Properties

Label 465.2.t.a.254.1
Level $465$
Weight $2$
Character 465.254
Analytic conductor $3.713$
Analytic rank $0$
Dimension $4$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(119,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.119"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 254.1
Root \(-0.309017 + 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 465.254
Dual form 465.2.t.a.119.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803 q^{2} +(1.50000 - 0.866025i) q^{3} +4.85410 q^{4} +(-1.11803 + 1.93649i) q^{5} +(-3.92705 + 2.26728i) q^{6} -7.47214 q^{8} +(1.50000 - 2.59808i) q^{9} +(2.92705 - 5.06980i) q^{10} +(7.28115 - 4.20378i) q^{12} +3.87298i q^{15} +9.85410 q^{16} +(6.35410 - 3.66854i) q^{17} +(-3.92705 + 6.80185i) q^{18} +(2.35410 + 4.07742i) q^{19} +(-5.42705 + 9.39993i) q^{20} +3.46410i q^{23} +(-11.2082 + 6.47106i) q^{24} +(-2.50000 - 4.33013i) q^{25} -5.19615i q^{27} -10.1396i q^{30} +(4.00000 + 3.87298i) q^{31} -10.8541 q^{32} +(-16.6353 + 9.60437i) q^{34} +(7.28115 - 12.6113i) q^{36} +(-6.16312 - 10.6748i) q^{38} +(8.35410 - 14.4697i) q^{40} +(3.35410 + 5.80948i) q^{45} -9.06914i q^{46} +13.4721 q^{47} +(14.7812 - 8.53390i) q^{48} +(-3.50000 + 6.06218i) q^{49} +(6.54508 + 11.3364i) q^{50} +(6.35410 - 11.0056i) q^{51} +(12.0000 + 6.92820i) q^{53} +13.6037i q^{54} +(7.06231 + 4.07742i) q^{57} +18.7999i q^{60} -9.47802i q^{61} +(-10.4721 - 10.1396i) q^{62} +8.70820 q^{64} +(30.8435 - 17.8075i) q^{68} +(3.00000 + 5.19615i) q^{69} +(-11.2082 + 19.4132i) q^{72} +(-7.50000 - 4.33013i) q^{75} +(11.4271 + 19.7922i) q^{76} +(15.3541 - 8.86469i) q^{79} +(-11.0172 + 19.0824i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-14.9164 - 8.61199i) q^{83} +16.4062i q^{85} +(-8.78115 - 15.2094i) q^{90} +16.8151i q^{92} +(9.35410 + 2.34537i) q^{93} -35.2705 q^{94} -10.5279 q^{95} +(-16.2812 + 9.39993i) q^{96} +(9.16312 - 15.8710i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} + 6 q^{3} + 6 q^{4} - 9 q^{6} - 12 q^{8} + 6 q^{9} + 5 q^{10} + 9 q^{12} + 26 q^{16} + 12 q^{17} - 9 q^{18} - 4 q^{19} - 15 q^{20} - 18 q^{24} - 10 q^{25} + 16 q^{31} - 30 q^{32} - 33 q^{34}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.61803 −1.85123 −0.925615 0.378467i \(-0.876451\pi\)
−0.925615 + 0.378467i \(0.876451\pi\)
\(3\) 1.50000 0.866025i 0.866025 0.500000i
\(4\) 4.85410 2.42705
\(5\) −1.11803 + 1.93649i −0.500000 + 0.866025i
\(6\) −3.92705 + 2.26728i −1.60321 + 0.925615i
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) −7.47214 −2.64180
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 2.92705 5.06980i 0.925615 1.60321i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 7.28115 4.20378i 2.10189 1.21353i
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) 0 0
\(15\) 3.87298i 1.00000i
\(16\) 9.85410 2.46353
\(17\) 6.35410 3.66854i 1.54110 0.889752i 0.542326 0.840168i \(-0.317544\pi\)
0.998770 0.0495842i \(-0.0157896\pi\)
\(18\) −3.92705 + 6.80185i −0.925615 + 1.60321i
\(19\) 2.35410 + 4.07742i 0.540068 + 0.935425i 0.998899 + 0.0469020i \(0.0149348\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −5.42705 + 9.39993i −1.21353 + 2.10189i
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46410i 0.722315i 0.932505 + 0.361158i \(0.117618\pi\)
−0.932505 + 0.361158i \(0.882382\pi\)
\(24\) −11.2082 + 6.47106i −2.28787 + 1.32090i
\(25\) −2.50000 4.33013i −0.500000 0.866025i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 10.1396i 1.85123i
\(31\) 4.00000 + 3.87298i 0.718421 + 0.695608i
\(32\) −10.8541 −1.91875
\(33\) 0 0
