Newspace parameters
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.l (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.415222090511\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{12})\) |
Coefficient field: | 16.0.102930383934669717504.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - 4 x^{15} + 5 x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} - 12 x^{10} + 32 x^{9} - 36 x^{8} + 64 x^{7} - 48 x^{6} - 64 x^{5} + 80 x^{4} - 64 x^{3} + 320 x^{2} - 512 x + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{9}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 4 x^{15} + 5 x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} - 12 x^{10} + 32 x^{9} - 36 x^{8} + 64 x^{7} - 48 x^{6} - 64 x^{5} + 80 x^{4} - 64 x^{3} + 320 x^{2} - 512 x + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 19 \nu^{15} + 26 \nu^{14} + 49 \nu^{13} + 12 \nu^{12} - 163 \nu^{11} - 146 \nu^{10} + 172 \nu^{9} + 184 \nu^{8} + 412 \nu^{7} - 408 \nu^{6} - 1072 \nu^{5} - 544 \nu^{4} + 1360 \nu^{3} + \cdots - 1152 ) / 1408 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{15} - 4 \nu^{14} + 5 \nu^{13} - 2 \nu^{12} + 5 \nu^{11} - 8 \nu^{10} - 12 \nu^{9} + 32 \nu^{8} - 36 \nu^{7} + 64 \nu^{6} - 48 \nu^{5} - 64 \nu^{4} + 80 \nu^{3} - 64 \nu^{2} + 320 \nu - 512 ) / 128 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 25 \nu^{15} + 6 \nu^{14} + 31 \nu^{13} + 76 \nu^{12} - 61 \nu^{11} - 182 \nu^{10} + 40 \nu^{8} + 580 \nu^{7} + 152 \nu^{6} - 704 \nu^{5} - 672 \nu^{4} - 16 \nu^{3} + 2336 \nu^{2} - 512 \nu - 384 ) / 1408 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 3 \nu^{15} - 62 \nu^{14} + 27 \nu^{13} + 56 \nu^{12} + 167 \nu^{11} - 146 \nu^{10} - 400 \nu^{9} + 96 \nu^{8} - 28 \nu^{7} + 1352 \nu^{6} + 160 \nu^{5} - 1600 \nu^{4} - 1104 \nu^{3} - 224 \nu^{2} + \cdots - 2560 ) / 1408 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 10 \nu^{15} - 37 \nu^{14} - 12 \nu^{13} + 7 \nu^{12} + 106 \nu^{11} + 87 \nu^{10} - 266 \nu^{9} - 80 \nu^{8} - 264 \nu^{7} + 612 \nu^{6} + 872 \nu^{5} - 480 \nu^{4} - 800 \nu^{3} - 1744 \nu^{2} + \cdots + 1216 ) / 704 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 25 \nu^{15} + 72 \nu^{14} - 13 \nu^{13} - 34 \nu^{12} - 149 \nu^{11} - 28 \nu^{10} + 396 \nu^{9} - 136 \nu^{8} + 404 \nu^{7} - 992 \nu^{6} - 880 \nu^{5} + 1440 \nu^{4} + 688 \nu^{3} + 1984 \nu^{2} + \cdots + 2432 ) / 1408 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 7 \nu^{15} + 17 \nu^{14} + \nu^{13} + 5 \nu^{12} - 57 \nu^{11} - 9 \nu^{10} + 100 \nu^{9} - 14 \nu^{8} + 152 \nu^{7} - 300 \nu^{6} - 216 \nu^{5} + 232 \nu^{4} + 272 \nu^{3} + 992 \nu^{2} - 1888 \nu + 544 ) / 352 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 7 \nu^{15} + 28 \nu^{14} - 21 \nu^{13} - 6 \nu^{12} - 57 \nu^{11} + 24 \nu^{10} + 166 \nu^{9} - 124 \nu^{8} + 152 \nu^{7} - 520 \nu^{6} - 40 \nu^{5} + 