Properties

Label 468.2.bw.a.245.11
Level $468$
Weight $2$
Character 468.245
Analytic conductor $3.737$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(149,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.bw (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 245.11
Character \(\chi\) \(=\) 468.245
Dual form 468.2.bw.a.149.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06319 - 1.36734i) q^{3} +(-2.93450 - 0.786297i) q^{5} +(0.648304 + 0.173713i) q^{7} +(-0.739244 - 2.90749i) q^{9} +(-3.31036 - 3.31036i) q^{11} +(-1.91068 + 3.05766i) q^{13} +(-4.19507 + 3.17648i) q^{15} +(3.61521 - 6.26173i) q^{17} +(-4.17267 + 1.11806i) q^{19} +(0.926797 - 0.701763i) q^{21} +(-0.731021 + 1.26617i) q^{23} +(3.66289 + 2.11477i) q^{25} +(-4.76149 - 2.08043i) q^{27} -4.42172i q^{29} +(0.370153 - 1.38143i) q^{31} +(-8.04595 + 1.00684i) q^{33} +(-1.76586 - 1.01952i) q^{35} +(-1.14370 - 0.306454i) q^{37} +(2.14945 + 5.86344i) q^{39} +(2.03274 + 7.58629i) q^{41} +(8.20046 - 4.73454i) q^{43} +(-0.116843 + 9.11330i) q^{45} +(7.20323 - 1.93010i) q^{47} +(-5.67206 - 3.27476i) q^{49} +(-4.71825 - 11.6006i) q^{51} +7.46793i q^{53} +(7.11133 + 12.3172i) q^{55} +(-2.90758 + 6.89419i) q^{57} +(-2.92525 - 2.92525i) q^{59} +(2.80787 + 4.86337i) q^{61} +(0.0258135 - 2.01336i) q^{63} +(8.01112 - 7.47034i) q^{65} +(6.58970 - 1.76570i) q^{67} +(0.954064 + 2.34573i) q^{69} +(-2.32349 - 8.67138i) q^{71} +(8.37710 - 8.37710i) q^{73} +(6.78597 - 2.76001i) q^{75} +(-1.57107 - 2.72118i) q^{77} +(6.30240 - 10.9161i) q^{79} +(-7.90704 + 4.29869i) q^{81} +(-1.15005 - 4.29206i) q^{83} +(-15.5324 + 15.5324i) q^{85} +(-6.04600 - 4.70114i) q^{87} +(2.16797 - 8.09097i) q^{89} +(-1.76986 + 1.65039i) q^{91} +(-1.49534 - 1.97485i) q^{93} +13.1238 q^{95} +(-4.03682 + 15.0656i) q^{97} +(-7.17770 + 12.0720i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} + 4 q^{19} - 24 q^{21} + 8 q^{31} + 12 q^{33} - 66 q^{35} + 2 q^{37} + 24 q^{41} + 12 q^{43} - 30 q^{47} + 30 q^{57} + 84 q^{63} + 6 q^{65} + 28 q^{67} - 36 q^{69} + 24 q^{71} - 14 q^{73}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.06319 1.36734i 0.613834 0.789435i
\(4\) 0 0
\(5\) −2.93450 0.786297i −1.31235 0.351642i −0.466242 0.884657i \(-0.654392\pi\)
−0.846106 + 0.533015i \(0.821059\pi\)
\(6\) 0 0
\(7\) 0.648304 + 0.173713i 0.245036 + 0.0656572i 0.379247 0.925296i \(-0.376183\pi\)
−0.134211 + 0.990953i \(0.542850\pi\)
\(8\) 0 0
\(9\) −0.739244 2.90749i −0.246415 0.969165i
\(10\) 0 0
\(11\) −3.31036 3.31036i −0.998113 0.998113i 0.00188566 0.999998i \(-0.499400\pi\)
−0.999998 + 0.00188566i \(0.999400\pi\)
\(12\) 0 0
\(13\) −1.91068 + 3.05766i −0.529927 + 0.848043i
\(14\) 0 0
\(15\) −4.19507 + 3.17648i −1.08316 + 0.820163i
\(16\) 0 0
\(17\) 3.61521 6.26173i 0.876817 1.51869i 0.0220024 0.999758i \(-0.492996\pi\)
0.854815 0.518934i \(-0.173671\pi\)
\(18\) 0 0
\(19\) −4.17267 + 1.11806i −0.957277 + 0.256502i −0.703447 0.710747i \(-0.748357\pi\)
−0.253830 + 0.967249i \(0.581690\pi\)
\(20\) 0 0
\(21\) 0.926797 0.701763i 0.202244 0.153137i
\(22\) 0 0
\(23\) −0.731021 + 1.26617i −0.152428 + 0.264014i −0.932120 0.362150i \(-0.882043\pi\)
0.779691 + 0.626164i \(0.215376\pi\)
\(24\) 0 0
\(25\) 3.66289 + 2.11477i 0.732579 + 0.422954i
\(26\) 0 0
\(27\) −4.76149 2.08043i −0.916350 0.400378i
\(28\) 0 0
\(29\) 4.42172i 0.821093i −0.911840 0.410546i \(-0.865338\pi\)
0.911840 0.410546i \(-0.134662\pi\)
\(30\) 0 0
\(31\) 0.370153 1.38143i 0.0664815 0.248112i −0.924686 0.380732i \(-0.875672\pi\)
0.991167 + 0.132619i \(0.0423388\pi\)
\(32\) 0 0
\(33\) −8.04595 + 1.00684i −1.40062 + 0.175269i
\(34\) 0 0
\(35\) −1.76586 1.01952i −0.298485 0.172330i
\(36\) 0 0
\(37\) −1.14370 0.306454i −0.188023 0.0503807i 0.163579 0.986530i \(-0.447696\pi\)
−0.351602 + 0.936150i \(0.614363\pi\)
\(38\) 0 0
\(39\) 2.14945 + 5.86344i 0.344187 + 0.938901i
\(40\) 0 0
\(41\) 2.03274 + 7.58629i 0.317461 + 1.18478i 0.921676 + 0.387959i \(0.126820\pi\)
−0.604216 + 0.796821i \(0.706513\pi\)
\(42\) 0 0
\(43\) 8.20046 4.73454i 1.25056 0.722010i 0.279338 0.960193i \(-0.409885\pi\)
0.971220 + 0.238183i \(0.0765517\pi\)
\(44\) 0 0
\(45\) −0.116843 + 9.11330i −0.0174179 + 1.35853i
\(46\) 0 0
\(47\) 7.20323 1.93010i 1.05070 0.281534i 0.308159 0.951335i \(-0.400287\pi\)
0.742541 + 0.669801i \(0.233621\pi\)
\(48\) 0 0
\(49\) −5.67206 3.27476i −0.810294 0.467823i
\(50\) 0 0
\(51\) −4.71825 11.6006i −0.660687 1.62441i
\(52\) 0 0
\(53\) 7.46793i 1.02580i 0.858449 + 0.512900i \(0.171429\pi\)
−0.858449 + 0.512900i \(0.828571\pi\)
\(54\) 0 0
\(55\) 7.11133 + 12.3172i 0.958892 + 1.66085i
\(56\) 0 0
\(57\) −2.90758 + 6.89419i −0.385118 + 0.913157i
\(58\) 0 0
\(59\) −2.92525 2.92525i −0.380835 0.380835i 0.490568 0.871403i \(-0.336789\pi\)
−0.871403 + 0.490568i \(0.836789\pi\)
\(60\) 0 0
\(61\) 2.80787 + 4.86337i 0.359511 + 0.622691i 0.987879 0.155225i \(-0.0496102\pi\)
−0.628368 + 0.777916i \(0.716277\pi\)
\(62\) 0 0
\(63\) 0.0258135 2.01336i 0.00325219 0.253659i
\(64\) 0 0
\(65\) 8.01112 7.47034i 0.993657 0.926582i
\(66\) 0 0
\(67\) 6.58970 1.76570i 0.805060 0.215715i 0.167256 0.985914i \(-0.446510\pi\)
0.637804 + 0.770198i \(0.279843\pi\)
\(68\) 0 0
\(69\) 0.954064 + 2.34573i 0.114856 + 0.282393i
\(70\) 0 0
\(71\) −2.32349 8.67138i −0.275747 1.02910i −0.955339 0.295513i \(-0.904510\pi\)
0.679591 0.733591i \(-0.262157\pi\)
\(72\) 0 0
\(73\) 8.37710 8.37710i 0.980466 0.980466i −0.0193471 0.999813i \(-0.506159\pi\)
0.999813 + 0.0193471i \(0.00615876\pi\)
