Properties

Label 468.2.bw.a.245.8
Level $468$
Weight $2$
Character 468.245
Analytic conductor $3.737$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(149,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.bw (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 245.8
Character \(\chi\) \(=\) 468.245
Dual form 468.2.bw.a.149.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0136673 - 1.73200i) q^{3} +(2.03032 + 0.544024i) q^{5} +(-4.33109 - 1.16051i) q^{7} +(-2.99963 - 0.0473436i) q^{9} +(-3.26962 - 3.26962i) q^{11} +(-3.37661 - 1.26431i) q^{13} +(0.969996 - 3.50908i) q^{15} +(-1.12575 + 1.94986i) q^{17} +(6.39637 - 1.71390i) q^{19} +(-2.06920 + 7.48558i) q^{21} +(3.34811 - 5.79909i) q^{23} +(-0.503873 - 0.290911i) q^{25} +(-0.122996 + 5.19470i) q^{27} +0.297717i q^{29} +(0.00538704 - 0.0201047i) q^{31} +(-5.70765 + 5.61828i) q^{33} +(-8.16218 - 4.71244i) q^{35} +(5.91919 + 1.58604i) q^{37} +(-2.23594 + 5.83100i) q^{39} +(-2.03104 - 7.57993i) q^{41} +(0.683630 - 0.394694i) q^{43} +(-6.06446 - 1.72799i) q^{45} +(-10.7709 + 2.88605i) q^{47} +(11.3494 + 6.55259i) q^{49} +(3.36176 + 1.97645i) q^{51} -4.32687i q^{53} +(-4.85963 - 8.41713i) q^{55} +(-2.88105 - 11.1019i) q^{57} +(-2.56815 - 2.56815i) q^{59} +(7.34891 + 12.7287i) q^{61} +(12.9367 + 3.68616i) q^{63} +(-6.16780 - 4.40393i) q^{65} +(4.99170 - 1.33752i) q^{67} +(-9.99825 - 5.87817i) q^{69} +(2.28190 + 8.51617i) q^{71} +(2.45364 - 2.45364i) q^{73} +(-0.510744 + 0.868731i) q^{75} +(10.3666 + 17.9554i) q^{77} +(4.23744 - 7.33946i) q^{79} +(8.99552 + 0.284026i) q^{81} +(-1.57541 - 5.87950i) q^{83} +(-3.34641 + 3.34641i) q^{85} +(0.515645 + 0.00406899i) q^{87} +(4.04724 - 15.1045i) q^{89} +(13.1572 + 9.39447i) q^{91} +(-0.0347477 - 0.00960512i) q^{93} +13.9191 q^{95} +(0.573740 - 2.14123i) q^{97} +(9.65283 + 9.96242i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} + 4 q^{19} - 24 q^{21} + 8 q^{31} + 12 q^{33} - 66 q^{35} + 2 q^{37} + 24 q^{41} + 12 q^{43} - 30 q^{47} + 30 q^{57} + 84 q^{63} + 6 q^{65} + 28 q^{67} - 36 q^{69} + 24 q^{71} - 14 q^{73}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0136673 1.73200i 0.00789084 0.999969i
\(4\) 0 0
\(5\) 2.03032 + 0.544024i 0.907989 + 0.243295i 0.682444 0.730938i \(-0.260917\pi\)
0.225545 + 0.974233i \(0.427584\pi\)
\(6\) 0 0
\(7\) −4.33109 1.16051i −1.63700 0.438633i −0.681068 0.732220i \(-0.738484\pi\)
−0.955932 + 0.293588i \(0.905151\pi\)
\(8\) 0 0
\(9\) −2.99963 0.0473436i −0.999875 0.0157812i
\(10\) 0 0
\(11\) −3.26962 3.26962i −0.985826 0.985826i 0.0140749 0.999901i \(-0.495520\pi\)
−0.999901 + 0.0140749i \(0.995520\pi\)
\(12\) 0 0
\(13\) −3.37661 1.26431i −0.936504 0.350658i
\(14\) 0 0
\(15\) 0.969996 3.50908i 0.250452 0.906040i
\(16\) 0 0
\(17\) −1.12575 + 1.94986i −0.273035 + 0.472910i −0.969637 0.244547i \(-0.921361\pi\)
0.696603 + 0.717457i \(0.254694\pi\)
\(18\) 0 0
\(19\) 6.39637 1.71390i 1.46743 0.393196i 0.565380 0.824831i \(-0.308730\pi\)
0.902049 + 0.431634i \(0.142063\pi\)
\(20\) 0 0
\(21\) −2.06920 + 7.48558i −0.451536 + 1.63349i
\(22\) 0 0
\(23\) 3.34811 5.79909i 0.698129 1.20919i −0.270986 0.962583i \(-0.587350\pi\)
0.969115 0.246611i \(-0.0793170\pi\)
\(24\) 0 0
\(25\) −0.503873 0.290911i −0.100775 0.0581823i
\(26\) 0 0
\(27\) −0.122996 + 5.19470i −0.0236705 + 0.999720i
\(28\) 0 0
\(29\) 0.297717i 0.0552846i 0.999618 + 0.0276423i \(0.00879994\pi\)
−0.999618 + 0.0276423i \(0.991200\pi\)
\(30\) 0 0
\(31\) 0.00538704 0.0201047i 0.000967541 0.00361091i −0.965440 0.260624i \(-0.916072\pi\)
0.966408 + 0.257013i \(0.0827384\pi\)
\(32\) 0 0
\(33\) −5.70765 + 5.61828i −0.993574 + 0.978016i
\(34\) 0 0
\(35\) −8.16218 4.71244i −1.37966 0.796547i
\(36\) 0 0
\(37\) 5.91919 + 1.58604i 0.973109 + 0.260744i 0.710140 0.704061i \(-0.248632\pi\)
0.262969 + 0.964804i \(0.415298\pi\)
\(38\) 0 0
\(39\) −2.23594 + 5.83100i −0.358037 + 0.933708i
\(40\) 0 0
\(41\) −2.03104 7.57993i −0.317195 1.18379i −0.921929 0.387359i \(-0.873387\pi\)
0.604734 0.796427i \(-0.293279\pi\)
\(42\) 0 0
\(43\) 0.683630 0.394694i 0.104253 0.0601903i −0.446967 0.894550i \(-0.647496\pi\)
0.551220 + 0.834360i \(0.314163\pi\)
\(44\) 0 0
\(45\) −6.06446 1.72799i −0.904036 0.257594i
\(46\) 0 0
\(47\) −10.7709 + 2.88605i −1.57109 + 0.420973i −0.936155 0.351589i \(-0.885642\pi\)
−0.634939 + 0.772562i \(0.718975\pi\)
\(48\) 0 0
\(49\) 11.3494 + 6.55259i 1.62134 + 0.936084i
\(50\) 0 0
\(51\) 3.36176 + 1.97645i 0.470741 + 0.276758i
\(52\) 0 0
\(53\) 4.32687i 0.594342i −0.954824 0.297171i \(-0.903957\pi\)
0.954824 0.297171i \(-0.0960431\pi\)
\(54\) 0 0
\(55\) −4.85963 8.41713i −0.655272 1.13497i
\(56\) 0 0
\(57\) −2.88105 11.1019i −0.381605 1.47049i
\(58\) 0 0
\(59\) −2.56815 2.56815i −0.334345 0.334345i 0.519889 0.854234i \(-0.325973\pi\)
−0.854234 + 0.519889i \(0.825973\pi\)
\(60\) 0 0
\(61\) 7.34891 + 12.7287i 0.940931 + 1.62974i 0.763700 + 0.645571i \(0.223381\pi\)
0.177231 + 0.984169i \(0.443286\pi\)
\(62\) 0 0
\(63\) 12.9367 + 3.68616i 1.62987 + 0.464412i
\(64\) 0 0
\(65\) −6.16780 4.40393i −0.765021 0.546240i
\(66\) 0 0
\(67\) 4.99170 1.33752i 0.609833 0.163404i 0.0593315 0.998238i \(-0.481103\pi\)
0.550502 + 0.834834i \(0.314436\pi\)
\(68\) 0 0
\(69\) −9.99825 5.87817i −1.20365 0.707648i
\(70\) 0 0
\(71\) 2.28190 + 8.51617i 0.270812 + 1.01068i 0.958596 + 0.284769i \(0.0919168\pi\)
−0.687784 + 0.725915i \(0.741417\pi\)
\(72\) 0 0
\(73\) 2.45364 2.45364i 0.287176 0.287176i −0.548786 0.835963i \(-0.684910\pi\)
0.835963 + 0.548786i \(0.184910\pi\)