672 \nu^{4} + 96 \nu^{3} + 640 \nu^{2} - 2592 \nu + 1600 ) / 352 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 47 \nu^{15} + 78 \nu^{14} + 13 \nu^{13} + 32 \nu^{12} - 191 \nu^{11} - 150 \nu^{10} + 420 \nu^{9} - 160 \nu^{8} + 876 \nu^{7} - 952 \nu^{6} - 1136 \nu^{5} + 992 \nu^{4} + 368 \nu^{3} + 3744 \nu^{2} + \cdots + 3200 ) / 704 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 53 \nu^{15} - 139 \nu^{14} + 61 \nu^{13} + 3 \nu^{12} + 271 \nu^{11} - 59 \nu^{10} - 748 \nu^{9} + 628 \nu^{8} - 948 \nu^{7} + 2140 \nu^{6} + 528 \nu^{5} - 2912 \nu^{4} - 304 \nu^{3} - 3312 \nu^{2} + \cdots - 8704 ) / 704 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 34 \nu^{15} - 83 \nu^{14} + 31 \nu^{13} - 7 \nu^{12} + 173 \nu^{11} - \nu^{10} - 467 \nu^{9} + 340 \nu^{8} - 596 \nu^{7} + 1228 \nu^{6} + 508 \nu^{5} - 1648 \nu^{4} - 192 \nu^{3} - 2480 \nu^{2} + \cdots - 4608 ) / 352 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 73 \nu^{15} - 204 \nu^{14} + 109 \nu^{13} + 6 \nu^{12} + 365 \nu^{11} - 112 \nu^{10} - 1068 \nu^{9} + 960 \nu^{8} - 1252 \nu^{7} + 3072 \nu^{6} + 480 \nu^{5} - 4544 \nu^{4} + 80 \nu^{3} + \cdots - 13568 ) / 704 \)
|
\(\beta_{14}\) | \(=\) |
\( ( - 82 \nu^{15} + 201 \nu^{14} - 52 \nu^{13} + 13 \nu^{12} - 434 \nu^{11} - 51 \nu^{10} + 1138 \nu^{9} - 624 \nu^{8} + 1560 \nu^{7} - 2932 \nu^{6} - 1608 \nu^{5} + 3568 \nu^{4} + 992 \nu^{3} + \cdots + 9728 ) / 704 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 46 \nu^{15} + 129 \nu^{14} - 72 \nu^{13} + 3 \nu^{12} - 230 \nu^{11} + 87 \nu^{10} + 654 \nu^{9} - 686 \nu^{8} + 848 \nu^{7} - 1896 \nu^{6} - 112 \nu^{5} + 2744 \nu^{4} - 400 \nu^{3} + 2496 \nu^{2} + \cdots + 9760 ) / 352 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{8} + \beta_{5} - \beta_{4} + \beta_1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{14} - \beta_{13} + 2 \beta_{12} - \beta_{11} - 2 \beta_{10} + \beta_{8} + 2 \beta_{5} + \beta_{4} + 2 \beta_{3} + \beta_{2} + \beta _1 + 1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{15} + 2\beta_{12} + \beta_{9} + 2\beta_{8} + \beta_{7} + 2\beta_{4} + 3\beta_{3} - 2\beta_{2} + 2\beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{15} + 2 \beta_{14} - 2 \beta_{13} + 4 \beta_{12} + 2 \beta_{11} + 2 \beta_{9} + 2 \beta_{8} - 3 \beta_{7} + \beta_{6} + 3 \beta_{5} - 2 \beta_{4} + 4 \beta_{3} + 2 \beta_{2} + \beta _1 - 3 \)
|
\(\nu^{6}\) | \(=\) |
\( 3 \beta_{15} + 4 \beta_{14} + 4 \beta_{12} + 4 \beta_{11} - 4 \beta_{10} + \beta_{9} + 3 \beta_{8} + 3 \beta_{7} + 2 \beta_{6} + 3 \beta_{5} + 3 \beta_{4} + 7 \beta_{3} + \beta _1 - 2 \)
|
\(\nu^{7}\) | \(=\) |
\( 3 \beta_{15} + 3 \beta_{14} + 5 \beta_{13} + 6 \beta_{12} - 3 \beta_{11} + 4 \beta_{9} + \beta_{8} + 3 \beta_{7} + \beta_{6} - \beta_{5} + 5 \beta_{4} + 4 \beta_{3} - 5 \beta_{2} + 4 \beta _1 - 2 \)
|
\(\nu^{8}\) | \(=\) |