\(74\) 0 0
\(75\) 6.78597 2.76001i 0.783577 0.318699i
\(76\) 0 0
\(77\) −1.57107 2.72118i −0.179040 0.310107i
\(78\) 0 0
\(79\) 6.30240 10.9161i 0.709076 1.22816i −0.256125 0.966644i \(-0.582446\pi\)
0.965200 0.261512i \(-0.0842210\pi\)
\(80\) 0 0
\(81\) −7.90704 + 4.29869i −0.878560 + 0.477632i
\(82\) 0 0
\(83\) −1.15005 4.29206i −0.126235 0.471114i 0.873646 0.486562i \(-0.161749\pi\)
−0.999881 + 0.0154478i \(0.995083\pi\)
\(84\) 0 0
\(85\) −15.5324 + 15.5324i −1.68473 + 1.68473i
\(86\) 0 0
\(87\) −6.04600 4.70114i −0.648199 0.504015i
\(88\) 0 0
\(89\) 2.16797 8.09097i 0.229804 0.857641i −0.750618 0.660736i \(-0.770244\pi\)
0.980423 0.196905i \(-0.0630890\pi\)
\(90\) 0 0
\(91\) −1.76986 + 1.65039i −0.185531 + 0.173008i
\(92\) 0 0
\(93\) −1.49534 1.97485i −0.155060 0.204783i
\(94\) 0 0
\(95\) 13.1238 1.34648
\(96\) 0 0
\(97\) −4.03682 + 15.0656i −0.409877 + 1.52968i 0.385004 + 0.922915i \(0.374200\pi\)
−0.794881 + 0.606765i \(0.792467\pi\)
\(98\) 0 0
\(99\) −7.17770 + 12.0720i −0.721386 + 1.21328i
\(100\) 0 0
\(101\) 9.77584 0.972732 0.486366 0.873755i \(-0.338322\pi\)
0.486366 + 0.873755i \(0.338322\pi\)
\(102\) 0 0
\(103\) 9.73205 5.61880i 0.958928 0.553637i 0.0630850 0.998008i \(-0.479906\pi\)
0.895843 + 0.444371i \(0.146573\pi\)
\(104\) 0 0
\(105\) −3.27148 + 1.33059i −0.319264 + 0.129852i
\(106\) 0 0
\(107\) −14.6940 + 8.48360i −1.42052 + 0.820140i −0.996344 0.0854370i \(-0.972771\pi\)
−0.424181 + 0.905577i \(0.639438\pi\)
\(108\) 0 0
\(109\) 0.514307 + 0.514307i 0.0492617 + 0.0492617i 0.731309 0.682047i \(-0.238910\pi\)
−0.682047 + 0.731309i \(0.738910\pi\)
\(110\) 0 0
\(111\) −1.63500 + 1.23801i −0.155187 + 0.117507i
\(112\) 0 0
\(113\) 9.83918i 0.925592i 0.886465 + 0.462796i \(0.153154\pi\)
−0.886465 + 0.462796i \(0.846846\pi\)
\(114\) 0 0
\(115\) 3.14076 3.14076i 0.292878 0.292878i
\(116\) 0 0
\(117\) 10.3026 + 3.29493i 0.952475 + 0.304617i
\(118\) 0 0
\(119\) 3.43150 3.43150i 0.314565 0.314565i
\(120\) 0 0
\(121\) 10.9170i 0.992457i
\(122\) 0 0
\(123\) 12.5342 + 5.28624i 1.13018 + 0.476644i
\(124\) 0 0
\(125\) 1.65509 + 1.65509i 0.148036 + 0.148036i
\(126\) 0 0
\(127\) 12.2584 7.07742i 1.08776 0.628019i 0.154782 0.987949i \(-0.450533\pi\)
0.932980 + 0.359929i \(0.117199\pi\)
\(128\) 0 0
\(129\) 2.24494 16.2465i 0.197656 1.43043i
\(130\) 0 0
\(131\) −2.29027 + 1.32229i −0.200101 + 0.115529i −0.596703 0.802462i \(-0.703523\pi\)
0.396601 + 0.917991i \(0.370190\pi\)
\(132\) 0 0
\(133\) −2.89938 −0.251409
\(134\) 0 0
\(135\) 12.3368 + 9.84896i 1.06178 + 0.847663i
\(136\) 0 0
\(137\) 0.0251086 0.0937066i 0.00214517 0.00800590i −0.964845 0.262820i \(-0.915348\pi\)
0.966990 + 0.254814i \(0.0820142\pi\)
\(138\) 0 0
\(139\) 12.0890 1.02538 0.512690 0.858574i \(-0.328649\pi\)
0.512690 + 0.858574i \(0.328649\pi\)
\(140\) 0 0
\(141\) 5.01932 11.9013i 0.422703 1.00227i
\(142\) 0 0
\(143\) 16.4470 3.79693i 1.37537 0.317515i
\(144\) 0 0
\(145\) −3.47678 + 12.9755i −0.288731 + 1.07756i
\(146\) 0 0
\(147\) −10.5082 + 4.27393i −0.866702 + 0.352508i
\(148\) 0 0
\(149\) −8.93025 + 8.93025i −0.731594 + 0.731594i −0.970936 0.239341i \(-0.923069\pi\)
0.239341 + 0.970936i \(0.423069\pi\)
\(150\) 0 0
\(151\) 3.88081 + 14.4834i 0.315816 + 1.17864i 0.923228 + 0.384253i \(0.125541\pi\)
−0.607412 + 0.794387i \(0.707792\pi\)
\(152\) 0 0
\(153\) −20.8784 5.88226i −1.68792 0.475552i
\(154\) 0 0
\(155\) −2.17243 + 3.76276i −0.174494 + 0.302232i
\(156\) 0 0
\(157\) −1.33213 2.30731i −0.106315 0.184144i 0.807960 0.589238i \(-0.200572\pi\)
−0.914275 + 0.405094i \(0.867239\pi\)
\(158\) 0 0
\(159\) 10.2112 + 7.93985i 0.809802 + 0.629671i
\(160\) 0 0
\(161\) −0.693873 + 0.693873i −0.0546849 + 0.0546849i
\(162\) 0 0
\(163\) −1.21282 4.52631i −0.0949955 0.354528i 0.902023 0.431687i \(-0.142082\pi\)
−0.997019 + 0.0771594i \(0.975415\pi\)
\(164\) 0 0
\(165\) 24.4025 + 3.37193i 1.89973 + 0.262504i
\(166\) 0 0
\(167\) −15.0659 + 4.03690i −1.16584 + 0.312385i −0.789294 0.614015i \(-0.789553\pi\)
−0.376541 + 0.926400i \(0.622887\pi\)
\(168\) 0 0
\(169\) −5.69860 11.6844i −0.438354 0.898803i
\(170\) 0 0
\(171\) 6.33539 + 11.3055i 0.484479 + 0.864553i
\(172\) 0 0
\(173\) −10.0055 17.3300i −0.760702 1.31757i −0.942489 0.334237i \(-0.891522\pi\)
0.181787 0.983338i \(-0.441812\pi\)
\(174\) 0 0
\(175\) 2.00731 + 2.00731i 0.151738 + 0.151738i
\(176\) 0 0
\(177\) −7.10991 + 0.889710i −0.534414 + 0.0668747i
\(178\) 0 0
\(179\) −5.74519 9.95097i −0.429416 0.743770i 0.567405 0.823439i \(-0.307947\pi\)
−0.996821 + 0.0796682i \(0.974614\pi\)
\(180\) 0 0
\(181\) 26.1318i 1.94236i 0.238350 + 0.971179i \(0.423394\pi\)
−0.238350 + 0.971179i \(0.576606\pi\)
\(182\) 0 0
\(183\) 9.63519 + 1.33139i 0.712254 + 0.0984188i
\(184\) 0 0
\(185\) 3.11522 + 1.79858i 0.229036 + 0.132234i
\(186\) 0 0
\(187\) −32.6963 + 8.76094i −2.39099 + 0.640663i
\(188\) 0 0
\(189\) −2.72550 2.17588i −0.198251 0.158272i
\(190\) 0 0
\(191\) −2.06030 + 1.18952i −0.149078 + 0.0860703i −0.572684 0.819776i \(-0.694098\pi\)
0.423605 + 0.905847i \(0.360764\pi\)
\(192\) 0 0
\(193\) −4.29803 16.0404i −0.309379 1.15462i −0.929110 0.369803i \(-0.879425\pi\)
0.619732 0.784814i \(-0.287241\pi\)
\(194\) 0 0
\(195\) −1.69715 18.8963i −0.121535 1.35320i
\(196\) 0 0
\(197\) −23.6064 6.32532i −1.68189 0.450660i −0.713611 0.700542i \(-0.752942\pi\)
−0.968276 + 0.249882i \(0.919608\pi\)
\(198\) 0 0
\(199\) −11.8808 6.85940i −0.842210 0.486250i 0.0158050 0.999875i \(-0.494969\pi\)
−0.858015 + 0.513625i \(0.828302\pi\)