\(34\) −16.6353 + 9.60437i −2.85292 + 1.64714i
\(35\) 0 0
\(36\) 7.28115 12.6113i 1.21353 2.10189i
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) −6.16312 10.6748i −0.999790 1.73169i
\(39\) 0 0
\(40\) 8.35410 14.4697i 1.32090 2.28787i
\(41\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(42\) 0 0
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 3.35410 + 5.80948i 0.500000 + 0.866025i
\(46\) 9.06914i 1.33717i
\(47\) 13.4721 1.96511 0.982556 0.185964i \(-0.0595409\pi\)
0.982556 + 0.185964i \(0.0595409\pi\)
\(48\) 14.7812 8.53390i 2.13348 1.23176i
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) 6.54508 + 11.3364i 0.925615 + 1.60321i
\(51\) 6.35410 11.0056i 0.889752 1.54110i
\(52\) 0 0
\(53\) 12.0000 + 6.92820i 1.64833 + 0.951662i 0.977737 + 0.209833i \(0.0672922\pi\)
0.670590 + 0.741829i \(0.266041\pi\)
\(54\) 13.6037i 1.85123i
\(55\) 0 0
\(56\) 0 0
\(57\) 7.06231 + 4.07742i 0.935425 + 0.540068i
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 18.7999i 2.42705i
\(61\) 9.47802i 1.21354i −0.794879 0.606768i \(-0.792466\pi\)
0.794879 0.606768i \(-0.207534\pi\)
\(62\) −10.4721 10.1396i −1.32996 1.28773i
\(63\) 0 0
\(64\) 8.70820 1.08853
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 30.8435 17.8075i 3.74032 2.15947i
\(69\) 3.00000 + 5.19615i 0.361158 + 0.625543i
\(70\) 0 0
\(71\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) −11.2082 + 19.4132i −1.32090 + 2.28787i
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 0 0
\(75\) −7.50000 4.33013i −0.866025 0.500000i
\(76\) 11.4271 + 19.7922i 1.31077 + 2.27032i
\(77\) 0 0
\(78\) 0 0
\(79\) 15.3541 8.86469i 1.72747 0.997356i 0.827401 0.561611i \(-0.189818\pi\)
0.900070 0.435745i \(-0.143515\pi\)
\(80\) −11.0172 + 19.0824i −1.23176 + 2.13348i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) −14.9164 8.61199i −1.63729 0.945289i −0.981761 0.190117i \(-0.939113\pi\)
−0.655527 0.755172i \(-0.727553\pi\)
\(84\) 0 0
\(85\) 16.4062i 1.77950i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −8.78115 15.2094i −0.925615 1.60321i
\(91\) 0 0
\(92\) 16.8151i 1.75310i
\(93\) 9.35410 + 2.34537i 0.969975 + 0.243204i
\(94\) −35.2705 −3.63788
\(95\) −10.5279 −1.08014
\(96\) −16.2812 + 9.39993i −1.66169 + 0.959376i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 9.16312 15.8710i 0.925615 1.60321i
\(99\) 0 0
\(100\) −12.1353 21.0189i −1.21353 2.10189i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −16.6353 + 28.8131i −1.64714 + 2.85292i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −31.4164 18.1383i −3.05143 1.76174i
\(107\) −8.94427 15.4919i −0.864675 1.49766i −0.867369 0.497665i \(-0.834191\pi\)
0.00269372 0.999996i \(-0.499143\pi\)
\(108\) 25.2227i 2.42705i
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.1180 + 17.5249i −0.951825 + 1.64861i −0.210352 + 0.977626i \(0.567461\pi\)
−0.741473 + 0.670983i \(0.765872\pi\)
\(114\) −18.4894 10.6748i −1.73169 0.999790i
\(115\) −6.70820 3.87298i −0.625543 0.361158i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 28.9395i 2.64180i
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 24.8138i 2.24653i
\(123\) 0 0
\(124\) 19.4164 + 18.7999i 1.74364 + 1.68828i
\(125\) 11.1803 1.00000
\(126\) 0 0
\(127\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(128\) −1.09017 −0.0963583
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 10.0623 + 5.80948i 0.866025 + 0.500000i
\(136\) −47.4787 + 27.4118i −4.07127 + 2.35055i
\(137\) −13.7705 7.95041i −1.17649 0.679249i −0.221293 0.975207i \(-0.571028\pi\)
−0.955201 + 0.295958i \(0.904361\pi\)
