Defining parameters
| Level: | \( N \) | \(=\) | \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 468.cb (of order \(12\) and degree \(4\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) | 
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(168\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(17\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(468, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 368 | 148 | 220 | 
| Cusp forms | 304 | 132 | 172 | 
| Eisenstein series | 64 | 16 | 48 | 
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(468, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(468, [\chi])\) into lower level spaces
  \( S_{2}^{\mathrm{old}}(468, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)