\( - 2 \beta_{15} + 4 \beta_{14} - 4 \beta_{13} + 2 \beta_{12} + 8 \beta_{11} + 4 \beta_{10} + 2 \beta_{9} - \beta_{8} - 2 \beta_{7} + 4 \beta_{6} - 5 \beta_{5} - \beta_{4} - 2 \beta_{3} - 2 \beta_{2} - 9 \beta_1 \)
|
\(\nu^{9}\) | \(=\) |
\( 2 \beta_{15} + 7 \beta_{14} + 5 \beta_{13} - 2 \beta_{12} + 5 \beta_{11} + 4 \beta_{9} - 5 \beta_{8} - 10 \beta_{7} + 2 \beta_{6} - 5 \beta_{4} + 6 \beta_{3} - \beta_{2} + 5 \beta _1 + 5 \)
|
\(\nu^{10}\) | \(=\) |
\( - 3 \beta_{15} + 2 \beta_{14} + 10 \beta_{13} - 10 \beta_{12} - 6 \beta_{11} - 11 \beta_{9} + 5 \beta_{7} + 4 \beta_{6} - 12 \beta_{5} - 13 \beta_{3} - 12 \beta_{2} + 8 \beta _1 - 6 \)
|
\(\nu^{11}\) | \(=\) |
\( - 13 \beta_{15} + 2 \beta_{14} - 6 \beta_{13} - 22 \beta_{11} - 16 \beta_{9} - 2 \beta_{8} - 17 \beta_{7} - 11 \beta_{6} + 15 \beta_{5} - 22 \beta_{4} - 18 \beta_{3} - 2 \beta_{2} + \beta _1 + 17 \)
|
\(\nu^{12}\) | \(=\) |
\( - 7 \beta_{15} - 20 \beta_{13} - 4 \beta_{12} - 20 \beta_{10} - 27 \beta_{9} + 7 \beta_{8} - 23 \beta_{7} - 16 \beta_{6} - 3 \beta_{5} + 23 \beta_{4} - \beta_{3} - 4 \beta_{2} + 7 \beta _1 + 20 \)
|
\(\nu^{13}\) | \(=\) |
\( 13 \beta_{15} - 13 \beta_{14} + 13 \beta_{13} + 14 \beta_{12} - 35 \beta_{11} + 16 \beta_{10} - 30 \beta_{9} + 27 \beta_{8} - 35 \beta_{7} - 27 \beta_{6} + 9 \beta_{5} - 33 \beta_{4} + 14 \beta_{3} - 13 \beta_{2} + 58 \beta _1 + 2 \)
|
\(\nu^{14}\) | \(=\) |
\( 30 \beta_{14} - 78 \beta_{13} + 54 \beta_{12} + 30 \beta_{11} - 60 \beta_{10} - 78 \beta_{9} + 45 \beta_{8} - 30 \beta_{6} + 77 \beta_{5} - 27 \beta_{4} - 2 \beta_{3} + 56 \beta_{2} + 15 \beta _1 - 60 \)
|
\(\nu^{15}\) | \(=\) |
\( 78 \beta_{15} + 15 \beta_{14} + 45 \beta_{13} + 90 \beta_{12} - 27 \beta_{11} - 72 \beta_{10} + 93 \beta_{8} + 34 \beta_{7} - 78 \beta_{6} + 66 \beta_{5} + 61 \beta_{4} + 90 \beta_{3} - 45 \beta_{2} + 111 \beta _1 + 61 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/52\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(41\) |
\(\chi(n)\) | \(-1\) | \(-\beta_{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−1.11223 | − | 0.873468i | −2.16981 | − | 1.25274i | 0.474107 | + | 1.94299i | −2.19962 | − | 2.19962i | 1.31910 | + | 3.28859i | 0.152604 | − | 0.569525i | 1.16983 | − | 2.57517i | 1.63871 | + | 2.83834i | 0.525184 | + | 4.36778i | ||||||||||||||||||||||||||||||||||||||||||||||||
7.2 | −0.526485 | + | 1.31256i | 2.16981 | + | 1.25274i | −1.44563 | − | 1.38209i | −2.19962 | − | 2.19962i | −2.78667 | + | 2.18846i | −0.152604 | + | 0.569525i | 2.57517 | − | 1.16983i | 1.63871 | + | 2.83834i | 4.04520 | − | 1.72907i | |||||||||||||||||||||||||||||||||||||||||||||||||
7.3 | 0.236640 | − | 1.39427i | 0.736159 | + | 0.425021i | −1.88800 | − | 0.659882i | −0.166404 | − | 0.166404i | 0.766801 | − | 0.925830i | −0.684384 | + | 2.55416i | −1.36683 | + | 2.47624i | −1.13871 | − | 1.97231i | −0.271390 | + | 0.192635i | |||||||||||||||||||||||||||||||||||||||||||||||||