\(74\) 0 0
\(75\) −0.510744 + 0.868731i −0.0589756 + 0.100312i
\(76\) 0 0
\(77\) 10.3666 + 17.9554i 1.18138 + 2.04621i
\(78\) 0 0
\(79\) 4.23744 7.33946i 0.476749 0.825753i −0.522896 0.852396i \(-0.675148\pi\)
0.999645 + 0.0266431i \(0.00848178\pi\)
\(80\) 0 0
\(81\) 8.99552 + 0.284026i 0.999502 + 0.0315584i
\(82\) 0 0
\(83\) −1.57541 5.87950i −0.172923 0.645359i −0.996896 0.0787294i \(-0.974914\pi\)
0.823973 0.566630i \(-0.191753\pi\)
\(84\) 0 0
\(85\) −3.34641 + 3.34641i −0.362969 + 0.362969i
\(86\) 0 0
\(87\) 0.515645 + 0.00406899i 0.0552829 + 0.000436242i
\(88\) 0 0
\(89\) 4.04724 15.1045i 0.429007 1.60108i −0.326008 0.945367i \(-0.605704\pi\)
0.755014 0.655708i \(-0.227630\pi\)
\(90\) 0 0
\(91\) 13.1572 + 9.39447i 1.37925 + 0.984808i
\(92\) 0 0
\(93\) −0.0347477 0.00960512i −0.00360317 0.000996004i
\(94\) 0 0
\(95\) 13.9191 1.42807
\(96\) 0 0
\(97\) 0.573740 2.14123i 0.0582544 0.217409i −0.930662 0.365879i \(-0.880768\pi\)
0.988917 + 0.148471i \(0.0474350\pi\)
\(98\) 0 0
\(99\) 9.65283 + 9.96242i 0.970146 + 1.00126i
\(100\) 0 0
\(101\) 4.37617 0.435445 0.217723 0.976011i \(-0.430137\pi\)
0.217723 + 0.976011i \(0.430137\pi\)
\(102\) 0 0
\(103\) 3.36780 1.94440i 0.331839 0.191587i −0.324818 0.945776i \(-0.605303\pi\)
0.656657 + 0.754189i \(0.271970\pi\)
\(104\) 0 0
\(105\) −8.27348 + 14.0725i −0.807409 + 1.37333i
\(106\) 0 0
\(107\) −2.82575 + 1.63145i −0.273176 + 0.157718i −0.630330 0.776327i \(-0.717080\pi\)
0.357154 + 0.934045i \(0.383747\pi\)
\(108\) 0 0
\(109\) −0.398131 0.398131i −0.0381340 0.0381340i 0.687783 0.725917i \(-0.258584\pi\)
−0.725917 + 0.687783i \(0.758584\pi\)
\(110\) 0 0
\(111\) 2.82792 10.2303i 0.268414 0.971021i
\(112\) 0 0
\(113\) 12.9836i 1.22139i 0.791865 + 0.610696i \(0.209110\pi\)
−0.791865 + 0.610696i \(0.790890\pi\)
\(114\) 0 0
\(115\) 9.95259 9.95259i 0.928083 0.928083i
\(116\) 0 0
\(117\) 10.0687 + 3.95233i 0.930853 + 0.365393i
\(118\) 0 0
\(119\) 7.13857 7.13857i 0.654391 0.654391i
\(120\) 0 0
\(121\) 10.3808i 0.943706i
\(122\) 0 0
\(123\) −13.1562 + 3.41415i −1.18625 + 0.307844i
\(124\) 0 0
\(125\) −8.29626 8.29626i −0.742040 0.742040i
\(126\) 0 0
\(127\) −14.3435 + 8.28122i −1.27278 + 0.734839i −0.975510 0.219955i \(-0.929409\pi\)
−0.297268 + 0.954794i \(0.596076\pi\)
\(128\) 0 0
\(129\) −0.674266 1.18944i −0.0593658 0.104724i
\(130\) 0 0
\(131\) −1.15647 + 0.667686i −0.101041 + 0.0583360i −0.549669 0.835383i \(-0.685246\pi\)
0.448628 + 0.893719i \(0.351913\pi\)
\(132\) 0 0
\(133\) −29.6923 −2.57465
\(134\) 0 0
\(135\) −3.07576 + 10.4800i −0.264719 + 0.901975i
\(136\) 0 0
\(137\) 4.87994 18.2122i 0.416921 1.55597i −0.364036 0.931385i \(-0.618601\pi\)
0.780957 0.624585i \(-0.214732\pi\)
\(138\) 0 0
\(139\) −2.66207 −0.225794 −0.112897 0.993607i \(-0.536013\pi\)
−0.112897 + 0.993607i \(0.536013\pi\)
\(140\) 0 0
\(141\) 4.85142 + 18.6946i 0.408563 + 1.57437i
\(142\) 0 0
\(143\) 6.90640 + 15.1740i 0.577542 + 1.26892i
\(144\) 0 0
\(145\) −0.161965 + 0.604462i −0.0134505 + 0.0501978i
\(146\) 0 0
\(147\) 11.5042 19.5676i 0.948848 1.61391i
\(148\) 0 0
\(149\) 5.66297 5.66297i 0.463929 0.463929i −0.436012 0.899941i \(-0.643610\pi\)
0.899941 + 0.436012i \(0.143610\pi\)
\(150\) 0 0
\(151\) 1.17884 + 4.39949i 0.0959326 + 0.358025i 0.997159 0.0753229i \(-0.0239987\pi\)
−0.901227 + 0.433348i \(0.857332\pi\)
\(152\) 0 0
\(153\) 3.46914 5.79555i 0.280464 0.468542i
\(154\) 0 0
\(155\) 0.0218749 0.0378884i 0.00175703 0.00304327i
\(156\) 0 0
\(157\) −3.77808 6.54383i −0.301524 0.522254i 0.674958 0.737857i \(-0.264162\pi\)
−0.976481 + 0.215602i \(0.930829\pi\)
\(158\) 0 0
\(159\) −7.49413 0.0591368i −0.594323 0.00468985i
\(160\) 0 0
\(161\) −21.2309 + 21.2309i −1.67323 + 1.67323i
\(162\) 0 0
\(163\) −6.42642 23.9837i −0.503356 1.87855i −0.477009 0.878898i \(-0.658279\pi\)
−0.0263474 0.999653i \(-0.508388\pi\)
\(164\) 0 0
\(165\) −14.6449 + 8.30182i −1.14010 + 0.646296i
\(166\) 0 0
\(167\) −9.16934 + 2.45692i −0.709545 + 0.190122i −0.595502 0.803354i \(-0.703047\pi\)
−0.114043 + 0.993476i \(0.536380\pi\)
\(168\) 0 0
\(169\) 9.80302 + 8.53820i 0.754078 + 0.656785i
\(170\) 0 0
\(171\) −19.2679 + 4.83824i −1.47345 + 0.369990i
\(172\) 0 0
\(173\) 8.11178 + 14.0500i 0.616727 + 1.06820i 0.990079 + 0.140513i \(0.0448752\pi\)
−0.373352 + 0.927690i \(0.621791\pi\)
\(174\) 0 0
\(175\) 1.84472 + 1.84472i 0.139447 + 0.139447i
\(176\) 0 0
\(177\) −4.48313 + 4.41293i −0.336972 + 0.331696i
\(178\) 0 0
\(179\) 0.516398 + 0.894428i 0.0385974 + 0.0668527i 0.884679 0.466201i \(-0.154378\pi\)
−0.846081 + 0.533054i \(0.821044\pi\)
\(180\) 0 0
\(181\) 2.32376i 0.172724i 0.996264 + 0.0863620i \(0.0275242\pi\)
−0.996264 + 0.0863620i \(0.972476\pi\)
\(182\) 0 0
\(183\) 22.1465 12.5543i 1.63711 0.928042i
\(184\) 0 0
\(185\) 11.1550 + 6.44036i 0.820134 + 0.473504i
\(186\) 0 0
\(187\) 10.0561 2.69451i 0.735372 0.197042i
\(188\) 0 0
\(189\) 6.56122 22.3560i 0.477259 1.62616i
\(190\) 0 0
\(191\) 20.5074 11.8399i 1.48386 0.856707i 0.484028 0.875052i \(-0.339173\pi\)
0.999832 + 0.0183456i \(0.00583991\pi\)
\(192\) 0 0
\(193\) −0.266914 0.996138i −0.0192129 0.0717036i 0.955654 0.294492i \(-0.0951506\pi\)
−0.974867 + 0.222789i \(0.928484\pi\)
\(194\) 0 0
\(195\) −7.71188 + 10.6224i −0.552259 + 0.760687i
\(196\) 0 0
\(197\) −15.5162 4.15756i −1.10548 0.296214i −0.340488 0.940249i \(-0.610592\pi\)
−0.764996 + 0.644035i \(0.777259\pi\)
\(198\) 0 0
\(199\) 17.6176 + 10.1715i 1.24888 + 0.721040i 0.970886 0.239543i \(-0.0769977\pi\)
0.277992 + 0.960583i \(0.410331\pi\)
