} - 95T_{37}^{3} + 388T_{37}^{2} - 544T_{37} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 8 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( (T - 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 9 T^{4} + \cdots + 384 \) Copy content Toggle raw display
$13$ \( T^{5} - 7 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$17$ \( T^{5} + 14 T^{4} + \cdots - 556 \) Copy content Toggle raw display
$19$ \( T^{5} + 3 T^{4} + \cdots - 6 \) Copy content Toggle raw display
$23$ \( T^{5} + 2 T^{4} + \cdots + 768 \) Copy content Toggle raw display
$29$ \( T^{5} + 12 T^{4} + \cdots - 4864 \) Copy content Toggle raw display
$31$ \( T^{5} + 6 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{5} - 95 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$41$ \( T^{5} + 7 T^{4} + \cdots + 8896 \) Copy content Toggle raw display
$43$ \( T^{5} - 7 T^{4} + \cdots - 8896 \) Copy content Toggle raw display
$47$ \( T^{5} + 13 T^{4} + \cdots - 48 \) Copy content Toggle raw display
$53$ \( T^{5} - 5 T^{4} + \cdots + 24372 \) Copy content Toggle raw display
$59$ \( T^{5} + 26 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$61$ \( T^{5} - 2 T^{4} + \cdots + 556 \) Copy content Toggle raw display
$67$ \( T^{5} + 21 T^{4} + \cdots - 2048 \) Copy content Toggle raw display
$71$ \( (T + 8)^{5} \) Copy content Toggle raw display
$73$ \( T^{5} + 9 T^{4} + \cdots + 768 \) Copy content Toggle raw display
$79$ \( T^{5} - 8 T^{4} + \cdots - 4822 \) Copy content Toggle raw display
$83$ \( T^{5} + 17 T^{4} + \cdots + 6661 \) Copy content Toggle raw display
$89$ \( T^{5} + 11 T^{4} + \cdots + 97536 \) Copy content Toggle raw display
$97$ \( T^{5} + 4 T^{4} + \cdots + 11008 \) Copy content Toggle raw display
show more
show less