Properties

Label 2-4719-1.1-c1-0-42
Degree $2$
Conductor $4719$
Sign $1$
Analytic cond. $37.6814$
Root an. cond. $6.13851$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.465·2-s − 3-s − 1.78·4-s − 0.762·5-s − 0.465·6-s + 2.44·7-s − 1.76·8-s + 9-s − 0.355·10-s + 1.78·12-s + 13-s + 1.14·14-s + 0.762·15-s + 2.74·16-s − 3.36·17-s + 0.465·18-s + 4.15·19-s + 1.35·20-s − 2.44·21-s + 0.825·23-s + 1.76·24-s − 4.41·25-s + 0.465·26-s − 27-s − 4.36·28-s + 1.42·29-s + 0.355·30-s + ⋯
L(s)  = 1  + 0.329·2-s − 0.577·3-s − 0.891·4-s − 0.341·5-s − 0.190·6-s + 0.925·7-s − 0.623·8-s + 0.333·9-s − 0.112·10-s + 0.514·12-s + 0.277·13-s + 0.304·14-s + 0.196·15-s + 0.686·16-s − 0.816·17-s + 0.109·18-s + 0.952·19-s + 0.303·20-s − 0.534·21-s + 0.172·23-s + 0.359·24-s − 0.883·25-s + 0.0913·26-s − 0.192·27-s − 0.824·28-s + 0.264·29-s + 0.0648·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4719 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4719 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4719\)    =    \(3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(37.6814\)
Root analytic conductor: \(6.13851\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4719,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.293290529\)
\(L(\frac12)\) \(\approx\) \(1.293290529\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 0.465T + 2T^{2} \)
5 \( 1 + 0.762T + 5T^{2} \)
7 \( 1 - 2.44T + 7T^{2} \)
17 \( 1 + 3.36T + 17T^{2} \)
19 \( 1 - 4.15T + 19T^{2} \)
23 \( 1 - 0.825T + 23T^{2} \)
29 \( 1 - 1.42T + 29T^{2} \)
31 \( 1 - 3.16T + 31T^{2} \)
37 \( 1 + 4.75T + 37T^{2} \)
41 \( 1 + 2.64T + 41T^{2} \)
43 \( 1 + 3.26T + 43T^{2} \)
47 \( 1 - 3.36T + 47T^{2} \)
53 \( 1 - 10.3T + 53T^{2} \)
59 \( 1 - 9.58T + 59T^{2} \)
61 \( 1 + 13.3T + 61T^{2} \)
67 \( 1 - 0.245T + 67T^{2} \)
71 \( 1 - 3.58T + 71T^{2} \)
73 \( 1 + 1.26T + 73T^{2} \)
79 \( 1 + 3.10T + 79T^{2} \)
83 \( 1 + 14.7T + 83T^{2} \)
89 \( 1 - 5.47T + 89T^{2} \)
97 \( 1 + 14.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.362719497356877578318051207808, −7.60824477474201115546741573946, −6.82880379242400622998688942416, −5.86623716104047431093237887814, −5.27738476661282068837110714551, −4.59937573363961546801987705697, −4.03286792081237015476158934575, −3.11189240800986441664125816321, −1.76238218591741163120822835466, −0.63693785559797143014026870117, 0.63693785559797143014026870117, 1.76238218591741163120822835466, 3.11189240800986441664125816321, 4.03286792081237015476158934575, 4.59937573363961546801987705697, 5.27738476661282068837110714551, 5.86623716104047431093237887814, 6.82880379242400622998688942416, 7.60824477474201115546741573946, 8.362719497356877578318051207808

Graph of the $Z$-function along the critical line