\(200\) 0 0
\(201\) −2.24836 8.66389i −0.158587 0.611104i
\(202\) 0 0
\(203\) 0.345504 1.28944i 0.0242496 0.0905009i
\(204\) 0 0
\(205\) 16.4947i 1.15204i
\(206\) 0 0
\(207\) −10.3176 + 17.2366i −0.717124 + 1.19803i
\(208\) 0 0
\(209\) −26.5175 15.3099i −1.83425 1.05901i
\(210\) 0 0
\(211\) 5.29402 9.16950i 0.364455 0.631255i −0.624233 0.781238i \(-0.714589\pi\)
0.988689 + 0.149983i \(0.0479219\pi\)
\(212\) 0 0
\(213\) 14.7812 3.83585i 1.01279 0.262828i
\(214\) 0 0
\(215\) 1.60271 0.429446i 0.109304 0.0292880i
\(216\) 0 0
\(217\) −0.0466636 + 0.0808237i −0.00316773 + 0.00548667i
\(218\) 0 0
\(219\) −4.21616 4.28322i −0.284901 0.289434i
\(220\) 0 0
\(221\) 6.26646 5.16061i 0.421527 0.347140i
\(222\) 0 0
\(223\) 12.5450 + 12.5450i 0.840075 + 0.840075i 0.988868 0.148794i \(-0.0475390\pi\)
−0.148794 + 0.988868i \(0.547539\pi\)
\(224\) 0 0
\(225\) 1.49766 + 0.896480i 0.0998439 + 0.0597654i
\(226\) 0 0
\(227\) −25.3042 6.78025i −1.67950 0.450021i −0.711853 0.702328i \(-0.752144\pi\)
−0.967647 + 0.252307i \(0.918811\pi\)
\(228\) 0 0
\(229\) 8.41036 + 2.25355i 0.555772 + 0.148919i 0.525763 0.850631i \(-0.323780\pi\)
0.0300088 + 0.999550i \(0.490446\pi\)
\(230\) 0 0
\(231\) 31.2405 17.7095i 2.05547 1.16520i
\(232\) 0 0
\(233\) 8.30872 0.544322 0.272161 0.962252i \(-0.412262\pi\)
0.272161 + 0.962252i \(0.412262\pi\)
\(234\) 0 0
\(235\) −23.4384 −1.52896
\(236\) 0 0
\(237\) −12.6540 7.43954i −0.821966 0.483250i
\(238\) 0 0
\(239\) −23.5124 6.30014i −1.52089 0.407522i −0.600857 0.799357i \(-0.705174\pi\)
−0.920036 + 0.391835i \(0.871840\pi\)
\(240\) 0 0
\(241\) −4.09572 1.09744i −0.263829 0.0706926i 0.124480 0.992222i \(-0.460274\pi\)
−0.388308 + 0.921529i \(0.626940\pi\)
\(242\) 0 0
\(243\) 0.614877 15.5763i 0.0394444 0.999222i
\(244\) 0 0
\(245\) 19.4782 + 19.4782i 1.24442 + 1.24442i
\(246\) 0 0
\(247\) −23.7650 2.29984i −1.51213 0.146335i
\(248\) 0 0
\(249\) −10.2048 + 2.64824i −0.646703 + 0.167826i
\(250\) 0 0
\(251\) −1.74440 + 3.02138i −0.110105 + 0.190708i −0.915813 0.401606i \(-0.868452\pi\)
0.805707 + 0.592314i \(0.201786\pi\)
\(252\) 0 0
\(253\) −29.9078 + 8.01378i −1.88029 + 0.503822i
\(254\) 0 0
\(255\) 5.75023 + 5.84170i 0.360093 + 0.365822i
\(256\) 0 0
\(257\) 11.0876 19.2043i 0.691626 1.19793i −0.279678 0.960094i \(-0.590228\pi\)
0.971305 0.237838i \(-0.0764388\pi\)
\(258\) 0 0
\(259\) −23.7959 13.7386i −1.47861 0.853675i
\(260\) 0 0
\(261\) 0.0140950 0.893039i 0.000872457 0.0552777i
\(262\) 0 0
\(263\) 8.17887i 0.504331i 0.967684 + 0.252166i \(0.0811427\pi\)
−0.967684 + 0.252166i \(0.918857\pi\)
\(264\) 0 0
\(265\) 2.35392 8.78496i 0.144600 0.539656i
\(266\) 0 0
\(267\) −26.1057 7.21625i −1.59764 0.441627i
\(268\) 0 0
\(269\) 3.02873 + 1.74864i 0.184665 + 0.106616i 0.589483 0.807781i \(-0.299332\pi\)
−0.404818 + 0.914397i \(0.632665\pi\)
\(270\) 0 0
\(271\) 4.08370 + 1.09422i 0.248067 + 0.0664693i 0.380710 0.924695i \(-0.375680\pi\)
−0.132643 + 0.991164i \(0.542346\pi\)
\(272\) 0 0
\(273\) 16.4510 22.6598i 0.995661 1.37143i
\(274\) 0 0
\(275\) 0.696303 + 2.59864i 0.0419887 + 0.156704i
\(276\) 0 0
\(277\) −18.6202 + 10.7504i −1.11878 + 0.645929i −0.941090 0.338157i \(-0.890196\pi\)
−0.177692 + 0.984086i \(0.556863\pi\)
\(278\) 0 0
\(279\) −0.0171109 + 0.0600516i −0.00102441 + 0.00359519i
\(280\) 0 0
\(281\) 6.44983 1.72823i 0.384765 0.103097i −0.0612514 0.998122i \(-0.519509\pi\)
0.446016 + 0.895025i \(0.352842\pi\)
\(282\) 0 0
\(283\) −18.4334 10.6425i −1.09575 0.632633i −0.160650 0.987011i \(-0.551359\pi\)
−0.935102 + 0.354379i \(0.884692\pi\)
\(284\) 0 0
\(285\) 0.190237 24.1079i 0.0112687 1.42803i
\(286\) 0 0
\(287\) 35.1865i 2.07699i
\(288\) 0 0
\(289\) 5.96537 + 10.3323i 0.350904 + 0.607784i
\(290\) 0 0
\(291\) −3.70076 1.02298i −0.216942 0.0599682i
\(292\) 0 0
\(293\) 1.95642 + 1.95642i 0.114295 + 0.114295i 0.761941 0.647646i \(-0.224246\pi\)
−0.647646 + 0.761941i \(0.724246\pi\)
\(294\) 0 0
\(295\) −3.81704 6.61131i −0.222237 0.384925i
\(296\) 0 0
\(297\) 17.3868 16.5825i 1.00888 0.962215i
\(298\) 0 0
\(299\) −18.6371 + 15.3482i −1.07781 + 0.887611i
\(300\) 0 0
\(301\) −3.41892 + 0.916096i −0.197063 + 0.0528029i
\(302\) 0 0
\(303\) 0.0598106 7.57951i 0.00343603 0.435432i
\(304\) 0 0
\(305\) 7.99596 + 29.8413i 0.457847 + 1.70871i
\(306\) 0 0
\(307\) −18.0252 + 18.0252i −1.02875 + 1.02875i −0.0291785 + 0.999574i \(0.509289\pi\)
−0.999574 + 0.0291785i \(0.990711\pi\)
\(308\) 0 0
\(309\) −3.32166 5.85959i −0.188963 0.333340i
\(310\) 0 0
\(311\) 3.31606 + 5.74359i 0.188037 + 0.325689i 0.944596 0.328236i \(-0.106454\pi\)
−0.756559 + 0.653926i \(0.773121\pi\)
\(312\) 0 0
\(313\) 4.21383 7.29857i 0.238180 0.412539i −0.722012 0.691880i \(-0.756783\pi\)
0.960192 + 0.279341i \(0.0901159\pi\)
\(314\) 0 0
\(315\) 24.2604 + 14.5220i 1.36692 + 0.818221i
\(316\) 0 0
\(317\) −4.76158 17.7705i −0.267437 0.998089i −0.960742 0.277444i \(-0.910513\pi\)
0.693305 0.720645i \(-0.256154\pi\)
\(318\) 0 0
\(319\) 0.973419 0.973419i 0.0545010 0.0545010i
\(320\) 0 0
\(321\) 2.78705 + 4.91650i 0.155558 + 0.274412i
\(322\) 0 0
\(323\) −3.85886 + 14.4014i −0.214712 + 0.801318i
\(324\) 0 0
\(325\) 1.33358 + 1.61935i 0.0739737 + 0.0898253i
\(326\) 0 0
\(327\) −0.695002 + 0.684120i −0.0384337 + 0.0378319i
\(328\) 0 0
\(329\) 49.9990 2.75653
\(330\) 0 0
\(331\) −1.64708 + 6.14697i −0.0905315 + 0.337868i −0.996304 0.0858958i \(-0.972625\pi\)
0.905773 + 0.423764i \(0.139291\pi\)
\(332\) 0 0
\(333\) −17.6803 5.03777i −0.968873 0.276068i
\(334\) 0 0