\(200\) 0 0
\(201\) 4.59180 10.8877i 0.323880 0.767956i
\(202\) 0 0
\(203\) 0.768109 2.86662i 0.0539107 0.201197i
\(204\) 0 0
\(205\) 23.8603i 1.66648i
\(206\) 0 0
\(207\) 4.22177 + 1.18943i 0.293433 + 0.0826714i
\(208\) 0 0
\(209\) 17.5143 + 10.1119i 1.21149 + 0.699453i
\(210\) 0 0
\(211\) 7.36608 12.7584i 0.507102 0.878327i −0.492864 0.870106i \(-0.664050\pi\)
0.999966 0.00822025i \(-0.00261662\pi\)
\(212\) 0 0
\(213\) −14.3270 6.04234i −0.981673 0.414014i
\(214\) 0 0
\(215\) −27.7870 + 7.44550i −1.89506 + 0.507779i
\(216\) 0 0
\(217\) 0.479944 0.831287i 0.0325807 0.0564314i
\(218\) 0 0
\(219\) −2.54788 20.3608i −0.172170 1.37586i
\(220\) 0 0
\(221\) 12.2387 + 23.0182i 0.823266 + 1.54837i
\(222\) 0 0
\(223\) −18.7175 18.7175i −1.25342 1.25342i −0.954179 0.299237i \(-0.903268\pi\)
−0.299237 0.954179i \(-0.596732\pi\)
\(224\) 0 0
\(225\) 3.44092 12.2132i 0.229394 0.814211i
\(226\) 0 0
\(227\) 3.52179 + 0.943662i 0.233750 + 0.0626330i 0.373792 0.927512i \(-0.378057\pi\)
−0.140043 + 0.990145i \(0.544724\pi\)
\(228\) 0 0
\(229\) 11.9036 + 3.18957i 0.786614 + 0.210773i 0.629699 0.776840i \(-0.283178\pi\)
0.156915 + 0.987612i \(0.449845\pi\)
\(230\) 0 0
\(231\) −5.39113 0.744943i −0.354710 0.0490136i
\(232\) 0 0
\(233\) −1.46997 −0.0963010 −0.0481505 0.998840i \(-0.515333\pi\)
−0.0481505 + 0.998840i \(0.515333\pi\)
\(234\) 0 0
\(235\) −22.6555 −1.47788
\(236\) 0 0
\(237\) −8.22534 20.2234i −0.534293 1.31365i
\(238\) 0 0
\(239\) 4.01157 + 1.07490i 0.259487 + 0.0695293i 0.386217 0.922408i \(-0.373782\pi\)
−0.126730 + 0.991937i \(0.540448\pi\)
\(240\) 0 0
\(241\) 8.46427 + 2.26800i 0.545232 + 0.146094i 0.520913 0.853610i \(-0.325592\pi\)
0.0243189 + 0.999704i \(0.492258\pi\)
\(242\) 0 0
\(243\) −2.52892 + 15.3820i −0.162231 + 0.986753i
\(244\) 0 0
\(245\) 14.0697 + 14.0697i 0.898880 + 0.898880i
\(246\) 0 0
\(247\) 4.55398 14.8949i 0.289763 0.947739i
\(248\) 0 0
\(249\) −7.09143 2.99077i −0.449401 0.189532i
\(250\) 0 0
\(251\) 8.12469 14.0724i 0.512826 0.888240i −0.487064 0.873367i \(-0.661932\pi\)
0.999889 0.0148739i \(-0.00473467\pi\)
\(252\) 0 0
\(253\) 6.61142 1.77152i 0.415656 0.111375i
\(254\) 0 0
\(255\) 4.72416 + 37.7520i 0.295838 + 2.36412i
\(256\) 0 0
\(257\) 0.817029 1.41513i 0.0509648 0.0882737i −0.839418 0.543487i \(-0.817104\pi\)
0.890382 + 0.455213i \(0.150437\pi\)
\(258\) 0 0
\(259\) −0.688231 0.397350i −0.0427646 0.0246902i
\(260\) 0 0
\(261\) −12.8561 + 3.26873i −0.795774 + 0.202329i
\(262\) 0 0
\(263\) 14.9031i 0.918964i 0.888187 + 0.459482i \(0.151965\pi\)
−0.888187 + 0.459482i \(0.848035\pi\)
\(264\) 0 0
\(265\) 5.87201 21.9146i 0.360715 1.34621i
\(266\) 0 0
\(267\) −8.75814 11.5666i −0.535990 0.707865i
\(268\) 0 0
\(269\) 2.95682 + 1.70712i 0.180280 + 0.104085i 0.587424 0.809279i \(-0.300142\pi\)
−0.407144 + 0.913364i \(0.633475\pi\)
\(270\) 0 0
\(271\) −8.83826 2.36821i −0.536886 0.143858i −0.0198199 0.999804i \(-0.506309\pi\)
−0.517066 + 0.855945i \(0.672976\pi\)
\(272\) 0 0
\(273\) 0.374943 + 4.17468i 0.0226926 + 0.252663i
\(274\) 0 0
\(275\) −5.12484 19.1262i −0.309040 1.15335i
\(276\) 0 0
\(277\) −7.46396 + 4.30932i −0.448466 + 0.258922i −0.707182 0.707031i \(-0.750034\pi\)
0.258716 + 0.965953i \(0.416701\pi\)
\(278\) 0 0
\(279\) −4.29013 0.0550043i −0.256844 0.00329302i
\(280\) 0 0
\(281\) 0.202633 0.0542955i 0.0120881 0.00323900i −0.252770 0.967526i \(-0.581342\pi\)
0.264858 + 0.964287i \(0.414675\pi\)
\(282\) 0 0
\(283\) −19.9480 11.5170i −1.18578 0.684612i −0.228438 0.973558i \(-0.573362\pi\)
−0.957345 + 0.288946i \(0.906695\pi\)
\(284\) 0 0
\(285\) 13.9532 17.9448i 0.826514 1.06296i
\(286\) 0 0
\(287\) 5.27134i 0.311157i
\(288\) 0 0
\(289\) −17.6395 30.5525i −1.03762 1.79720i
\(290\) 0 0
\(291\) 16.3079 + 21.5373i 0.955986 + 1.26254i
\(292\) 0 0
\(293\) 18.2292 + 18.2292i 1.06496 + 1.06496i 0.997738 + 0.0672223i \(0.0214137\pi\)
0.0672223 + 0.997738i \(0.478586\pi\)
\(294\) 0 0
\(295\) 6.28402 + 10.8842i 0.365870 + 0.633705i
\(296\) 0 0
\(297\) 8.87531 + 22.6493i 0.514998 + 1.31424i
\(298\) 0 0
\(299\) −2.47476 4.65445i −0.143119 0.269174i
\(300\) 0 0
\(301\) 6.13884 1.64490i 0.353837 0.0948103i
\(302\) 0 0
\(303\) 10.3936 13.3669i 0.597097 0.767909i
\(304\) 0 0
\(305\) −4.41564 16.4794i −0.252839 0.943606i
\(306\) 0 0
\(307\) 23.1111 23.1111i 1.31902 1.31902i 0.404467 0.914553i \(-0.367457\pi\)
0.914553 0.404467i \(-0.132543\pi\)
\(308\) 0 0
\(309\) 2.66422 19.2809i 0.151562 1.09685i
\(310\) 0 0
\(311\) 8.87785 + 15.3769i 0.503417 + 0.871943i 0.999992 + 0.00394966i \(0.00125722\pi\)
−0.496576 + 0.867993i \(0.665409\pi\)
\(312\) 0 0
\(313\) −4.89955 + 8.48627i −0.276939 + 0.479672i −0.970622 0.240608i \(-0.922653\pi\)
0.693684 + 0.720280i \(0.255987\pi\)
\(314\) 0 0
\(315\) −1.65884 + 5.88789i −0.0934653 + 0.331745i
\(316\) 0 0
\(317\) 2.71402 + 10.1289i 0.152435 + 0.568894i 0.999311 + 0.0371046i \(0.0118135\pi\)
−0.846877 + 0.531789i \(0.821520\pi\)
\(318\) 0 0
\(319\) −14.6375 + 14.6375i −0.819543 + 0.819543i
\(320\) 0 0
\(321\) −4.02260 + 29.1114i −0.224520 + 1.62484i
\(322\) 0 0
\(323\) −8.08407 + 30.1702i −0.449810 + 1.67871i
\(324\) 0 0
\(325\) −13.4649 + 7.15924i −0.746897 + 0.397123i
\(326\) 0 0
\(327\) 1.25004 0.156426i 0.0691274 0.00865037i
\(328\) 0 0
\(329\) 5.00517 0.275944
\(330\) 0 0
\(331\) −4.02523 + 15.0224i −0.221247 + 0.825705i 0.762627 + 0.646839i \(0.223909\pi\)
−0.983873 + 0.178866i \(0.942757\pi\)
\(332\) 0 0
\(333\) −0.0455386 + 3.55185i −0.00249550 + 0.194640i