7.4 | 0.902074 | + | 1.08916i | −0.736159 | − | 0.425021i | −0.372527 | + | 1.96500i | −0.166404 | − | 0.166404i | −0.201154 | − | 1.18519i | 0.684384 | − | 2.55416i | −2.47624 | + | 1.36683i | −1.13871 | − | 1.97231i | 0.0311314 | − | 0.331348i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.1 | −1.22094 | − | 0.713659i | 1.40004 | − | 0.808315i | 0.981383 | + | 1.74267i | −1.52798 | − | 1.52798i | −2.28623 | − | 0.0122495i | 1.97429 | − | 0.529008i | 0.0454612 | − | 2.82806i | −0.193255 | + | 0.334727i | 0.775114 | + | 2.95603i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.2 | −0.785427 | + | 1.17605i | 1.81380 | − | 1.04720i | −0.766209 | − | 1.84741i | 0.894007 | + | 0.894007i | −0.193046 | + | 2.95563i | −4.37156 | + | 1.17136i | 2.77446 | + | 0.549903i | 0.693255 | − | 1.20075i | −1.75358 | + | 0.349224i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.3 | 0.0921725 | + | 1.41121i | −1.81380 | + | 1.04720i | −1.98301 | + | 0.260149i | 0.894007 | + | 0.894007i | −1.64500 | − | 2.46313i | 4.37156 | − | 1.17136i | −0.549903 | − | 2.77446i | 0.693255 | − | 1.20075i | −1.17923 | + | 1.34403i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.4 | 1.41419 | − | 0.00757716i | −1.40004 | + | 0.808315i | 1.99989 | − | 0.0214311i | −1.52798 | − | 1.52798i | −1.97381 | + | 1.15372i | −1.97429 | + | 0.529008i | 2.82806 | − | 0.0454612i | −0.193255 | + | 0.334727i | −2.17244 | − | 2.14928i | |||||||||||||||||||||||||||||||||||||||||||||||||
15.1 | −1.11223 | + | 0.873468i | −2.16981 | + | 1.25274i | 0.474107 | − | 1.94299i | −2.19962 | + | 2.19962i | 1.31910 | − | 3.28859i | 0.152604 | + | 0.569525i | 1.16983 | + | 2.57517i | 1.63871 | − | 2.83834i | 0.525184 | − | 4.36778i | |||||||||||||||||||||||||||||||||||||||||||||||||
15.2 | −0.526485 | − | 1.31256i | 2.16981 | − | 1.25274i | −1.44563 | + | 1.38209i | −2.19962 | + | 2.19962i | −2.78667 | − | 2.18846i | −0.152604 | − | 0.569525i | 2.57517 | + | 1.16983i | 1.63871 | − | 2.83834i | 4.04520 | + | 1.72907i | |||||||||||||||||||||||||||||||||||||||||||||||||
15.3 | 0.236640 | + | 1.39427i | 0.736159 | − | 0.425021i | −1.88800 | + | 0.659882i | −0.166404 | + | 0.166404i | 0.766801 | + | 0.925830i | −0.684384 | − | 2.55416i | −1.36683 | − | 2.47624i | −1.13871 | + | 1.97231i | −0.271390 | − | 0.192635i | |||||||||||||||||||||||||||||||||||||||||||||||||
15.4 | 0.902074 | − | 1.08916i | −0.736159 | + | 0.425021i | −0.372527 | − | 1.96500i | −0.166404 | + | 0.166404i | −0.201154 | + | 1.18519i | 0.684384 | + | 2.55416i | −2.47624 | − | 1.36683i | −1.13871 | + | 1.97231i | 0.0311314 | + | 0.331348i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.1 | −1.22094 | + | 0.713659i | 1.40004 | + | 0.808315i | 0.981383 | − | 1.74267i | −1.52798 | + | 1.52798i | −2.28623 | + | 0.0122495i | 1.97429 | + | 0.529008i | 0.0454612 | + | 2.82806i | −0.193255 | − | 0.334727i | 0.775114 | − | 2.95603i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.2 | −0.785427 | − | 1.17605i | 1.81380 | + | 1.04720i | −0.766209 | + | 1.84741i | 0.894007 | − | 0.894007i | −0.193046 | − | 2.95563i | −4.37156 | − | 1.17136i | 2.77446 | − | 0.549903i | 0.693255 | + | 1.20075i | −1.75358 | − | 0.349224i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.3 | 0.0921725 | − | 1.41121i | −1.81380 | − | 1.04720i | −1.98301 | − | 0.260149i | 0.894007 | − | 0.894007i | −1.64500 | + | 2.46313i | 4.37156 | + | 1.17136i | −0.549903 | + | 2.77446i | 0.693255 | + | 1.20075i | −1.17923 | − | 1.34403i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.4 | 1.41419 | + | 0.00757716i | −1.40004 | − | 0.808315i | 1.99989 | + | 0.0214311i | −1.52798 | + | 1.52798i | −1.97381 | − | 1.15372i | −1.97429 | − | 0.529008i | 2.82806 | + | 0.0454612i | −0.193255 | − | 0.334727i | −2.17244 | + | 2.14928i | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
13.f | odd | 12 | 1 | inner |
52.l | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 52.2.l.b | ✓ | 16 |
3.b | odd | 2 | 1 | 468.2.cb.f | 16 | ||
4.b | odd | 2 | 1 | inner | 52.2.l.b | ✓ | 16 |
8.b | even | 2 | 1 | 832.2.bu.n | 16 | ||
8.d | odd | 2 | 1 | 832.2.bu.n | 16 | ||
12.b | even | 2 | 1 | 468.2.cb.f | 16 | ||
13.b | even | 2 | 1 | 676.2.l.k | 16 | ||
13.c | even | 3 | 1 | 676.2.f.h | 16 | ||
13.c | even | 3 | 1 | 676.2.l.m | 16 | ||
13.d | odd | 4 | 1 | 676.2.l.i | 16 | ||
13.d | odd | 4 | 1 | 676.2.l.m | 16 | ||
13.e | even | 6 | 1 | 676.2.f.i | 16 | ||
13.e | even | 6 | 1 | 676.2.l.i | 16 | ||
13.f | odd | 12 | 1 | inner | 52.2.l.b | ✓ | 16 |
13.f | odd | 12 | 1 | 676.2.f.h | 16 | ||
13.f | odd | 12 | 1 | 676.2.f.i | 16 | ||
13.f | odd | 12 | 1 | 676.2.l.k | 16 | ||
39.k | even | 12 | 1 | 468.2.cb.f | 16 | ||
52.b | odd | 2 | 1 | 676.2.l.k | 16 | ||
52.f | even | 4 | 1 | 676.2.l.i | 16 | ||
52.f | even | 4 | 1 | 676.2.l.m | 16 | ||
52.i | odd | 6 | 1 | 676.2.f.i | 16 | ||
52.i | odd | 6 | 1 | 676.2.l.i | 16 | ||
52.j | odd | 6 | 1 | 676.2.f.h | 16 | ||
52.j | odd | 6 | 1 | 676.2.l.m | 16 | ||
52.l | even | 12 | 1 | inner | 52.2.l.b | ✓ | 16 |
52.l | even | 12 | 1 | 676.2.f.h | 16 | ||
52.l | even | 12 | 1 | 676.2.f.i | 16 | ||
52.l | even | 12 | 1 | 676.2.l.k | 16 | ||
104.u | even | 12 | 1 | 832.2.bu.n | 16 | ||
104.x | odd | 12 | 1 | 832.2.bu.n | 16 | ||
156.v | odd | 12 | 1 | 468.2.cb.f | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
52.2.l.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
52.2.l.b | ✓ | 16 | 4.b | odd | 2 | 1 | inner |
52.2.l.b | ✓ | 16 | 13.f | odd | 12 | 1 | inner |
52.2.l.b | ✓ | 16 | 52.l | even | 12 | 1 | inner |
468.2.cb.f | 16 | 3.b | odd | 2 | 1 | ||
468.2.cb.f | 16 | 12.b | even | 2 | 1 | ||
468.2.cb.f | 16 | 39.k | even | 12 | 1 | ||