\(335\) 10.8624 0.593477
\(336\) 0 0
\(337\) −17.8689 + 10.3166i −0.973381 + 0.561982i −0.900265 0.435342i \(-0.856628\pi\)
−0.0731159 + 0.997323i \(0.523294\pi\)
\(338\) 0 0
\(339\) 22.4875 + 0.177451i 1.22135 + 0.00963781i
\(340\) 0 0
\(341\) −0.0833482 + 0.0481211i −0.00451356 + 0.00260590i
\(342\) 0 0
\(343\) −19.3569 19.3569i −1.04518 1.04518i
\(344\) 0 0
\(345\) −17.1018 17.3739i −0.920731 0.935378i
\(346\) 0 0
\(347\) 13.8268i 0.742264i 0.928580 + 0.371132i \(0.121030\pi\)
−0.928580 + 0.371132i \(0.878970\pi\)
\(348\) 0 0
\(349\) −4.74820 + 4.74820i −0.254166 + 0.254166i −0.822676 0.568510i \(-0.807520\pi\)
0.568510 + 0.822676i \(0.307520\pi\)
\(350\) 0 0
\(351\) 6.98304 17.3850i 0.372727 0.927941i
\(352\) 0 0
\(353\) 6.47776 6.47776i 0.344776 0.344776i −0.513383 0.858160i \(-0.671608\pi\)
0.858160 + 0.513383i \(0.171608\pi\)
\(354\) 0 0
\(355\) 18.5320i 0.983576i
\(356\) 0 0
\(357\) −12.2664 12.4615i −0.649207 0.659535i
\(358\) 0 0
\(359\) 5.81523 + 5.81523i 0.306916 + 0.306916i 0.843712 0.536796i \(-0.180366\pi\)
−0.536796 + 0.843712i \(0.680366\pi\)
\(360\) 0 0
\(361\) 21.5217 12.4255i 1.13272 0.653975i
\(362\) 0 0
\(363\) 17.9795 + 0.141877i 0.943677 + 0.00744663i
\(364\) 0 0
\(365\) 6.31651 3.64684i 0.330621 0.190884i
\(366\) 0 0
\(367\) 34.5708 1.80458 0.902291 0.431127i \(-0.141884\pi\)
0.902291 + 0.431127i \(0.141884\pi\)
\(368\) 0 0
\(369\) 5.73349 + 22.8331i 0.298474 + 1.18864i
\(370\) 0 0
\(371\) −5.02139 + 18.7401i −0.260698 + 0.972937i
\(372\) 0 0
\(373\) −1.15565 −0.0598372 −0.0299186 0.999552i \(-0.509525\pi\)
−0.0299186 + 0.999552i \(0.509525\pi\)
\(374\) 0 0
\(375\) −14.4825 + 14.2557i −0.747873 + 0.736162i
\(376\) 0 0
\(377\) 0.376408 1.00527i 0.0193860 0.0517743i
\(378\) 0 0
\(379\) 2.85386 10.6507i 0.146593 0.547092i −0.853087 0.521770i \(-0.825272\pi\)
0.999679 0.0253224i \(-0.00806123\pi\)
\(380\) 0 0
\(381\) 14.1470 + 24.9561i 0.724773 + 1.27854i
\(382\) 0 0
\(383\) −19.6227 + 19.6227i −1.00267 + 1.00267i −0.00267678 + 0.999996i \(0.500852\pi\)
−0.999996 + 0.00267678i \(0.999148\pi\)
\(384\) 0 0
\(385\) 11.2793 + 42.0950i 0.574848 + 2.14536i
\(386\) 0 0
\(387\) −2.06932 + 1.15157i −0.105190 + 0.0585376i
\(388\) 0 0
\(389\) 10.4710 18.1363i 0.530901 0.919547i −0.468449 0.883491i \(-0.655187\pi\)
0.999350 0.0360565i \(-0.0114796\pi\)
\(390\) 0 0
\(391\) 7.53827 + 13.0567i 0.381227 + 0.660304i
\(392\) 0 0
\(393\) 1.14062 + 2.01212i 0.0575369 + 0.101498i
\(394\) 0 0
\(395\) 12.5962 12.5962i 0.633784 0.633784i
\(396\) 0 0
\(397\) 0.349912 + 1.30589i 0.0175616 + 0.0655407i 0.974151 0.225900i \(-0.0725322\pi\)
−0.956589 + 0.291440i \(0.905866\pi\)
\(398\) 0 0
\(399\) −0.405815 + 51.4270i −0.0203161 + 2.57457i
\(400\) 0 0
\(401\) −32.5628 + 8.72519i −1.62611 + 0.435715i −0.952789 0.303634i \(-0.901800\pi\)
−0.673322 + 0.739349i \(0.735133\pi\)
\(402\) 0 0
\(403\) −0.0436086 + 0.0610749i −0.00217230 + 0.00304236i
\(404\) 0 0
\(405\) 18.1093 + 5.47044i 0.899858 + 0.271828i
\(406\) 0 0
\(407\) −14.1677 24.5392i −0.702268 1.21636i
\(408\) 0 0
\(409\) 5.48526 + 5.48526i 0.271228 + 0.271228i 0.829595 0.558366i \(-0.188572\pi\)
−0.558366 + 0.829595i \(0.688572\pi\)
\(410\) 0 0
\(411\) −31.4767 8.70094i −1.55263 0.429186i
\(412\) 0 0
\(413\) 8.14253 + 14.1033i 0.400668 + 0.693977i
\(414\) 0 0
\(415\) 12.7944i 0.628050i
\(416\) 0 0
\(417\) −0.0363835 + 4.61070i −0.00178171 + 0.225787i
\(418\) 0 0
\(419\) −32.6192 18.8327i −1.59355 0.920037i −0.992691 0.120683i \(-0.961492\pi\)
−0.600860 0.799354i \(-0.705175\pi\)
\(420\) 0 0
\(421\) 8.56415 2.29476i 0.417391 0.111840i −0.0440103 0.999031i \(-0.514013\pi\)
0.461402 + 0.887191i \(0.347347\pi\)
\(422\) 0 0
\(423\) 32.4452 8.14713i 1.57754 0.396127i
\(424\) 0 0
\(425\) 1.13447 0.654987i 0.0550299 0.0317715i
\(426\) 0 0
\(427\) −17.0570 63.6576i −0.825447 3.08061i
\(428\) 0 0
\(429\) 26.3758 11.7545i 1.27344 0.567511i
\(430\) 0 0
\(431\) 4.98825 + 1.33660i 0.240275 + 0.0643816i 0.376947 0.926235i \(-0.376974\pi\)
−0.136672 + 0.990616i \(0.543641\pi\)
\(432\) 0 0
\(433\) 11.0611 + 6.38615i 0.531564 + 0.306899i 0.741653 0.670784i \(-0.234042\pi\)
−0.210089 + 0.977682i \(0.567375\pi\)
\(434\) 0 0
\(435\) 1.04471 + 0.288784i 0.0500901 + 0.0138461i
\(436\) 0 0
\(437\) 11.4767 42.8315i 0.549003 2.04891i
\(438\) 0 0
\(439\) 16.6598i 0.795130i −0.917574 0.397565i \(-0.869855\pi\)
0.917574 0.397565i \(-0.130145\pi\)
\(440\) 0 0
\(441\) −33.7338 20.1926i −1.60637 0.961554i
\(442\) 0 0
\(443\) 14.6094 + 8.43471i 0.694111 + 0.400745i 0.805150 0.593071i \(-0.202085\pi\)
−0.111039 + 0.993816i \(0.535418\pi\)
\(444\) 0 0
\(445\) 16.4344 28.4653i 0.779067 1.34938i
\(446\) 0 0
\(447\) −9.73085 9.88564i −0.460253 0.467575i
\(448\) 0 0
\(449\) 5.25531 1.40816i 0.248014 0.0664550i −0.132671 0.991160i \(-0.542355\pi\)
0.380684 + 0.924705i \(0.375689\pi\)
\(450\) 0 0
\(451\) −18.1428 + 31.4242i −0.854309 + 1.47971i
\(452\) 0 0
\(453\) 7.63601 1.98162i 0.358771 0.0931045i
\(454\) 0 0
\(455\) 21.6025 + 26.2316i 1.01274 + 1.22976i
\(456\) 0 0
\(457\) 3.63248 + 3.63248i 0.169920 + 0.169920i 0.786944 0.617024i \(-0.211662\pi\)
−0.617024 + 0.786944i \(0.711662\pi\)
\(458\) 0 0
\(459\) −9.99045 6.08776i −0.466314 0.284152i
\(460\) 0 0
\(461\) 17.8341 + 4.77863i 0.830616 + 0.222563i 0.648982 0.760803i \(-0.275195\pi\)
0.181634 + 0.983366i \(0.441862\pi\)
\(462\) 0 0
\(463\) 19.5812 + 5.24676i 0.910014 + 0.243838i 0.683312 0.730127i \(-0.260539\pi\)
0.226702 + 0.973964i \(0.427206\pi\)
\(464\) 0 0