\(334\) 0 0
\(335\) −20.7258 −1.13237
\(336\) 0 0
\(337\) −16.3011 + 9.41142i −0.887975 + 0.512673i −0.873280 0.487219i \(-0.838011\pi\)
−0.0146957 + 0.999892i \(0.504678\pi\)
\(338\) 0 0
\(339\) 13.4535 + 10.4609i 0.730695 + 0.568160i
\(340\) 0 0
\(341\) −5.79838 + 3.34770i −0.314000 + 0.181288i
\(342\) 0 0
\(343\) −6.43049 6.43049i −0.347214 0.347214i
\(344\) 0 0
\(345\) −0.955259 7.63373i −0.0514294 0.410986i
\(346\) 0 0
\(347\) 13.0042i 0.698104i −0.937103 0.349052i \(-0.886504\pi\)
0.937103 0.349052i \(-0.113496\pi\)
\(348\) 0 0
\(349\) 13.9143 13.9143i 0.744818 0.744818i −0.228683 0.973501i \(-0.573442\pi\)
0.973501 + 0.228683i \(0.0734420\pi\)
\(350\) 0 0
\(351\) 15.4589 10.5840i 0.825137 0.564933i
\(352\) 0 0
\(353\) 1.42456 1.42456i 0.0758218 0.0758218i −0.668179 0.744001i \(-0.732926\pi\)
0.744001 + 0.668179i \(0.232926\pi\)
\(354\) 0 0
\(355\) 27.2731i 1.44751i
\(356\) 0 0
\(357\) −1.04369 8.34037i −0.0552377 0.441419i
\(358\) 0 0
\(359\) −12.9143 12.9143i −0.681589 0.681589i 0.278769 0.960358i \(-0.410074\pi\)
−0.960358 + 0.278769i \(0.910074\pi\)
\(360\) 0 0
\(361\) −0.293341 + 0.169361i −0.0154390 + 0.00891372i
\(362\) 0 0
\(363\) 14.9273 + 11.6069i 0.783480 + 0.609205i
\(364\) 0 0
\(365\) −31.1695 + 17.9957i −1.63149 + 0.941938i
\(366\) 0 0
\(367\) 12.9286 0.674869 0.337435 0.941349i \(-0.390441\pi\)
0.337435 + 0.941349i \(0.390441\pi\)
\(368\) 0 0
\(369\) 20.5544 11.5183i 1.07002 0.599619i
\(370\) 0 0
\(371\) −1.29727 + 4.84149i −0.0673511 + 0.251358i
\(372\) 0 0
\(373\) −22.2218 −1.15060 −0.575301 0.817942i \(-0.695115\pi\)
−0.575301 + 0.817942i \(0.695115\pi\)
\(374\) 0 0
\(375\) 4.02276 0.503395i 0.207735 0.0259952i
\(376\) 0 0
\(377\) 13.5201 + 8.44850i 0.696322 + 0.435120i
\(378\) 0 0
\(379\) 7.09076 26.4631i 0.364228 1.35932i −0.504237 0.863565i \(-0.668226\pi\)
0.868465 0.495751i \(-0.165107\pi\)
\(380\) 0 0
\(381\) 3.35584 24.2861i 0.171925 1.24422i
\(382\) 0 0
\(383\) −4.86478 + 4.86478i −0.248578 + 0.248578i −0.820387 0.571809i \(-0.806242\pi\)
0.571809 + 0.820387i \(0.306242\pi\)
\(384\) 0 0
\(385\) 2.47066 + 9.22062i 0.125916 + 0.469926i
\(386\) 0 0
\(387\) −19.8278 20.3428i −1.00790 1.03408i
\(388\) 0 0
\(389\) −5.10145 + 8.83597i −0.258654 + 0.448002i −0.965882 0.258984i \(-0.916612\pi\)
0.707228 + 0.706986i \(0.249946\pi\)
\(390\) 0 0
\(391\) 5.28559 + 9.15491i 0.267304 + 0.462983i
\(392\) 0 0
\(393\) −0.626978 + 4.53742i −0.0316269 + 0.228883i
\(394\) 0 0
\(395\) −27.0777 + 27.0777i −1.36243 + 1.36243i
\(396\) 0 0
\(397\) −5.15554 19.2407i −0.258749 0.965665i −0.965966 0.258669i \(-0.916716\pi\)
0.707217 0.706997i \(-0.249950\pi\)
\(398\) 0 0
\(399\) −3.08260 + 3.96445i −0.154323 + 0.198471i
\(400\) 0 0
\(401\) 25.2249 6.75899i 1.25967 0.337528i 0.433606 0.901102i \(-0.357241\pi\)
0.826065 + 0.563574i \(0.190574\pi\)
\(402\) 0 0
\(403\) 3.51670 + 3.77128i 0.175179 + 0.187861i
\(404\) 0 0
\(405\) 26.5832 6.39723i 1.32093 0.317881i
\(406\) 0 0
\(407\) 2.77159 + 4.80054i 0.137383 + 0.237954i
\(408\) 0 0
\(409\) 28.0046 + 28.0046i 1.38474 + 1.38474i 0.835987 + 0.548749i \(0.184896\pi\)
0.548749 + 0.835987i \(0.315104\pi\)
\(410\) 0 0
\(411\) −0.101434 0.133960i −0.00500335 0.00660777i
\(412\) 0 0
\(413\) −1.38830 2.40460i −0.0683137 0.118323i
\(414\) 0 0
\(415\) 13.4993i 0.662655i
\(416\) 0 0
\(417\) 12.8530 16.5298i 0.629413 0.809470i
\(418\) 0 0
\(419\) −3.57956 2.06666i −0.174873 0.100963i 0.410008 0.912082i \(-0.365526\pi\)
−0.584882 + 0.811119i \(0.698859\pi\)
\(420\) 0 0
\(421\) 0.651312 0.174519i 0.0317430 0.00850551i −0.242913 0.970048i \(-0.578103\pi\)
0.274656 + 0.961543i \(0.411436\pi\)
\(422\) 0 0
\(423\) −10.9367 19.5165i −0.531761 0.948927i
\(424\) 0 0
\(425\) 26.4842 15.2907i 1.28467 0.741707i
\(426\) 0 0
\(427\) 0.975525 + 3.64071i 0.0472089 + 0.176186i
\(428\) 0 0
\(429\) 12.2947 26.5256i 0.593592 1.28067i
\(430\) 0 0
\(431\) −15.1112 4.04903i −0.727879 0.195035i −0.124195 0.992258i \(-0.539635\pi\)
−0.603685 + 0.797223i \(0.706301\pi\)
\(432\) 0 0
\(433\) 32.7772 + 18.9239i 1.57517 + 0.909427i 0.995519 + 0.0945639i \(0.0301457\pi\)
0.579654 + 0.814863i \(0.303188\pi\)
\(434\) 0 0
\(435\) 14.0455 + 18.5494i 0.673430 + 0.889377i
\(436\) 0 0
\(437\) 1.63466 6.10062i 0.0781963 0.291832i
\(438\) 0 0
\(439\) 21.7452i 1.03784i 0.854822 + 0.518922i \(0.173667\pi\)
−0.854822 + 0.518922i \(0.826333\pi\)
\(440\) 0 0
\(441\) −5.32832 + 18.9123i −0.253730 + 0.900586i
\(442\) 0 0
\(443\) 1.49013 + 0.860330i 0.0707984 + 0.0408755i 0.534981 0.844864i \(-0.320319\pi\)
−0.464183 + 0.885739i \(0.653652\pi\)
\(444\) 0 0
\(445\) −12.7238 + 22.0383i −0.603166 + 1.04471i
\(446\) 0 0
\(447\) 2.71612 + 21.7053i 0.128468 + 1.02662i
\(448\) 0 0
\(449\) 7.08109 1.89737i 0.334177 0.0895425i −0.0878286 0.996136i \(-0.527993\pi\)
0.422006 + 0.906593i \(0.361326\pi\)
\(450\) 0 0
\(451\) 18.3843 31.8425i 0.865682 1.49941i
\(452\) 0 0
\(453\) 23.9298 + 10.0922i 1.12432 + 0.474174i
\(454\) 0 0
\(455\) 6.49134 3.45142i 0.304319 0.161805i
\(456\) 0 0
\(457\) 2.99233 + 2.99233i 0.139975 + 0.139975i 0.773622 0.633647i \(-0.218443\pi\)
−0.633647 + 0.773622i \(0.718443\pi\)
\(458\) 0 0
\(459\) −30.2409 + 22.2940i −1.41152 + 1.04059i
\(460\) 0 0
\(461\) 23.3999 + 6.26999i 1.08984 + 0.292023i 0.758623 0.651530i \(-0.225873\pi\)
0.331221 + 0.943553i \(0.392539\pi\)
\(462\) 0 0
\(463\) 6.77247 + 1.81468i 0.314744 + 0.0843353i 0.412733 0.910852i \(-0.364574\pi\)
−0.0979891 + 0.995187i \(0.531241\pi\)
\(464\) 0 0
