Properties

Label 4719.2.a.bd
Level $4719$
Weight $2$
Character orbit 4719.a
Self dual yes
Analytic conductor $37.681$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4719,2,Mod(1,4719)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4719, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4719.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4719 = 3 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4719.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,-5,3,2,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.6814047138\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.394064.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 6x^{2} + 5x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + \beta_{3} q^{5} - \beta_1 q^{6} + (\beta_{4} + \beta_{3} - \beta_{2} - 1) q^{7} + (\beta_{3} - 1) q^{8} + q^{9} + (\beta_{4} + \beta_{2} + 1) q^{10}+ \cdots + ( - 5 \beta_{4} - 2 \beta_{3} + \cdots - 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 5 q^{3} + 3 q^{4} + 2 q^{5} - q^{6} - 2 q^{7} - 3 q^{8} + 5 q^{9} + 2 q^{10} - 3 q^{12} + 5 q^{13} + 4 q^{14} - 2 q^{15} - 5 q^{16} + 6 q^{17} + q^{18} - 4 q^{20} + 2 q^{21} - 8 q^{23}+ \cdots - 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 6x^{3} + 6x^{2} + 5x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 5\nu^{2} + \nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 5\beta_{2} - \beta _1 + 13 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.26881
−0.864737
0.465910
1.54936
2.11828
−2.26881 −1.00000 3.14752 −1.60351 2.26881 −4.26048 −2.60351 1.00000 3.63807
1.2 −0.864737 −1.00000 −1.25223 3.81232 0.864737 3.02012 2.81232 1.00000 −3.29666
1.3 0.465910 −1.00000 −1.78293 −0.762504 −0.465910 2.44809 −1.76250 1.00000 −0.355258
1.4 1.54936 −1.00000 0.400511 −1.47818 −1.54936 −4.56944 −2.47818 1.00000 −2.29023
1.5 2.11828 −1.00000 2.48713 2.03187 −2.11828 1.36170 1.03187 1.00000 4.30408
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4719.2.a.bd yes 5
11.b odd 2 1 4719.2.a.bb 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4719.2.a.bb 5 11.b odd 2 1
4719.2.a.bd yes 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4719))\):

\( T_{2}^{5} - T_{2}^{4} - 6T_{2}^{3} + 6T_{2}^{2} + 5T_{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{5} - 2T_{5}^{4} - 10T_{5}^{3} + 4T_{5}^{2} + 26T_{5} + 14 \) Copy content Toggle raw display
\( T_{7}^{5} + 2T_{7}^{4} - 26T_{7}^{3} - 12T_{7}^{2} + 200T_{7} - 196 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} - 6 T^{3} + \cdots - 3 \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 2 T^{4} + \cdots + 14 \) Copy content Toggle raw display
$7$ \( T^{5} + 2 T^{4} + \cdots - 196 \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( (T - 1)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} - 6 T^{4} + \cdots - 106 \) Copy content Toggle raw display
$19$ \( T^{5} - 54 T^{3} + \cdots - 316 \) Copy content Toggle raw display
$23$ \( T^{5} + 8 T^{4} + \cdots + 12 \) Copy content Toggle raw display
$29$ \( T^{5} - 6 T^{4} + \cdots + 226 \) Copy content Toggle raw display
$31$ \( T^{5} - 8 T^{4} + \cdots + 1762 \) Copy content Toggle raw display
$37$ \( T^{5} - 14 T^{4} + \cdots + 2008 \) Copy content Toggle raw display
$41$ \( T^{5} - 34 T^{4} + \cdots + 16708 \) Copy content Toggle raw display
$43$ \( T^{5} + 18 T^{4} + \cdots - 1906 \) Copy content Toggle raw display
$47$ \( T^{5} + 4 T^{4} + \cdots - 6856 \) Copy content Toggle raw display
$53$ \( T^{5} + 2 T^{4} + \cdots + 19792 \) Copy content Toggle raw display
$59$ \( T^{5} + 14 T^{4} + \cdots + 25248 \) Copy content Toggle raw display
$61$ \( T^{5} + 6 T^{4} + \cdots + 4312 \) Copy content Toggle raw display
$67$ \( T^{5} - 18 T^{4} + \cdots + 1642 \) Copy content Toggle raw display
$71$ \( T^{5} - 2 T^{4} + \cdots + 392 \) Copy content Toggle raw display
$73$ \( T^{5} - 12 T^{4} + \cdots + 2252 \) Copy content Toggle raw display
$79$ \( T^{5} - 218 T^{3} + \cdots - 54 \) Copy content Toggle raw display
$83$ \( T^{5} + 6 T^{4} + \cdots - 11088 \) Copy content Toggle raw display
$89$ \( T^{5} + 4 T^{4} + \cdots - 15818 \) Copy content Toggle raw display
$97$ \( T^{5} + 8 T^{4} + \cdots - 13896 \) Copy content Toggle raw display
show more
show less