\(465\) −0.0653236 0.0384051i −0.00302931 0.00178099i
\(466\) 0 0
\(467\) 20.4136 0.944630 0.472315 0.881430i \(-0.343418\pi\)
0.472315 + 0.881430i \(0.343418\pi\)
\(468\) 0 0
\(469\) −23.1717 −1.06997
\(470\) 0 0
\(471\) −11.3855 + 6.45419i −0.524617 + 0.297393i
\(472\) 0 0
\(473\) −3.52571 0.944710i −0.162112 0.0434378i
\(474\) 0 0
\(475\) −3.72155 0.997188i −0.170757 0.0457541i
\(476\) 0 0
\(477\) −0.204850 + 12.9790i −0.00937942 + 0.594268i
\(478\) 0 0
\(479\) 23.5105 + 23.5105i 1.07422 + 1.07422i 0.997015 + 0.0772046i \(0.0245995\pi\)
0.0772046 + 0.997015i \(0.475401\pi\)
\(480\) 0 0
\(481\) −17.9815 12.8392i −0.819888 0.585415i
\(482\) 0 0
\(483\) 36.4817 + 37.0620i 1.65997 + 1.68638i
\(484\) 0 0
\(485\) 2.32976 4.03525i 0.105789 0.183231i
\(486\) 0 0
\(487\) 21.2583 5.69613i 0.963303 0.258116i 0.257305 0.966330i \(-0.417165\pi\)
0.705998 + 0.708214i \(0.250499\pi\)
\(488\) 0 0
\(489\) −41.6276 + 10.8028i −1.88246 + 0.488517i
\(490\) 0 0
\(491\) −3.92229 + 6.79361i −0.177011 + 0.306591i −0.940855 0.338809i \(-0.889976\pi\)
0.763845 + 0.645400i \(0.223309\pi\)
\(492\) 0 0
\(493\) −0.580505 0.335155i −0.0261446 0.0150946i
\(494\) 0 0
\(495\) 14.1786 + 25.4783i 0.637280 + 1.14516i
\(496\) 0 0
\(497\) 39.5325i 1.77328i
\(498\) 0 0
\(499\) 2.47222 9.22644i 0.110672 0.413032i −0.888255 0.459350i \(-0.848082\pi\)
0.998927 + 0.0463184i \(0.0147489\pi\)
\(500\) 0 0
\(501\) 4.13005 + 15.9149i 0.184517 + 0.711023i
\(502\) 0 0
\(503\) −31.3713 18.1122i −1.39878 0.807584i −0.404512 0.914533i \(-0.632559\pi\)
−0.994265 + 0.106948i \(0.965892\pi\)
\(504\) 0 0
\(505\) 8.88505 + 2.38074i 0.395379 + 0.105942i
\(506\) 0 0
\(507\) 14.9221 16.8621i 0.662714 0.748872i
\(508\) 0 0
\(509\) 6.35239 + 23.7074i 0.281565 + 1.05081i 0.951313 + 0.308226i \(0.0997352\pi\)
−0.669749 + 0.742588i \(0.733598\pi\)
\(510\) 0 0
\(511\) −13.4744 + 7.77945i −0.596073 + 0.344143i
\(512\) 0 0
\(513\) 8.11648 + 33.4380i 0.358351 + 1.47632i
\(514\) 0 0
\(515\) 7.89552 2.11560i 0.347918 0.0932244i
\(516\) 0 0
\(517\) 44.6529 + 25.7804i 1.96383 + 1.13382i
\(518\) 0 0
\(519\) 24.4454 13.8576i 1.07304 0.608279i
\(520\) 0 0
\(521\) 2.76734i 0.121239i −0.998161 0.0606196i \(-0.980692\pi\)
0.998161 0.0606196i \(-0.0193077\pi\)
\(522\) 0 0
\(523\) 15.1711 + 26.2772i 0.663388 + 1.14902i 0.979720 + 0.200373i \(0.0642154\pi\)
−0.316332 + 0.948649i \(0.602451\pi\)
\(524\) 0 0
\(525\) 3.22025 3.16983i 0.140543 0.138343i
\(526\) 0 0
\(527\) 0.0331369 + 0.0331369i 0.00144346 + 0.00144346i
\(528\) 0 0
\(529\) −10.9196 18.9134i −0.474767 0.822321i
\(530\) 0 0
\(531\) 7.58190 + 7.82507i 0.329027 + 0.339579i
\(532\) 0 0
\(533\) −2.72540 + 28.1624i −0.118050 + 1.21985i
\(534\) 0 0
\(535\) −6.62475 + 1.77510i −0.286413 + 0.0767441i
\(536\) 0 0
\(537\) 1.55620 0.882176i 0.0671552 0.0380687i
\(538\) 0 0
\(539\) −15.6838 58.5326i −0.675548 2.52118i
\(540\) 0 0
\(541\) 20.9305 20.9305i 0.899874 0.899874i −0.0955505 0.995425i \(-0.530461\pi\)
0.995425 + 0.0955505i \(0.0304611\pi\)
\(542\) 0 0
\(543\) 4.02475 + 0.0317597i 0.172719 + 0.00136294i
\(544\) 0 0
\(545\) −0.591742 1.02493i −0.0253474 0.0439030i
\(546\) 0 0
\(547\) −3.75811 + 6.50923i −0.160685 + 0.278315i −0.935115 0.354346i \(-0.884704\pi\)
0.774430 + 0.632660i \(0.218037\pi\)
\(548\) 0 0
\(549\) −21.4414 38.5292i −0.915095 1.64439i
\(550\) 0 0
\(551\) 0.510258 + 1.90431i 0.0217377 + 0.0811262i
\(552\) 0 0
\(553\) −26.8703 + 26.8703i −1.14264 + 1.14264i
\(554\) 0 0
\(555\) 11.3071 19.2324i 0.479961 0.816372i
\(556\) 0 0
\(557\) 1.14680 4.27992i 0.0485916 0.181346i −0.937365 0.348349i \(-0.886742\pi\)
0.985956 + 0.167003i \(0.0534090\pi\)
\(558\) 0 0
\(559\) −2.80737 + 0.468405i −0.118739 + 0.0198114i
\(560\) 0 0
\(561\) −4.52945 17.4539i −0.191233 0.736903i
\(562\) 0 0
\(563\) 18.4321 0.776820 0.388410 0.921487i \(-0.373024\pi\)
0.388410 + 0.921487i \(0.373024\pi\)
\(564\) 0 0
\(565\) −7.06337 + 26.3609i −0.297158 + 1.10901i
\(566\) 0 0
\(567\) −38.6308 11.6696i −1.62234 0.490075i
\(568\) 0 0
\(569\) −22.1697 −0.929403 −0.464702 0.885467i \(-0.653838\pi\)
−0.464702 + 0.885467i \(0.653838\pi\)
\(570\) 0 0
\(571\) −23.2580 + 13.4280i −0.973316 + 0.561944i −0.900245 0.435383i \(-0.856613\pi\)
−0.0730703 + 0.997327i \(0.523280\pi\)
\(572\) 0 0
\(573\) −20.2264 35.6805i −0.844971 1.49057i
\(574\) 0 0
\(575\) −3.37404 + 1.94800i −0.140707 + 0.0812374i
\(576\) 0 0
\(577\) 3.18909 + 3.18909i 0.132763 + 0.132763i 0.770366 0.637602i \(-0.220074\pi\)
−0.637602 + 0.770366i \(0.720074\pi\)
\(578\) 0 0
\(579\) −1.72896 + 0.448680i −0.0718529 + 0.0186465i
\(580\) 0 0
\(581\) 27.2930i 1.13230i
\(582\) 0 0
\(583\) −14.1472 + 14.1472i −0.585918 + 0.585918i
\(584\) 0 0
\(585\) 18.2926 + 13.5021i 0.756306 + 0.558245i
\(586\) 0 0
\(587\) 10.3678 10.3678i 0.427926 0.427926i −0.459995 0.887921i \(-0.652149\pi\)
0.887921 + 0.459995i \(0.152149\pi\)
\(588\) 0 0
\(589\) 0.137830i 0.00567919i
\(590\) 0 0
\(591\) −7.41294 + 26.8172i −0.304928 + 1.10311i
\(592\) 0 0
\(593\) −15.2003 15.2003i −0.624200 0.624200i 0.322403 0.946603i \(-0.395509\pi\)
−0.946603 + 0.322403i \(0.895509\pi\)
\(594\) 0 0
\(595\) 18.3772 10.6101i 0.753390 0.434970i
\(596\) 0 0
\(597\) 17.8578 30.3746i 0.730872 1.24315i
\(598\) 0 0
\(599\) −27.3111 + 15.7681i −1.11590 + 0.644266i −0.940351 0.340205i \(-0.889504\pi\)
−0.175550 + 0.984471i \(0.556170\pi\)
\(600\) 0 0
\(601\) 20.1704 0.822768 0.411384 0.911462i \(-0.365045\pi\)
0.411384 + 0.911462i \(0.365045\pi\)
\(602\) 0 0
\(603\) −15.0366 + 3.77574i −0.612336 + 0.153760i