\(465\) 2.83526 + 6.97098i 0.131482 + 0.323272i
\(466\) 0 0
\(467\) 36.8585 1.70561 0.852804 0.522231i \(-0.174900\pi\)
0.852804 + 0.522231i \(0.174900\pi\)
\(468\) 0 0
\(469\) 4.57886 0.211432
\(470\) 0 0
\(471\) −4.57119 0.631644i −0.210629 0.0291046i
\(472\) 0 0
\(473\) −42.8196 11.4735i −1.96885 0.527550i
\(474\) 0 0
\(475\) −17.6485 4.72890i −0.809769 0.216977i
\(476\) 0 0
\(477\) 21.7130 5.52062i 0.994168 0.252772i
\(478\) 0 0
\(479\) 12.1081 + 12.1081i 0.553234 + 0.553234i 0.927373 0.374138i \(-0.122062\pi\)
−0.374138 + 0.927373i \(0.622062\pi\)
\(480\) 0 0
\(481\) 3.12228 2.91152i 0.142364 0.132754i
\(482\) 0 0
\(483\) 0.211041 + 1.68648i 0.00960268 + 0.0767376i
\(484\) 0 0
\(485\) 23.6921 41.0359i 1.07580 1.86334i
\(486\) 0 0
\(487\) −11.2868 + 3.02430i −0.511455 + 0.137044i −0.505311 0.862937i \(-0.668622\pi\)
−0.00614389 + 0.999981i \(0.501956\pi\)
\(488\) 0 0
\(489\) −7.47847 3.15400i −0.338188 0.142629i
\(490\) 0 0
\(491\) 11.4891 19.8997i 0.518496 0.898062i −0.481273 0.876571i \(-0.659825\pi\)
0.999769 0.0214908i \(-0.00684124\pi\)
\(492\) 0 0
\(493\) −27.6876 15.9854i −1.24699 0.719948i
\(494\) 0 0
\(495\) 30.5551 29.7816i 1.37335 1.33858i
\(496\) 0 0
\(497\) 6.02531i 0.270272i
\(498\) 0 0
\(499\) 3.31892 12.3864i 0.148575 0.554491i −0.850995 0.525174i \(-0.824000\pi\)
0.999570 0.0293168i \(-0.00933315\pi\)
\(500\) 0 0
\(501\) −10.4981 + 24.8922i −0.469023 + 1.11210i
\(502\) 0 0
\(503\) 1.38363 + 0.798839i 0.0616930 + 0.0356184i 0.530529 0.847667i \(-0.321993\pi\)
−0.468836 + 0.883285i \(0.655327\pi\)
\(504\) 0 0
\(505\) −28.6872 7.68671i −1.27656 0.342054i
\(506\) 0 0
\(507\) −22.0353 4.63087i −0.978623 0.205664i
\(508\) 0 0
\(509\) 6.59314 + 24.6059i 0.292236 + 1.09064i 0.943388 + 0.331692i \(0.107619\pi\)
−0.651152 + 0.758947i \(0.725714\pi\)
\(510\) 0 0
\(511\) 6.88612 3.97570i 0.304624 0.175875i
\(512\) 0 0
\(513\) 22.1942 + 3.35729i 0.979899 + 0.148228i
\(514\) 0 0
\(515\) −32.9767 + 8.83609i −1.45313 + 0.389365i
\(516\) 0 0
\(517\) −30.2347 17.4560i −1.32972 0.767714i
\(518\) 0 0
\(519\) −34.3337 4.74422i −1.50708 0.208248i
\(520\) 0 0
\(521\) 24.5314i 1.07474i 0.843346 + 0.537370i \(0.180582\pi\)
−0.843346 + 0.537370i \(0.819418\pi\)
\(522\) 0 0
\(523\) 3.69447 + 6.39900i 0.161548 + 0.279809i 0.935424 0.353528i \(-0.115018\pi\)
−0.773876 + 0.633337i \(0.781685\pi\)
\(524\) 0 0
\(525\) 4.87883 0.610520i 0.212929 0.0266453i
\(526\) 0 0
\(527\) −7.31196 7.31196i −0.318514 0.318514i
\(528\) 0 0
\(529\) 10.4312 + 18.0674i 0.453531 + 0.785539i
\(530\) 0 0
\(531\) −6.34267 + 10.6676i −0.275248 + 0.462935i
\(532\) 0 0
\(533\) −27.0802 8.27955i −1.17298 0.358627i
\(534\) 0 0
\(535\) 49.7902 13.3412i 2.15262 0.576792i
\(536\) 0 0
\(537\) −19.7146 2.72415i −0.850748 0.117556i
\(538\) 0 0
\(539\) 7.93591 + 29.6172i 0.341824 + 1.27570i
\(540\) 0 0
\(541\) −5.03374 + 5.03374i −0.216418 + 0.216418i −0.806987 0.590569i \(-0.798903\pi\)
0.590569 + 0.806987i \(0.298903\pi\)
\(542\) 0 0
\(543\) 35.7310 + 27.7831i 1.53337 + 1.19229i
\(544\) 0 0
\(545\) −1.10484 1.91363i −0.0473260 0.0819710i
\(546\) 0 0
\(547\) 9.69757 16.7967i 0.414638 0.718174i −0.580752 0.814080i \(-0.697242\pi\)
0.995390 + 0.0959061i \(0.0305748\pi\)
\(548\) 0 0
\(549\) 12.0645 11.7591i 0.514901 0.501865i
\(550\) 0 0
\(551\) 4.94377 + 18.4504i 0.210612 + 0.786013i
\(552\) 0 0
\(553\) 5.98214 5.98214i 0.254386 0.254386i
\(554\) 0 0
\(555\) 5.77135 2.34734i 0.244980 0.0996391i
\(556\) 0 0
\(557\) 10.5583 39.4040i 0.447368 1.66960i −0.262238 0.965003i \(-0.584460\pi\)
0.709606 0.704598i \(-0.248873\pi\)
\(558\) 0 0
\(559\) −1.19184 + 34.1204i −0.0504095 + 1.44314i
\(560\) 0 0
\(561\) −22.7832 + 54.0215i −0.961909 + 2.28079i
\(562\) 0 0
\(563\) 25.0022 1.05372 0.526858 0.849954i \(-0.323370\pi\)
0.526858 + 0.849954i \(0.323370\pi\)
\(564\) 0 0
\(565\) 7.73651 28.8731i 0.325478 1.21470i
\(566\) 0 0
\(567\) −5.87290 + 1.41331i −0.246639 + 0.0593534i
\(568\) 0 0
\(569\) −10.6045 −0.444565 −0.222282 0.974982i \(-0.571351\pi\)
−0.222282 + 0.974982i \(0.571351\pi\)
\(570\) 0 0
\(571\) −11.4489 + 6.61000i −0.479120 + 0.276620i −0.720050 0.693923i \(-0.755881\pi\)
0.240930 + 0.970543i \(0.422548\pi\)
\(572\) 0 0
\(573\) −0.564023 + 4.08182i −0.0235624 + 0.170520i
\(574\) 0 0
\(575\) −5.35530 + 3.09189i −0.223332 + 0.128941i
\(576\) 0 0
\(577\) 17.9959 + 17.9959i 0.749178 + 0.749178i 0.974325 0.225147i \(-0.0722861\pi\)
−0.225147 + 0.974325i \(0.572286\pi\)
\(578\) 0 0
\(579\) −26.5024 11.1772i −1.10140 0.464509i
\(580\) 0 0
\(581\) 2.98234i 0.123728i
\(582\) 0 0
\(583\) 24.7216 24.7216i 1.02386 1.02386i
\(584\) 0 0
\(585\) −27.6421 17.7699i −1.14286 0.734694i
\(586\) 0 0
\(587\) 15.1023 15.1023i 0.623338 0.623338i −0.323045 0.946383i \(-0.604707\pi\)
0.946383 + 0.323045i \(0.104707\pi\)
\(588\) 0 0
\(589\) 6.17811i 0.254565i
\(590\) 0 0
\(591\) −33.7470 + 25.5530i −1.38817 + 1.05111i
\(592\) 0 0
\(593\) −22.0256 22.0256i −0.904484 0.904484i 0.0913365 0.995820i \(-0.470886\pi\)
−0.995820 + 0.0913365i \(0.970886\pi\)
\(594\) 0 0
\(595\) −12.7679 + 7.37155i −0.523433 + 0.302204i
\(596\) 0 0
\(597\) −22.0107 + 8.95228i −0.900840 + 0.366393i
\(598\) 0 0
\(599\) 14.0092 8.08823i 0.572401 0.330476i −0.185707 0.982605i \(-0.559457\pi\)
0.758108 + 0.652129i \(0.226124\pi\)
\(600\) 0 0
\(601\) −6.14761 −0.250766 −0.125383 0.992108i \(-0.540016\pi\)
−0.125383 + 0.992108i \(0.540016\pi\)
\(602\) 0 0
\(603\) −10.0052 17.8542i −0.407442 0.727080i
\(604\) 0 0
