Properties

Label 468.2.cb
Level $468$
Weight $2$
Character orbit 468.cb
Rep. character $\chi_{468}(19,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $132$
Newform subspaces $9$
Sturm bound $168$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.cb (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 9 \)
Sturm bound: \(168\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(468, [\chi])\).

Total New Old
Modular forms 368 148 220
Cusp forms 304 132 172
Eisenstein series 64 16 48

Trace form

\( 132 q + 4 q^{2} - 6 q^{4} + 10 q^{5} - 2 q^{8} - 6 q^{10} - 8 q^{13} + 24 q^{14} - 10 q^{16} + 12 q^{17} + 38 q^{20} + 16 q^{22} + 14 q^{26} + 36 q^{28} + 4 q^{29} + 44 q^{32} - 14 q^{34} - 14 q^{37} + 48 q^{40}+ \cdots - 132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(468, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
468.2.cb.a 468.cb 52.l $4$ $3.737$ \(\Q(\zeta_{12})\) None 156.2.w.a \(-4\) \(0\) \(4\) \(6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\zeta_{12}^{3})q^{2}+2\zeta_{12}^{3}q^{4}+(-2\zeta_{12}+\cdots)q^{5}+\cdots\)
468.2.cb.b 468.cb 52.l $4$ $3.737$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 468.2.cb.b \(-2\) \(0\) \(-6\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\)
468.2.cb.c 468.cb 52.l $4$ $3.737$ \(\Q(\zeta_{12})\) None 156.2.w.a \(-2\) \(0\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\zeta_{12}+\zeta_{12}^{2})q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{4}+\cdots\)
468.2.cb.d 468.cb 52.l $4$ $3.737$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 52.2.l.a \(2\) \(0\) \(-6\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\)
468.2.cb.e 468.cb 52.l $4$ $3.737$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 468.2.cb.b \(2\) \(0\) \(6\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\)
468.2.cb.f 468.cb 52.l $16$ $3.737$ 16.0.\(\cdots\).1 None 52.2.l.b \(2\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\beta _{12}q^{2}+(\beta _{3}+\beta _{4}+\beta _{8}-\beta _{10}+\beta _{12}+\cdots)q^{4}+\cdots\)
468.2.cb.g 468.cb 52.l $24$ $3.737$ None 156.2.w.c \(2\) \(0\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{12}]$
468.2.cb.h 468.cb 52.l $24$ $3.737$ None 156.2.w.c \(4\) \(0\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{12}]$
468.2.cb.i 468.cb 52.l $48$ $3.737$ None 468.2.cb.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(468, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(468, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)