\(604\) 0 0
\(605\) −5.64738 + 21.0763i −0.229599 + 0.856874i
\(606\) 0 0
\(607\) 33.6095 1.36417 0.682084 0.731274i \(-0.261074\pi\)
0.682084 + 0.731274i \(0.261074\pi\)
\(608\) 0 0
\(609\) −2.22858 0.616036i −0.0903068 0.0249630i
\(610\) 0 0
\(611\) 40.0179 + 3.87271i 1.61895 + 0.156673i
\(612\) 0 0
\(613\) 5.07932 18.9563i 0.205152 0.765637i −0.784252 0.620443i \(-0.786953\pi\)
0.989403 0.145194i \(-0.0463805\pi\)
\(614\) 0 0
\(615\) −28.5687 0.225438i −1.15200 0.00909053i
\(616\) 0 0
\(617\) 4.44777 4.44777i 0.179061 0.179061i −0.611886 0.790946i \(-0.709589\pi\)
0.790946 + 0.611886i \(0.209589\pi\)
\(618\) 0 0
\(619\) 5.28084 + 19.7084i 0.212255 + 0.792146i 0.987115 + 0.160013i \(0.0511537\pi\)
−0.774860 + 0.632133i \(0.782180\pi\)
\(620\) 0 0
\(621\) 29.7127 + 18.1057i 1.19233 + 0.726555i
\(622\) 0 0
\(623\) −35.0580 + 60.7222i −1.40457 + 2.43278i
\(624\) 0 0
\(625\) −10.8762 18.8381i −0.435047 0.753524i
\(626\) 0 0
\(627\) −26.8791 + 45.7190i −1.07345 + 1.82584i
\(628\) 0 0
\(629\) −9.75608 + 9.75608i −0.389001 + 0.389001i
\(630\) 0 0
\(631\) 2.93820 + 10.9655i 0.116968 + 0.436531i 0.999427 0.0338595i \(-0.0107799\pi\)
−0.882459 + 0.470390i \(0.844113\pi\)
\(632\) 0 0
\(633\) −15.8092 9.29454i −0.628359 0.369425i
\(634\) 0 0
\(635\) −33.6271 + 9.01035i −1.33445 + 0.357565i
\(636\) 0 0
\(637\) −30.0380 36.4748i −1.19015 1.44518i
\(638\) 0 0
\(639\) −6.44167 25.6534i −0.254828 1.01483i
\(640\) 0 0
\(641\) −13.9974 24.2442i −0.552865 0.957589i −0.998066 0.0621592i \(-0.980201\pi\)
0.445202 0.895430i \(-0.353132\pi\)
\(642\) 0 0
\(643\) −2.84425 2.84425i −0.112166 0.112166i 0.648796 0.760962i \(-0.275273\pi\)
−0.760962 + 0.648796i \(0.775273\pi\)
\(644\) 0 0
\(645\) −0.721894 2.78177i −0.0284246 0.109532i
\(646\) 0 0
\(647\) −19.7162 34.1494i −0.775122 1.34255i −0.934726 0.355370i \(-0.884355\pi\)
0.159604 0.987181i \(-0.448978\pi\)
\(648\) 0 0
\(649\) 16.7937i 0.659211i
\(650\) 0 0
\(651\) 0.139349 + 0.0819258i 0.00546150 + 0.00321093i
\(652\) 0 0
\(653\) −7.77544 4.48915i −0.304277 0.175674i 0.340086 0.940394i \(-0.389544\pi\)
−0.644362 + 0.764720i \(0.722877\pi\)
\(654\) 0 0
\(655\) −2.71124 + 0.726474i −0.105937 + 0.0283857i
\(656\) 0 0
\(657\) −7.47616 + 7.24383i −0.291673 + 0.282609i
\(658\) 0 0
\(659\) −1.38440 + 0.799281i −0.0539284 + 0.0311356i −0.526722 0.850038i \(-0.676579\pi\)
0.472793 + 0.881173i \(0.343246\pi\)
\(660\) 0 0
\(661\) 12.4085 + 46.3090i 0.482633 + 1.80121i 0.590491 + 0.807044i \(0.298934\pi\)
−0.107858 + 0.994166i \(0.534399\pi\)
\(662\) 0 0
\(663\) −8.85251 10.9240i −0.343803 0.424254i
\(664\) 0 0
\(665\) −60.2850 16.1533i −2.33775 0.626399i
\(666\) 0 0
\(667\) 1.72649 + 0.996788i 0.0668498 + 0.0385958i
\(668\) 0 0
\(669\) 21.8993 21.5564i 0.846678 0.833420i
\(670\) 0 0
\(671\) 17.5898 65.6460i 0.679046 2.53424i
\(672\) 0 0
\(673\) 51.0740i 1.96876i −0.176061 0.984379i \(-0.556335\pi\)
0.176061 0.984379i \(-0.443665\pi\)
\(674\) 0 0
\(675\) 1.57317 2.58169i 0.0605513 0.0993692i
\(676\) 0 0
\(677\) 2.72541 + 1.57351i 0.104746 + 0.0604751i 0.551458 0.834203i \(-0.314072\pi\)
−0.446712 + 0.894678i \(0.647405\pi\)
\(678\) 0 0
\(679\) −4.96984 + 8.60802i −0.190725 + 0.330345i
\(680\) 0 0
\(681\) −12.0892 + 43.7342i −0.463259 + 1.67590i
\(682\) 0 0
\(683\) 26.4271 7.08112i 1.01121 0.270952i 0.285073 0.958506i \(-0.407982\pi\)
0.726133 + 0.687554i \(0.241316\pi\)
\(684\) 0 0
\(685\) 19.8157 34.3218i 0.757119 1.31137i
\(686\) 0 0
\(687\) 4.01809 14.5359i 0.153300 0.554580i
\(688\) 0 0
\(689\) −5.47053 + 14.6102i −0.208411 + 0.556603i
\(690\) 0 0
\(691\) 0.378153 + 0.378153i 0.0143856 + 0.0143856i 0.714263 0.699877i \(-0.246762\pi\)
−0.699877 + 0.714263i \(0.746762\pi\)
\(692\) 0 0
\(693\) −30.2458 54.3504i −1.14894 2.06460i
\(694\) 0 0
\(695\) −5.40487 1.44823i −0.205019 0.0549345i
\(696\) 0 0
\(697\) 17.0662 + 4.57288i 0.646430 + 0.173210i
\(698\) 0 0
\(699\) 0.113558 14.3907i 0.00429516 0.544305i
\(700\) 0 0
\(701\) 3.78591 0.142992 0.0714960 0.997441i \(-0.477223\pi\)
0.0714960 + 0.997441i \(0.477223\pi\)
\(702\) 0 0
\(703\) 40.5797 1.53049
\(704\) 0 0
\(705\) −0.320341 + 40.5953i −0.0120647 + 1.52891i
\(706\) 0 0
\(707\) −18.9536 5.07860i −0.712824 0.191001i
\(708\) 0 0
\(709\) −17.1053 4.58335i −0.642403 0.172131i −0.0771116 0.997022i \(-0.524570\pi\)
−0.565292 + 0.824891i \(0.691236\pi\)
\(710\) 0 0
\(711\) −13.0582 + 21.8150i −0.489721 + 0.818127i
\(712\) 0 0
\(713\) −0.0985527 0.0985527i −0.00369083 0.00369083i
\(714\) 0 0
\(715\) 5.76719 + 34.5655i 0.215681 + 1.29268i
\(716\) 0 0
\(717\) −11.2332 + 40.6373i −0.419510 + 1.51763i
\(718\) 0 0
\(719\) 17.5430 30.3853i 0.654242 1.13318i −0.327841 0.944733i \(-0.606321\pi\)
0.982083 0.188448i \(-0.0603457\pi\)
\(720\) 0 0
\(721\) −16.8428 + 4.51300i −0.627257 + 0.168073i
\(722\) 0 0
\(723\) −1.95675 + 7.07878i −0.0727723 + 0.263263i
\(724\) 0 0
\(725\) 0.0866092 0.150011i 0.00321658 0.00557129i
\(726\) 0 0
\(727\) 27.7648 + 16.0300i 1.02974 + 0.594521i 0.916910 0.399093i \(-0.130675\pi\)
0.112830 + 0.993614i \(0.464008\pi\)
\(728\) 0 0
\(729\) −26.9697 1.27785i −0.998879 0.0473278i
\(730\) 0 0
\(731\) 1.77731i 0.0657362i
\(732\) 0 0
\(733\) 5.51036 20.5649i 0.203530 0.759583i −0.786363 0.617765i \(-0.788038\pi\)
0.989893 0.141818i \(-0.0452949\pi\)
\(734\) 0 0
\(735\) 34.0024 33.4700i 1.25420 1.23456i
\(736\) 0 0
\(737\) −20.6941 11.9478i −0.762278 0.440101i
\(738\) 0 0
\(739\) −22.7510 6.09611i −0.836908 0.224249i −0.185183 0.982704i \(-0.559288\pi\)