\(138\) −7.85410 13.6037i −0.668586 1.15802i
\(139\) 8.15485i 0.691685i −0.938293 0.345843i \(-0.887593\pi\)
0.938293 0.345843i \(-0.112407\pi\)
\(140\) 0 0
\(141\) 20.2082 11.6672i 1.70184 0.982556i
\(142\) 0 0
\(143\) 0 0
\(144\) 14.7812 25.6017i 1.23176 2.13348i
\(145\) 0 0
\(146\) 0 0
\(147\) 12.1244i 1.00000i
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 19.6353 + 11.3364i 1.60321 + 0.925615i
\(151\) 23.2379i 1.89107i 0.325515 + 0.945537i \(0.394462\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −17.5902 30.4671i −1.42675 2.47121i
\(153\) 22.0113i 1.77950i
\(154\) 0 0
\(155\) −11.9721 + 3.41584i −0.961625 + 0.274367i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −40.1976 + 23.2081i −3.19795 + 1.84634i
\(159\) 24.0000 1.90332
\(160\) 12.1353 21.0189i 0.959376 1.66169i
\(161\) 0 0
\(162\) 11.7812 + 20.4056i 0.925615 + 1.60321i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 39.0517 + 22.5465i 3.03100 + 1.74995i
\(167\) −3.79180 + 2.18919i −0.293418 + 0.169405i −0.639482 0.768806i \(-0.720851\pi\)
0.346064 + 0.938211i \(0.387518\pi\)
\(168\) 0 0
\(169\) 6.50000 + 11.2583i 0.500000 + 0.866025i
\(170\) 42.9520i 3.29427i
\(171\) 14.1246 1.08014
\(172\) 0 0
\(173\) −11.1803 + 19.3649i −0.850026 + 1.47229i 0.0311588 + 0.999514i \(0.490080\pi\)
−0.881184 + 0.472773i \(0.843253\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 16.2812 + 28.1998i 1.21353 + 2.10189i
\(181\) −13.4164 7.74597i −0.997234 0.575753i −0.0898051 0.995959i \(-0.528624\pi\)
−0.907429 + 0.420206i \(0.861958\pi\)
\(182\) 0 0
\(183\) −8.20820 14.2170i −0.606768 1.05095i
\(184\) 25.8842i 1.90821i
\(185\) 0 0
\(186\) −24.4894 6.14027i −1.79565 0.450226i
\(187\) 0 0
\(188\) 65.3951 4.76943
\(189\) 0 0
\(190\) 27.5623 1.99958
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 13.0623 7.54153i 0.942691 0.544263i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −16.9894 + 29.4264i −1.21353 + 2.10189i
\(197\) −15.3541 8.86469i −1.09393 0.631583i −0.159313 0.987228i \(-0.550928\pi\)
−0.934621 + 0.355645i \(0.884261\pi\)
\(198\) 0 0
\(199\) −1.93769 1.11873i −0.137359 0.0793045i 0.429745 0.902950i \(-0.358603\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 18.6803 + 32.3553i 1.32090 + 2.28787i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 30.8435 53.4224i 2.15947 3.74032i
\(205\) 0 0
\(206\) 0 0
\(207\) 9.00000 + 5.19615i 0.625543 + 0.361158i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −14.0000 24.2487i −0.963800 1.66935i −0.712806 0.701361i \(-0.752576\pi\)
−0.250994 0.967989i \(-0.580757\pi\)
\(212\) 58.2492 + 33.6302i 4.00057 + 2.30973i
\(213\) 0 0
\(214\) 23.4164 + 40.5584i 1.60071 + 2.77252i
\(215\) 0 0
\(216\) 38.8264i 2.64180i
\(217\) 0 0
\(218\) 36.6525 2.48242
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 26.4894 45.8809i 1.76205 3.05195i
\(227\) 6.02786 10.4406i 0.400083 0.692965i −0.593652 0.804722i \(-0.702314\pi\)
0.993736 + 0.111757i \(0.0356478\pi\)
\(228\) 34.2812 + 19.7922i 2.27032 + 1.31077i
\(229\) −13.4164 + 7.74597i −0.886581 + 0.511868i −0.872823 0.488037i \(-0.837713\pi\)
−0.0137585 + 0.999905i \(0.504380\pi\)
\(230\) 17.5623 + 10.1396i 1.15802 + 0.668586i
\(231\) 0 0
\(232\) 0 0
\(233\) −29.1803 −1.91167 −0.955834 0.293908i \(-0.905044\pi\)
−0.955834 + 0.293908i \(0.905044\pi\)
\(234\) 0 0
\(235\) −15.0623 + 26.0887i −0.982556 + 1.70184i
\(236\) 0 0
\(237\) 15.3541 26.5941i 0.997356 1.72747i
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 38.1648i 2.46353i