\(605\) 8.58402 32.0360i 0.348990 1.30245i
\(606\) 0 0
\(607\) −0.0357598 −0.00145145 −0.000725723 1.00000i \(-0.500231\pi\)
−0.000725723 1.00000i \(0.500231\pi\)
\(608\) 0 0
\(609\) −3.10300 4.09804i −0.125740 0.166061i
\(610\) 0 0
\(611\) −7.86148 + 25.7129i −0.318042 + 1.04023i
\(612\) 0 0
\(613\) −2.11344 + 7.88746i −0.0853610 + 0.318572i −0.995382 0.0959899i \(-0.969398\pi\)
0.910021 + 0.414561i \(0.136065\pi\)
\(614\) 0 0
\(615\) −32.6252 25.3681i −1.31557 1.02294i
\(616\) 0 0
\(617\) 13.6052 13.6052i 0.547723 0.547723i −0.378059 0.925782i \(-0.623408\pi\)
0.925782 + 0.378059i \(0.123408\pi\)
\(618\) 0 0
\(619\) 4.72181 + 17.6220i 0.189786 + 0.708290i 0.993555 + 0.113349i \(0.0361578\pi\)
−0.803770 + 0.594941i \(0.797176\pi\)
\(620\) 0 0
\(621\) 6.11492 4.50800i 0.245383 0.180900i
\(622\) 0 0
\(623\) 2.81101 4.86881i 0.112621 0.195065i
\(624\) 0 0
\(625\) −14.1293 24.4727i −0.565174 0.978909i
\(626\) 0 0
\(627\) 32.4474 13.1971i 1.29583 0.527042i
\(628\) 0 0
\(629\) −6.05365 + 6.05365i −0.241375 + 0.241375i
\(630\) 0 0
\(631\) 8.96498 + 33.4578i 0.356890 + 1.33193i 0.878089 + 0.478497i \(0.158818\pi\)
−0.521199 + 0.853435i \(0.674515\pi\)
\(632\) 0 0
\(633\) −9.61356 23.6366i −0.382105 0.939471i
\(634\) 0 0
\(635\) −41.5373 + 11.1299i −1.64836 + 0.441677i
\(636\) 0 0
\(637\) 20.8506 11.0862i 0.826131 0.439251i
\(638\) 0 0
\(639\) −23.4944 + 13.1658i −0.929422 + 0.520831i
\(640\) 0 0
\(641\) −1.80368 3.12406i −0.0712409 0.123393i 0.828205 0.560426i \(-0.189363\pi\)
−0.899445 + 0.437033i \(0.856029\pi\)
\(642\) 0 0
\(643\) −10.7220 10.7220i −0.422834 0.422834i 0.463345 0.886178i \(-0.346649\pi\)
−0.886178 + 0.463345i \(0.846649\pi\)
\(644\) 0 0
\(645\) −19.3624 + 45.9103i −0.762393 + 1.80772i
\(646\) 0 0
\(647\) 23.1852 + 40.1580i 0.911505 + 1.57877i 0.811939 + 0.583743i \(0.198412\pi\)
0.0995668 + 0.995031i \(0.468254\pi\)
\(648\) 0 0
\(649\) 19.3673i 0.760232i
\(650\) 0 0
\(651\) −0.626380 1.54006i −0.0245498 0.0603599i
\(652\) 0 0
\(653\) 9.39828 + 5.42610i 0.367783 + 0.212340i 0.672490 0.740107i \(-0.265225\pi\)
−0.304706 + 0.952446i \(0.598558\pi\)
\(654\) 0 0
\(655\) 7.76049 2.07942i 0.303228 0.0812496i
\(656\) 0 0
\(657\) −30.5491 18.1637i −1.19183 0.708632i
\(658\) 0 0
\(659\) −18.9112 + 10.9184i −0.736674 + 0.425319i −0.820859 0.571131i \(-0.806505\pi\)
0.0841846 + 0.996450i \(0.473171\pi\)
\(660\) 0 0
\(661\) −2.47944 9.25341i −0.0964392 0.359916i 0.900795 0.434245i \(-0.142985\pi\)
−0.997234 + 0.0743297i \(0.976318\pi\)
\(662\) 0 0
\(663\) 44.4859 + 7.73830i 1.72769 + 0.300531i
\(664\) 0 0
\(665\) 8.50824 + 2.27978i 0.329935 + 0.0884059i
\(666\) 0 0
\(667\) 5.59863 + 3.23237i 0.216780 + 0.125158i
\(668\) 0 0
\(669\) −45.4935 + 5.69290i −1.75888 + 0.220100i
\(670\) 0 0
\(671\) 6.80446 25.3946i 0.262683 0.980348i
\(672\) 0 0
\(673\) 37.6574i 1.45159i 0.687913 + 0.725793i \(0.258527\pi\)
−0.687913 + 0.725793i \(0.741473\pi\)
\(674\) 0 0
\(675\) −13.0412 17.6899i −0.501956 0.680883i
\(676\) 0 0
\(677\) −20.6548 11.9251i −0.793829 0.458317i 0.0474798 0.998872i \(-0.484881\pi\)
−0.841309 + 0.540555i \(0.818214\pi\)
\(678\) 0 0
\(679\) −5.23417 + 9.06585i −0.200869 + 0.347915i
\(680\) 0 0
\(681\) 5.03465 3.81220i 0.192928 0.146084i
\(682\) 0 0
\(683\) 37.2984 9.99406i 1.42718 0.382412i 0.539156 0.842206i \(-0.318743\pi\)
0.888026 + 0.459794i \(0.152077\pi\)
\(684\) 0 0
\(685\) −0.147362 + 0.255239i −0.00563043 + 0.00975219i
\(686\) 0 0
\(687\) 17.0171 12.8852i 0.649242 0.491601i
\(688\) 0 0
\(689\) −22.8344 14.2688i −0.869922 0.543599i
\(690\) 0 0
\(691\) 26.6903 + 26.6903i 1.01535 + 1.01535i 0.999880 + 0.0154675i \(0.00492364\pi\)
0.0154675 + 0.999880i \(0.495076\pi\)
\(692\) 0 0
\(693\) −6.75040 + 6.57949i −0.256426 + 0.249934i
\(694\) 0 0
\(695\) −35.4753 9.50557i −1.34565 0.360567i
\(696\) 0 0
\(697\) 54.8521 + 14.6976i 2.07767 + 0.556710i
\(698\) 0 0
\(699\) −1.56286 + 2.00995i −0.0591129 + 0.0760234i
\(700\) 0 0
\(701\) 47.2060 1.78295 0.891473 0.453073i \(-0.149672\pi\)
0.891473 + 0.453073i \(0.149672\pi\)
\(702\) 0 0
\(703\) 5.11493 0.192913
\(704\) 0 0
\(705\) −24.0872 + 30.9778i −0.907175 + 1.16669i
\(706\) 0 0
\(707\) 6.33772 + 1.69819i 0.238354 + 0.0638669i
\(708\) 0 0
\(709\) −28.2711 7.57523i −1.06174 0.284494i −0.314647 0.949209i \(-0.601886\pi\)
−0.747097 + 0.664715i \(0.768553\pi\)
\(710\) 0 0
\(711\) −36.3975 10.2546i −1.36501 0.384576i
\(712\) 0 0
\(713\) 1.47853 + 1.47853i 0.0553714 + 0.0553714i
\(714\) 0 0
\(715\) −51.2493 1.79016i −1.91661 0.0669482i
\(716\) 0 0
\(717\) 5.73482 4.34236i 0.214171 0.162169i
\(718\) 0 0
\(719\) 14.4340 25.0004i 0.538297 0.932357i −0.460699 0.887556i \(-0.652401\pi\)
0.998996 0.0448010i \(-0.0142654\pi\)
\(720\) 0 0
\(721\) 7.28539 1.95211i 0.271322 0.0727005i
\(722\) 0 0
\(723\) 12.1003 9.16223i 0.450014 0.340747i
\(724\) 0 0
\(725\) 9.35093 16.1963i 0.347285 0.601515i
\(726\) 0 0
\(727\) −33.1912 19.1629i −1.23099 0.710714i −0.263755 0.964590i \(-0.584961\pi\)
−0.967237 + 0.253876i \(0.918294\pi\)
\(728\) 0 0
\(729\) 18.3436 + 19.8119i 0.679394 + 0.733773i
\(730\) 0 0
\(731\) 68.4654i 2.53228i
\(732\) 0 0
\(733\) 10.4482 38.9931i 0.385911 1.44024i −0.450814 0.892618i \(-0.648866\pi\)
0.836725 0.547623i \(-0.184467\pi\)
\(734\) 0 0
\(735\) 34.1969 4.27928i 1.26137 0.157844i
\(736\) 0 0
\(737\) −27.6594 15.9692i −1.01885 0.588232i
\(738\) 0 0
\(739\) −6.38584 1.71108i −0.234907 0.0629431i 0.139445 0.990230i \(-0.455468\pi\)
−0.374352 + 0.927287i \(0.622135\pi\)