−0.651725 + 0.758455i \(0.725954\pi\)
\(740\) 0 0
\(741\) −4.30812 + 41.1294i −0.158263 + 1.51093i
\(742\) 0 0
\(743\) −8.80587 32.8639i −0.323056 1.20566i −0.916252 0.400603i \(-0.868801\pi\)
0.593196 0.805058i \(-0.297866\pi\)
\(744\) 0 0
\(745\) 14.5785 8.41687i 0.534113 0.308370i
\(746\) 0 0
\(747\) 4.44728 + 17.7109i 0.162717 + 0.648008i
\(748\) 0 0
\(749\) 14.1319 3.78664i 0.516370 0.138361i
\(750\) 0 0
\(751\) −7.55905 4.36422i −0.275834 0.159253i 0.355702 0.934599i \(-0.384242\pi\)
−0.631536 + 0.775347i \(0.717575\pi\)
\(752\) 0 0
\(753\) 5.20919 + 3.06259i 0.189833 + 0.111607i
\(754\) 0 0
\(755\) 9.57370i 0.348423i
\(756\) 0 0
\(757\) −3.10306 5.37465i −0.112783 0.195345i 0.804109 0.594482i \(-0.202643\pi\)
−0.916891 + 0.399137i \(0.869310\pi\)
\(758\) 0 0
\(759\) 13.4711 + 51.9098i 0.488969 + 1.88421i
\(760\) 0 0
\(761\) 4.06137 + 4.06137i 0.147225 + 0.147225i 0.776877 0.629652i \(-0.216803\pi\)
−0.629652 + 0.776877i \(0.716803\pi\)
\(762\) 0 0
\(763\) 1.26231 + 2.18638i 0.0456985 + 0.0791522i
\(764\) 0 0
\(765\) 10.1964 9.87954i 0.368652 0.357196i
\(766\) 0 0
\(767\) 5.42470 + 11.9186i 0.195874 + 0.430355i
\(768\) 0 0
\(769\) 43.4667 11.6469i 1.56745 0.419996i 0.632436 0.774613i \(-0.282055\pi\)
0.935012 + 0.354616i \(0.115389\pi\)
\(770\) 0 0
\(771\) −33.1103 19.4662i −1.19244 0.701058i
\(772\) 0 0
\(773\) −6.09459 22.7453i −0.219207 0.818093i −0.984643 0.174580i \(-0.944143\pi\)
0.765436 0.643513i \(-0.222524\pi\)
\(774\) 0 0
\(775\) −0.00856307 + 0.00856307i −0.000307595 + 0.000307595i
\(776\) 0 0
\(777\) −24.1204 + 41.0267i −0.865316 + 1.47183i
\(778\) 0 0
\(779\) −25.9825 45.0031i −0.930921 1.61240i
\(780\) 0 0
\(781\) 20.3837 35.3055i 0.729385 1.26333i
\(782\) 0 0
\(783\) −1.54655 0.0366179i −0.0552691 0.00130862i
\(784\) 0 0
\(785\) −4.11073 15.3415i −0.146718 0.547560i
\(786\) 0 0
\(787\) 23.1222 23.1222i 0.824216 0.824216i −0.162493 0.986710i \(-0.551954\pi\)
0.986710 + 0.162493i \(0.0519536\pi\)
\(788\) 0 0
\(789\) 14.1658 + 0.111783i 0.504315 + 0.00397959i
\(790\) 0 0
\(791\) 15.0676 56.2331i 0.535743 1.99942i
\(792\) 0 0
\(793\) −8.72135 52.2711i −0.309704 1.85620i
\(794\) 0 0
\(795\) −15.1833 4.19705i −0.538498 0.148854i
\(796\) 0 0
\(797\) 25.2623 0.894838 0.447419 0.894325i \(-0.352343\pi\)
0.447419 + 0.894325i \(0.352343\pi\)
\(798\) 0 0
\(799\) 6.49794 24.2506i 0.229881 0.857926i
\(800\) 0 0
\(801\) −12.8553 + 45.1163i −0.454220 + 1.59411i
\(802\) 0 0
\(803\) −16.0449 −0.566212
\(804\) 0 0
\(805\) −54.6557 + 31.5555i −1.92636 + 1.11218i
\(806\) 0 0
\(807\) 3.07003 5.22186i 0.108070 0.183818i
\(808\) 0 0
\(809\) 9.97416 5.75858i 0.350673 0.202461i −0.314309 0.949321i \(-0.601773\pi\)
0.664982 + 0.746860i \(0.268439\pi\)
\(810\) 0 0
\(811\) 7.70784 + 7.70784i 0.270659 + 0.270659i 0.829365 0.558706i \(-0.188702\pi\)
−0.558706 + 0.829365i \(0.688702\pi\)
\(812\) 0 0
\(813\) 1.95100 7.05799i 0.0684247 0.247535i
\(814\) 0 0
\(815\) 52.1909i 1.82817i
\(816\) 0 0
\(817\) 3.69629 3.69629i 0.129317 0.129317i
\(818\) 0 0
\(819\) −39.0218 28.8028i −1.36353 1.00645i
\(820\) 0 0
\(821\) −0.527911 + 0.527911i −0.0184242 + 0.0184242i −0.716259 0.697835i \(-0.754147\pi\)
0.697835 + 0.716259i \(0.254147\pi\)
\(822\) 0 0
\(823\) 47.0444i 1.63987i 0.572459 + 0.819933i \(0.305989\pi\)
−0.572459 + 0.819933i \(0.694011\pi\)
\(824\) 0 0
\(825\) 4.51035 1.17048i 0.157030 0.0407508i
\(826\) 0 0
\(827\) 19.2596 + 19.2596i 0.669721 + 0.669721i 0.957651 0.287930i \(-0.0929671\pi\)
−0.287930 + 0.957651i \(0.592967\pi\)
\(828\) 0 0
\(829\) −47.6707 + 27.5227i −1.65567 + 0.955902i −0.680992 + 0.732291i \(0.738451\pi\)
−0.974679 + 0.223610i \(0.928216\pi\)
\(830\) 0 0
\(831\) 18.3652 + 32.3971i 0.637080 + 1.12384i
\(832\) 0 0
\(833\) −25.5532 + 14.7532i −0.885366 + 0.511167i
\(834\) 0 0
\(835\) −19.9534 −0.690514
\(836\) 0 0
\(837\) 0.103775 + 0.0304568i 0.00358700 + 0.00105274i
\(838\) 0 0
\(839\) 3.88992 14.5174i 0.134295 0.501195i −0.865705 0.500555i \(-0.833129\pi\)
1.00000 0.000640633i \(-0.000203920\pi\)
\(840\) 0 0
\(841\) 28.9114 0.996944
\(842\) 0 0
\(843\) −2.90513 11.1947i −0.100058 0.385566i
\(844\) 0 0
\(845\) 15.2583 + 22.6684i 0.524902 + 0.779816i
\(846\) 0 0
\(847\) 12.0470 44.9601i 0.413940 1.54485i
\(848\) 0 0
\(849\) −18.6848 + 31.7811i −0.641259 + 1.09073i
\(850\) 0 0
\(851\) 29.0157 29.0157i 0.994645 0.994645i
\(852\) 0 0
\(853\) 4.44839 + 16.6016i 0.152310 + 0.568429i 0.999321 + 0.0368528i \(0.0117333\pi\)
−0.847011 + 0.531576i \(0.821600\pi\)
\(854\) 0 0
\(855\) −41.7521 0.658980i −1.42789 0.0225367i
\(856\) 0 0
\(857\) −8.80280 + 15.2469i −0.300698 + 0.520824i −0.976294 0.216448i \(-0.930553\pi\)
0.675596 + 0.737272i \(0.263886\pi\)
\(858\) 0 0
\(859\) −17.4097 30.1545i −0.594012 1.02886i −0.993685 0.112202i \(-0.964210\pi\)
0.399673 0.916658i \(-0.369124\pi\)
\(860\) 0 0
\(861\) 60.9428 + 0.480905i 2.07693 + 0.0163892i
\(862\) 0 0
\(863\) 3.98704 3.98704i 0.135720 0.135720i −0.635983 0.771703i \(-0.719405\pi\)
0.771703 + 0.635983i \(0.219405\pi\)
\(864\) 0 0
\(865\) 8.82600 + 32.9391i 0.300093 + 1.11996i
\(866\) 0 0
\(867\) 17.9771 10.1908i 0.610534 0.346097i
\(868\) 0 0
\(869\) −37.8520 + 10.1424i −1.28404 + 0.344058i
\(870\) 0 0
\(871\) −18.5461 1.79479i −0.628410 0.0608140i
\(872\) 0 0
\(873\) −1.82238 + 6.39571i −0.0616782 + 0.216462i
\(874\) 0 0
\(875\) 26.3040 + 45.5598i 0.889237 + 1.54020i
\(876\) 0 0
\(877\) −9.98693 9.98693i −0.337235 0.337235i 0.518091 0.855326i \(-0.326643\pi\)
−0.855326 + 0.518091i \(0.826643\pi\)