468.2.cb.f | 16 | 156.v | odd | 12 | 1 | ||
676.2.f.h | 16 | 13.c | even | 3 | 1 | ||
676.2.f.h | 16 | 13.f | odd | 12 | 1 | ||
676.2.f.h | 16 | 52.j | odd | 6 | 1 | ||
676.2.f.h | 16 | 52.l | even | 12 | 1 | ||
676.2.f.i | 16 | 13.e | even | 6 | 1 | ||
676.2.f.i | 16 | 13.f | odd | 12 | 1 | ||
676.2.f.i | 16 | 52.i | odd | 6 | 1 | ||
676.2.f.i | 16 | 52.l | even | 12 | 1 | ||
676.2.l.i | 16 | 13.d | odd | 4 | 1 | ||
676.2.l.i | 16 | 13.e | even | 6 | 1 | ||
676.2.l.i | 16 | 52.f | even | 4 | 1 | ||
676.2.l.i | 16 | 52.i | odd | 6 | 1 | ||
676.2.l.k | 16 | 13.b | even | 2 | 1 | ||
676.2.l.k | 16 | 13.f | odd | 12 | 1 | ||
676.2.l.k | 16 | 52.b | odd | 2 | 1 | ||
676.2.l.k | 16 | 52.l | even | 12 | 1 | ||
676.2.l.m | 16 | 13.c | even | 3 | 1 | ||
676.2.l.m | 16 | 13.d | odd | 4 | 1 | ||
676.2.l.m | 16 | 52.f | even | 4 | 1 | ||
676.2.l.m | 16 | 52.j | odd | 6 | 1 | ||
832.2.bu.n | 16 | 8.b | even | 2 | 1 | ||
832.2.bu.n | 16 | 8.d | odd | 2 | 1 | ||
832.2.bu.n | 16 | 104.u | even | 12 | 1 | ||
832.2.bu.n | 16 | 104.x | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{16} - 14T_{3}^{14} + 131T_{3}^{12} - 686T_{3}^{10} + 2605T_{3}^{8} - 5824T_{3}^{6} + 9164T_{3}^{4} - 5824T_{3}^{2} + 2704 \)
acting on \(S_{2}^{\mathrm{new}}(52, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} + 2 T^{15} + 5 T^{14} + 4 T^{13} + \cdots + 256 \)
$3$
\( T^{16} - 14 T^{14} + 131 T^{12} + \cdots + 2704 \)
$5$
\( (T^{8} + 6 T^{7} + 18 T^{6} + 18 T^{5} + \cdots + 4)^{2} \)
$7$
\( T^{16} - 30 T^{14} + 207 T^{12} + \cdots + 43264 \)
$11$
\( T^{16} + 18 T^{14} - 57 T^{12} + \cdots + 692224 \)
$13$
\( (T^{8} + 6 T^{7} + 33 T^{6} + 102 T^{5} + \cdots + 28561)^{2} \)
$17$
\( (T^{8} - 6 T^{7} + 2 T^{6} + 60 T^{5} + 39 T^{4} + \cdots + 1)^{2} \)
$19$
\( T^{16} - 54 T^{14} + 891 T^{12} + \cdots + 77228944 \)
$23$
\( T^{16} + 106 T^{14} + \cdots + 77228944 \)
$29$
\( (T^{8} + 4 T^{7} + 62 T^{6} + 304 T^{5} + \cdots + 51529)^{2} \)
$31$
\( T^{16} + 9072 T^{12} + \cdots + 1235663104 \)
$37$
\( (T^{4} + 4 T^{3} + 5 T^{2} + 2 T + 1)^{4} \)
$41$
\( (T^{4} - 12 T^{3} + 45 T^{2} - 54 T + 81)^{4} \)
$43$
\( T^{16} + 266 T^{14} + \cdots + 5671027857664 \)
$47$
\( T^{16} + 20976 T^{12} + \cdots + 5671027857664 \)
$53$
\( (T^{4} + 8 T^{3} - 3 T^{2} - 112 T - 128)^{4} \)
$59$
\( T^{16} + \cdots + 171720267307264 \)
$61$
\( (T^{8} - 2 T^{7} + 62 T^{6} - 200 T^{5} + \cdots + 6889)^{2} \)
$67$
\( T^{16} - 126 T^{14} + \cdots + 2205735869584 \)
$71$
\( T^{16} - 126 T^{14} + \cdots + 5067731344 \)
$73$
\( (T^{8} - 10 T^{7} + 50 T^{6} - 6 T^{5} + \cdots + 676)^{2} \)
$79$
\( (T^{8} + 160 T^{6} + 7040 T^{4} + \cdots + 53248)^{2} \)
$83$
\( T^{16} + \cdots + 538409280507904 \)
$89$
\( (T^{8} + 26 T^{7} + 215 T^{6} + \cdots + 2896804)^{2} \)
$97$
\( (T^{8} + 14 T^{7} + 323 T^{6} + 1812 T^{5} + \cdots + 2116)^{2} \)
show more
show less