\(740\) 0 0
\(741\) −15.5246 22.0630i −0.570312 0.810504i
\(742\) 0 0
\(743\) −4.40470 16.4386i −0.161593 0.603072i −0.998450 0.0556514i \(-0.982276\pi\)
0.836858 0.547421i \(-0.184390\pi\)
\(744\) 0 0
\(745\) 33.2276 19.1840i 1.21737 0.702847i
\(746\) 0 0
\(747\) −11.6290 + 6.51665i −0.425481 + 0.238432i
\(748\) 0 0
\(749\) −10.9999 + 2.94742i −0.401928 + 0.107696i
\(750\) 0 0
\(751\) 0.0835960 + 0.0482642i 0.00305046 + 0.00176119i 0.501524 0.865143i \(-0.332773\pi\)
−0.498474 + 0.866905i \(0.666106\pi\)
\(752\) 0 0
\(753\) −10.6036 26.0709i −0.386418 0.950075i
\(754\) 0 0
\(755\) 45.5529i 1.65784i
\(756\) 0 0
\(757\) −14.1700 24.5432i −0.515019 0.892039i −0.999848 0.0174302i \(-0.994452\pi\)
0.484829 0.874609i \(-0.338882\pi\)
\(758\) 0 0
\(759\) 4.60693 10.9235i 0.167221 0.396499i
\(760\) 0 0
\(761\) 10.0002 + 10.0002i 0.362505 + 0.362505i 0.864735 0.502229i \(-0.167487\pi\)
−0.502229 + 0.864735i \(0.667487\pi\)
\(762\) 0 0
\(763\) 0.244086 + 0.422769i 0.00883651 + 0.0153053i
\(764\) 0 0
\(765\) 56.6426 + 33.6781i 2.04792 + 1.21764i
\(766\) 0 0
\(767\) 14.5336 3.35521i 0.524779 0.121149i
\(768\) 0 0
\(769\) −4.48940 + 1.20293i −0.161892 + 0.0433788i −0.338855 0.940839i \(-0.610039\pi\)
0.176963 + 0.984218i \(0.443373\pi\)
\(770\) 0 0
\(771\) −1.06631 2.62172i −0.0384023 0.0944189i
\(772\) 0 0
\(773\) 8.37392 + 31.2519i 0.301189 + 1.12405i 0.936177 + 0.351530i \(0.114338\pi\)
−0.634988 + 0.772522i \(0.718995\pi\)
\(774\) 0 0
\(775\) 4.27724 4.27724i 0.153643 0.153643i
\(776\) 0 0
\(777\) −1.27504 + 0.518587i −0.0457417 + 0.0186042i
\(778\) 0 0
\(779\) −16.9639 29.3824i −0.607796 1.05273i
\(780\) 0 0
\(781\) −21.0138 + 36.3970i −0.751934 + 1.30239i
\(782\) 0 0
\(783\) −9.19907 + 21.0540i −0.328748 + 0.752408i
\(784\) 0 0
\(785\) 2.09489 + 7.81825i 0.0747700 + 0.279045i
\(786\) 0 0
\(787\) −15.9398 + 15.9398i −0.568194 + 0.568194i −0.931622 0.363428i \(-0.881606\pi\)
0.363428 + 0.931622i \(0.381606\pi\)
\(788\) 0 0
\(789\) 20.3776 + 15.8449i 0.725462 + 0.564092i
\(790\) 0 0
\(791\) −1.70919 + 6.37878i −0.0607718 + 0.226803i
\(792\) 0 0
\(793\) −20.2355 0.706835i −0.718583 0.0251004i
\(794\) 0 0
\(795\) −23.7217 31.3285i −0.841322 1.11111i
\(796\) 0 0
\(797\) 7.91200 0.280257 0.140129 0.990133i \(-0.455248\pi\)
0.140129 + 0.990133i \(0.455248\pi\)
\(798\) 0 0
\(799\) 13.9554 52.0824i 0.493708 1.84254i
\(800\) 0 0
\(801\) −25.1271 0.322157i −0.887822 0.0113829i
\(802\) 0 0
\(803\) −55.4625 −1.95723
\(804\) 0 0
\(805\) 2.58176 1.49058i 0.0909951 0.0525360i
\(806\) 0 0
\(807\) 5.47788 2.22798i 0.192830 0.0784286i
\(808\) 0 0
\(809\) 18.5652 10.7186i 0.652716 0.376846i −0.136780 0.990601i \(-0.543675\pi\)
0.789496 + 0.613756i \(0.210342\pi\)
\(810\) 0 0
\(811\) 22.3538 + 22.3538i 0.784949 + 0.784949i 0.980661 0.195712i \(-0.0627019\pi\)
−0.195712 + 0.980661i \(0.562702\pi\)
\(812\) 0 0
\(813\) −12.6349 + 9.56706i −0.443126 + 0.335532i
\(814\) 0 0
\(815\) 14.2361i 0.498668i
\(816\) 0 0
\(817\) −28.9243 + 28.9243i −1.01193 + 1.01193i
\(818\) 0 0
\(819\) 6.10684 + 3.92581i 0.213390 + 0.137179i
\(820\) 0 0
\(821\) −25.1202 + 25.1202i −0.876702 + 0.876702i −0.993192 0.116490i \(-0.962836\pi\)
0.116490 + 0.993192i \(0.462836\pi\)
\(822\) 0 0
\(823\) 33.6922i 1.17444i 0.809429 + 0.587218i \(0.199777\pi\)
−0.809429 + 0.587218i \(0.800223\pi\)
\(824\) 0 0
\(825\) −31.6007 13.3274i −1.10020 0.464000i
\(826\) 0 0
\(827\) −3.95015 3.95015i −0.137360 0.137360i 0.635083 0.772444i \(-0.280966\pi\)
−0.772444 + 0.635083i \(0.780966\pi\)
\(828\) 0 0
\(829\) 24.2862 14.0217i 0.843495 0.486992i −0.0149557 0.999888i \(-0.504761\pi\)
0.858451 + 0.512896i \(0.171427\pi\)
\(830\) 0 0
\(831\) −2.04332 + 14.7874i −0.0708819 + 0.512970i
\(832\) 0 0
\(833\) −41.0113 + 23.6779i −1.42096 + 0.820391i
\(834\) 0 0
\(835\) 47.3851 1.63983
\(836\) 0 0
\(837\) −4.63645 + 5.80760i −0.160259 + 0.200740i
\(838\) 0 0
\(839\) 9.23741 34.4745i 0.318911 1.19019i −0.601382 0.798962i \(-0.705383\pi\)
0.920293 0.391230i \(-0.127950\pi\)
\(840\) 0 0
\(841\) 9.44839 0.325807
\(842\) 0 0
\(843\) 0.141198 0.334796i 0.00486311 0.0115310i
\(844\) 0 0
\(845\) 7.53510 + 38.7687i 0.259215 + 1.33369i
\(846\) 0 0
\(847\) −1.89643 + 7.07756i −0.0651620 + 0.243188i
\(848\) 0 0
\(849\) −36.9561 + 15.0309i −1.26833 + 0.515860i
\(850\) 0 0
\(851\) 1.22409 1.22409i 0.0419613 0.0419613i
\(852\) 0 0
\(853\) −5.74656 21.4464i −0.196758 0.734312i −0.991805 0.127763i \(-0.959220\pi\)
0.795046 0.606549i \(-0.207447\pi\)
\(854\) 0 0
\(855\) −9.70171 38.1575i −0.331792 1.30496i
\(856\) 0 0
\(857\) 9.54760 16.5369i 0.326140 0.564891i −0.655603 0.755106i \(-0.727585\pi\)
0.981742 + 0.190215i \(0.0609186\pi\)
\(858\) 0 0
\(859\) −27.1199 46.9730i −0.925319 1.60270i −0.791047 0.611755i \(-0.790464\pi\)
−0.134272 0.990945i \(-0.542870\pi\)
\(860\) 0 0
\(861\) 7.20772 + 5.60445i 0.245638 + 0.190999i
\(862\) 0 0
\(863\) 10.0822 10.0822i 0.343201 0.343201i −0.514368 0.857569i \(-0.671974\pi\)
0.857569 + 0.514368i \(0.171974\pi\)
\(864\) 0 0
\(865\) 15.7345 + 58.7221i 0.534990 + 1.99661i
\(866\) 0 0
\(867\) −60.5298 8.36397i −2.05570 0.284055i
\(868\) 0 0
\(869\) −56.9995 + 15.2730i −1.93357 + 0.518100i
\(870\) 0 0
\(871\) −7.19188 + 23.5228i −0.243688 + 0.797039i
\(872\) 0 0
\(873\) 46.7873 + 0.599866i 1.58351 + 0.0203024i
\(874\) 0 0
\(875\) 0.785494 + 1.36052i 0.0265546 + 0.0459938i
\(876\) 0 0
\(877\) 2.48569 + 2.48569i 0.0839358 + 0.0839358i 0.747828 0.663892i \(-0.231097\pi\)
−0.663892 + 0.747828i \(0.731097\pi\)