\(878\) 0 0
\(879\) 3.41525 3.36177i 0.115194 0.113390i
\(880\) 0 0
\(881\) 23.5198 + 40.7374i 0.792401 + 1.37248i 0.924477 + 0.381239i \(0.124502\pi\)
−0.132076 + 0.991240i \(0.542164\pi\)
\(882\) 0 0
\(883\) 3.99445i 0.134424i 0.997739 + 0.0672120i \(0.0214104\pi\)
−0.997739 + 0.0672120i \(0.978590\pi\)
\(884\) 0 0
\(885\) −11.5029 + 6.52074i −0.386667 + 0.219192i
\(886\) 0 0
\(887\) 24.0314 + 13.8746i 0.806897 + 0.465862i 0.845877 0.533378i \(-0.179078\pi\)
−0.0389804 + 0.999240i \(0.512411\pi\)
\(888\) 0 0
\(889\) 71.7335 19.2209i 2.40586 0.644649i
\(890\) 0 0
\(891\) −28.4832 30.3405i −0.954224 1.01645i
\(892\) 0 0
\(893\) −63.9481 + 36.9205i −2.13994 + 1.23550i
\(894\) 0 0
\(895\) 0.561866 + 2.09691i 0.0187811 + 0.0700920i
\(896\) 0 0
\(897\) 26.3284 + 32.4892i 0.879078 + 1.08478i
\(898\) 0 0
\(899\) 0.00598551 + 0.00160381i 0.000199628 + 5.34902e-5i
\(900\) 0 0
\(901\) 8.43679 + 4.87098i 0.281070 + 0.162276i
\(902\) 0 0
\(903\) 1.53995 + 5.93407i 0.0512462 + 0.197474i
\(904\) 0 0
\(905\) −1.26418 + 4.71799i −0.0420228 + 0.156831i
\(906\) 0 0
\(907\) 2.59570i 0.0861887i 0.999071 + 0.0430944i \(0.0137216\pi\)
−0.999071 + 0.0430944i \(0.986278\pi\)
\(908\) 0 0
\(909\) −13.1269 0.207183i −0.435391 0.00687184i
\(910\) 0 0
\(911\) −4.04154 2.33338i −0.133902 0.0773084i 0.431553 0.902088i \(-0.357966\pi\)
−0.565455 + 0.824779i \(0.691299\pi\)
\(912\) 0 0
\(913\) −14.0727 + 24.3747i −0.465739 + 0.806684i
\(914\) 0 0
\(915\) 51.7944 13.4411i 1.71227 0.444350i
\(916\) 0 0
\(917\) 5.78362 1.54972i 0.190992 0.0511762i
\(918\) 0 0
\(919\) −8.81604 + 15.2698i −0.290814 + 0.503705i −0.974002 0.226537i \(-0.927259\pi\)
0.683188 + 0.730242i \(0.260593\pi\)
\(920\) 0 0
\(921\) 30.9732 + 31.4660i 1.02060 + 1.03684i
\(922\) 0 0
\(923\) 3.06202 31.6409i 0.100788 1.04147i
\(924\) 0 0
\(925\) −2.52112 2.52112i −0.0828940 0.0828940i
\(926\) 0 0
\(927\) −10.1942 + 5.67303i −0.334821 + 0.186327i
\(928\) 0 0
\(929\) 46.1467 + 12.3650i 1.51402 + 0.405681i 0.917769 0.397114i \(-0.129988\pi\)
0.596254 + 0.802796i \(0.296655\pi\)
\(930\) 0 0
\(931\) 83.8256 + 22.4610i 2.74727 + 0.736129i
\(932\) 0 0
\(933\) 9.99320 5.66491i 0.327163 0.185461i
\(934\) 0 0
\(935\) 21.8829 0.715648
\(936\) 0 0
\(937\) 5.58504 0.182455 0.0912277 0.995830i \(-0.470921\pi\)
0.0912277 + 0.995830i \(0.470921\pi\)
\(938\) 0 0
\(939\) −12.5835 7.39809i −0.410647 0.241428i
\(940\) 0 0
\(941\) −27.8948 7.47440i −0.909346 0.243659i −0.226320 0.974053i \(-0.572670\pi\)
−0.683026 + 0.730394i \(0.739336\pi\)
\(942\) 0 0
\(943\) −50.7569 13.6003i −1.65287 0.442885i
\(944\) 0 0
\(945\) 25.4836 41.8204i 0.828981 1.36042i
\(946\) 0 0
\(947\) −13.5058 13.5058i −0.438880 0.438880i 0.452755 0.891635i \(-0.350441\pi\)
−0.891635 + 0.452755i \(0.850441\pi\)
\(948\) 0 0
\(949\) −11.3871 + 5.18281i −0.369642 + 0.168241i
\(950\) 0 0
\(951\) −30.8435 + 8.00417i −1.00017 + 0.259553i
\(952\) 0 0
\(953\) 16.1381 27.9520i 0.522764 0.905455i −0.476885 0.878966i \(-0.658234\pi\)
0.999649 0.0264887i \(-0.00843260\pi\)
\(954\) 0 0
\(955\) 48.0778 12.8824i 1.55576 0.416865i
\(956\) 0 0
\(957\) −1.67266 1.69926i −0.0540693 0.0549294i
\(958\) 0 0
\(959\) −42.2709 + 73.2154i −1.36500 + 2.36425i
\(960\) 0 0
\(961\) 26.8464 + 15.4998i 0.866013 + 0.499993i
\(962\) 0 0
\(963\) 8.55345 4.75996i 0.275631 0.153388i
\(964\) 0 0
\(965\) 2.16769i 0.0697804i
\(966\) 0 0
\(967\) −8.60269 + 32.1057i −0.276644 + 1.03245i 0.678088 + 0.734981i \(0.262809\pi\)
−0.954732 + 0.297468i \(0.903858\pi\)
\(968\) 0 0
\(969\) 24.8905 + 6.88035i 0.799599 + 0.221029i
\(970\) 0 0
\(971\) 42.4814 + 24.5267i 1.36329 + 0.787098i 0.990061 0.140640i \(-0.0449159\pi\)
0.373233 + 0.927738i \(0.378249\pi\)
\(972\) 0 0
\(973\) 11.5297 + 3.08937i 0.369625 + 0.0990407i
\(974\) 0 0
\(975\) 2.82293 2.28763i 0.0904062 0.0732626i
\(976\) 0 0
\(977\) 10.7433 + 40.0945i 0.343708 + 1.28274i 0.894114 + 0.447839i \(0.147806\pi\)
−0.550407 + 0.834897i \(0.685527\pi\)
\(978\) 0 0
\(979\) −62.6189 + 36.1530i −2.00131 + 1.15546i
\(980\) 0 0
\(981\) 1.17539 + 1.21309i 0.0375275 + 0.0387311i
\(982\) 0 0
\(983\) −11.2829 + 3.02323i −0.359867 + 0.0964261i −0.434222 0.900806i \(-0.642977\pi\)
0.0743552 + 0.997232i \(0.476310\pi\)
\(984\) 0 0
\(985\) −29.2411 16.8824i −0.931700 0.537917i
\(986\) 0 0
\(987\) 0.683353 86.5981i 0.0217514 2.75645i
\(988\) 0 0
\(989\) 5.28591i 0.168082i
\(990\) 0 0
\(991\) 2.87270 + 4.97567i 0.0912545 + 0.158057i 0.908039 0.418885i \(-0.137579\pi\)
−0.816785 + 0.576942i \(0.804246\pi\)
\(992\) 0 0
\(993\) 10.6240 + 2.93674i 0.337143 + 0.0931948i
\(994\) 0 0
\(995\) 30.2359 + 30.2359i 0.958542 + 0.958542i
\(996\) 0 0
\(997\) 12.4545 + 21.5719i 0.394440 + 0.683189i 0.993029 0.117866i \(-0.0376054\pi\)
−0.598590 + 0.801056i \(0.704272\pi\)
\(998\) 0 0
\(999\) −8.96704 + 30.5533i −0.283705 + 0.966664i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.bw.a.245.8 yes 56
3.2 odd 2 1404.2.bz.a.89.3 56
9.4 even 3 1404.2.cc.a.557.3 56
9.5 odd 6 468.2.bz.a.401.2 yes 56
13.6 odd 12 468.2.bz.a.461.2 yes 56
39.32 even 12 1404.2.cc.a.305.3 56
117.32 even 12 inner 468.2.bw.a.149.8 56
117.58 odd 12 1404.2.bz.a.773.3 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.bw.a.149.8 56 117.32 even 12 inner
468.2.bw.a.245.8 yes 56 1.1 even 1 trivial
468.2.bz.a.401.2 yes 56 9.5 odd 6
468.2.bz.a.461.2 yes 56 13.6 odd 12
1404.2.bz.a.89.3 56 3.2 odd 2
1404.2.bz.a.773.3 56 117.58 odd 12
1404.2.cc.a.305.3 56 39.32 even 12
1404.2.cc.a.557.3 56 9.4 even 3