\(878\) 0 0
\(879\) 44.3066 5.54438i 1.49443 0.187007i
\(880\) 0 0
\(881\) −14.0958 24.4146i −0.474899 0.822549i 0.524688 0.851295i \(-0.324182\pi\)
−0.999587 + 0.0287456i \(0.990849\pi\)
\(882\) 0 0
\(883\) 8.66822i 0.291709i −0.989306 0.145854i \(-0.953407\pi\)
0.989306 0.145854i \(-0.0465931\pi\)
\(884\) 0 0
\(885\) 21.5636 + 2.97965i 0.724853 + 0.100160i
\(886\) 0 0
\(887\) −8.68587 5.01479i −0.291643 0.168380i 0.347040 0.937851i \(-0.387187\pi\)
−0.638683 + 0.769470i \(0.720520\pi\)
\(888\) 0 0
\(889\) 9.17664 2.45887i 0.307775 0.0824680i
\(890\) 0 0
\(891\) 40.4054 + 11.9449i 1.35363 + 0.400171i
\(892\) 0 0
\(893\) −27.8988 + 16.1074i −0.933597 + 0.539012i
\(894\) 0 0
\(895\) 9.03485 + 33.7185i 0.302002 + 1.12709i
\(896\) 0 0
\(897\) −8.99537 1.56474i −0.300347 0.0522451i
\(898\) 0 0
\(899\) −6.10830 1.63671i −0.203723 0.0545875i
\(900\) 0 0
\(901\) 46.7621 + 26.9981i 1.55787 + 0.899438i
\(902\) 0 0
\(903\) 4.27763 10.1427i 0.142351 0.337529i
\(904\) 0 0
\(905\) 20.5473 76.6836i 0.683016 2.54905i
\(906\) 0 0
\(907\) 26.8808i 0.892564i 0.894892 + 0.446282i \(0.147252\pi\)
−0.894892 + 0.446282i \(0.852748\pi\)
\(908\) 0 0
\(909\) −7.22673 28.4232i −0.239695 0.942738i
\(910\) 0 0
\(911\) 37.9403 + 21.9048i 1.25702 + 0.725740i 0.972494 0.232929i \(-0.0748309\pi\)
0.284525 + 0.958669i \(0.408164\pi\)
\(912\) 0 0
\(913\) −10.4012 + 18.0154i −0.344229 + 0.596222i
\(914\) 0 0
\(915\) −27.2276 11.4831i −0.900117 0.379619i
\(916\) 0 0
\(917\) −1.71449 + 0.459395i −0.0566174 + 0.0151706i
\(918\) 0 0
\(919\) −0.847859 + 1.46853i −0.0279683 + 0.0484425i −0.879671 0.475583i \(-0.842237\pi\)
0.851702 + 0.524026i \(0.175570\pi\)
\(920\) 0 0
\(921\) −7.02921 56.1723i −0.231620 1.85094i
\(922\) 0 0
\(923\) 30.9536 + 9.46379i 1.01885 + 0.311504i
\(924\) 0 0
\(925\) −3.54117 3.54117i −0.116433 0.116433i
\(926\) 0 0
\(927\) −23.5310 24.1422i −0.772859 0.792935i
\(928\) 0 0
\(929\) 49.3522 + 13.2239i 1.61919 + 0.433861i 0.950764 0.309916i \(-0.100301\pi\)
0.668428 + 0.743777i \(0.266968\pi\)
\(930\) 0 0
\(931\) 27.3290 + 7.32279i 0.895673 + 0.239995i
\(932\) 0 0
\(933\) 30.4643 + 4.20954i 0.997357 + 0.137814i
\(934\) 0 0
\(935\) 102.836 3.36309
\(936\) 0 0
\(937\) −7.45635 −0.243588 −0.121794 0.992555i \(-0.538865\pi\)
−0.121794 + 0.992555i \(0.538865\pi\)
\(938\) 0 0
\(939\) 6.39446 + 15.7219i 0.208675 + 0.513065i
\(940\) 0 0
\(941\) −26.5673 7.11870i −0.866070 0.232063i −0.201683 0.979451i \(-0.564641\pi\)
−0.664388 + 0.747388i \(0.731308\pi\)
\(942\) 0 0
\(943\) −11.0915 2.97195i −0.361188 0.0967801i
\(944\) 0 0
\(945\) 6.28709 + 8.52817i 0.204519 + 0.277421i
\(946\) 0 0
\(947\) −18.2887 18.2887i −0.594304 0.594304i 0.344487 0.938791i \(-0.388053\pi\)
−0.938791 + 0.344487i \(0.888053\pi\)
\(948\) 0 0
\(949\) 9.60838 + 41.6203i 0.311901 + 1.35105i
\(950\) 0 0
\(951\) 16.7351 + 7.05794i 0.542674 + 0.228869i
\(952\) 0 0
\(953\) −23.8503 + 41.3099i −0.772586 + 1.33816i 0.163555 + 0.986534i \(0.447704\pi\)
−0.936141 + 0.351624i \(0.885629\pi\)
\(954\) 0 0
\(955\) 6.98126 1.87062i 0.225908 0.0605319i
\(956\) 0 0
\(957\) 4.45198 + 35.5770i 0.143912 + 1.15004i
\(958\) 0 0
\(959\) 0.0325560 0.0563887i 0.00105129 0.00182089i
\(960\) 0 0
\(961\) 25.0755 + 14.4773i 0.808886 + 0.467010i
\(962\) 0 0
\(963\) 35.5285 + 36.4513i 1.14489 + 1.17463i
\(964\) 0 0
\(965\) 50.4502i 1.62405i
\(966\) 0 0
\(967\) 14.2436 53.1577i 0.458042 1.70944i −0.220944 0.975286i \(-0.570914\pi\)
0.678986 0.734151i \(-0.262419\pi\)
\(968\) 0 0
\(969\) 32.6580 + 43.1304i 1.04913 + 1.38555i
\(970\) 0 0
\(971\) 22.0094 + 12.7071i 0.706316 + 0.407792i 0.809696 0.586850i \(-0.199632\pi\)
−0.103379 + 0.994642i \(0.532966\pi\)
\(972\) 0 0
\(973\) 7.83738 + 2.10002i 0.251255 + 0.0673235i
\(974\) 0 0
\(975\) −4.52664 + 26.0227i −0.144968 + 0.833394i
\(976\) 0 0
\(977\) −11.3845 42.4875i −0.364222 1.35930i −0.868472 0.495738i \(-0.834898\pi\)
0.504250 0.863558i \(-0.331769\pi\)
\(978\) 0 0
\(979\) −33.9608 + 19.6073i −1.08539 + 0.626652i
\(980\) 0 0
\(981\) 1.11515 1.87554i 0.0356039 0.0598815i
\(982\) 0 0
\(983\) −44.4766 + 11.9175i −1.41858 + 0.380108i −0.884981 0.465627i \(-0.845829\pi\)
−0.533603 + 0.845735i \(0.679162\pi\)
\(984\) 0 0
\(985\) 64.2994 + 37.1233i 2.04875 + 1.18285i
\(986\) 0 0
\(987\) 5.32146 6.84378i 0.169384 0.217840i
\(988\) 0 0
\(989\) 13.8442i 0.440219i
\(990\) 0 0
\(991\) −16.6829 28.8957i −0.529951 0.917901i −0.999390 0.0349364i \(-0.988877\pi\)
0.469439 0.882965i \(-0.344456\pi\)
\(992\) 0 0
\(993\) 16.2611 + 21.4756i 0.516031 + 0.681506i
\(994\) 0 0
\(995\) 29.4708 + 29.4708i 0.934286 + 0.934286i
\(996\) 0 0
\(997\) −8.75444 15.1631i −0.277256 0.480222i 0.693446 0.720509i \(-0.256092\pi\)
−0.970702 + 0.240287i \(0.922758\pi\)
\(998\) 0 0
\(999\) 4.80817 + 3.83856i 0.152124 + 0.121447i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.bw.a.245.11 yes 56
3.2 odd 2 1404.2.bz.a.89.13 56
9.4 even 3 1404.2.cc.a.557.13 56
9.5 odd 6 468.2.bz.a.401.1 yes 56
13.6 odd 12 468.2.bz.a.461.1 yes 56
39.32 even 12 1404.2.cc.a.305.13 56
117.32 even 12 inner 468.2.bw.a.149.11 56
117.58 odd 12 1404.2.bz.a.773.13 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.bw.a.149.11 56 117.32 even 12 inner
468.2.bw.a.245.11 yes 56 1.1 even 1 trivial
468.2.bz.a.401.1 yes 56 9.5 odd 6
468.2.bz.a.461.1 yes 56 13.6 odd 12
1404.2.bz.a.89.13 56 3.2 odd 2
1404.2.bz.a.773.13 56 117.58 odd 12
1404.2.cc.a.305.13 56 39.32 even 12
1404.2.cc.a.557.13 56 9.4 even 3