\(241\) 14.9164 8.61199i 0.960850 0.554747i 0.0644157 0.997923i \(-0.479482\pi\)
0.896435 + 0.443176i \(0.146148\pi\)
\(242\) −14.3992 24.9401i −0.925615 1.60321i
\(243\) −13.5000 7.79423i −0.866025 0.500000i
\(244\) 46.0073i 2.94531i
\(245\) −7.82624 13.5554i −0.500000 0.866025i
\(246\) 0 0
\(247\) 0 0
\(248\) −29.8885 28.9395i −1.89792 1.83766i
\(249\) −29.8328 −1.89058
\(250\) −29.2705 −1.85123
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 14.2082 + 24.6093i 0.889752 + 1.54110i
\(256\) −14.5623 −0.910144
\(257\) −4.82624 + 8.35929i −0.301052 + 0.521438i −0.976375 0.216085i \(-0.930671\pi\)
0.675322 + 0.737523i \(0.264005\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.3344i 1.43886i 0.694564 + 0.719431i \(0.255597\pi\)
−0.694564 + 0.719431i \(0.744403\pi\)
\(264\) 0 0
\(265\) −26.8328 + 15.4919i −1.64833 + 0.951662i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) −26.3435 15.2094i −1.60321 0.925615i
\(271\) 31.5858i 1.91870i −0.282218 0.959350i \(-0.591070\pi\)
0.282218 0.959350i \(-0.408930\pi\)
\(272\) 62.6140 36.1502i 3.79653 2.19193i
\(273\) 0 0
\(274\) 36.0517 + 20.8144i 2.17796 + 1.25745i
\(275\) 0 0
\(276\) 14.5623 + 25.2227i 0.876548 + 1.51823i
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 21.3497i 1.28047i
\(279\) 16.0623 4.58283i 0.961625 0.274367i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −52.9058 + 30.5452i −3.15049 + 1.81894i
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) −15.7918 + 9.11740i −0.935425 + 0.540068i
\(286\) 0 0
\(287\) 0 0
\(288\) −16.2812 + 28.1998i −0.959376 + 1.66169i
\(289\) 18.4164 31.8982i 1.08332 1.87636i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.82624 + 3.16314i 0.106690 + 0.184792i 0.914427 0.404750i \(-0.132641\pi\)
−0.807737 + 0.589542i \(0.799308\pi\)
\(294\) 31.7420i 1.85123i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −36.4058 21.0189i −2.10189 1.21353i
\(301\) 0 0
\(302\) 60.8376i 3.50081i
\(303\) 0 0
\(304\) 23.1976 + 40.1794i 1.33047 + 2.30444i
\(305\) 18.3541 + 10.5967i 1.05095 + 0.606768i
\(306\) 57.6262i 3.29427i
\(307\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 31.3435 8.94278i 1.78019 0.507916i
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 74.5304 43.0301i 4.19266 2.42063i
\(317\) 6.40983 + 11.1022i 0.360012 + 0.623559i 0.987962 0.154694i \(-0.0494393\pi\)
−0.627950 + 0.778253i \(0.716106\pi\)
\(318\) −62.8328 −3.52349
\(319\) 0 0
\(320\) −9.73607 + 16.8634i −0.544263 + 0.942691i
\(321\) −26.8328 15.4919i −1.49766 0.864675i
\(322\) 0 0
\(323\) 29.9164 + 17.2722i 1.66459 + 0.961053i
\(324\) −21.8435 37.8340i −1.21353 2.10189i
\(325\) 0 0
\(326\) 0 0
\(327\) −21.0000 + 12.1244i −1.16130 + 0.670478i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.9377 + 6.31488i 0.601190 + 0.347097i 0.769510 0.638635i \(-0.220501\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) −72.4058 41.8035i −3.97378 2.29426i
\(333\) 0 0
\(334\) 9.92705 5.73139i 0.543184 0.313607i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) −17.0172 29.4747i −0.925615 1.60321i
\(339\) 35.0499i 1.90365i
\(340\) 79.6375i 4.31895i
\(341\) 0 0
\(342\) −36.9787 −1.99958
\(343\) 0 0
\(344\) 0 0
\(345\) −13.4164 −0.722315
\(346\) 29.2705 50.6980i 1.57359 2.72554i
\(347\) 31.3328 18.0900i 1.68203 0.971123i 0.721726 0.692179i \(-0.243349\pi\)
0.960307 0.278944i \(-0.0899844\pi\)
\(348\) 0 0
\(349\) −30.4164 −1.62815 −0.814076 0.580758i \(-0.802756\pi\)
−0.814076 + 0.580758i \(0.802756\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.4787 8.35929i 0.770624 0.444920i −0.0624731 0.998047i \(-0.519899\pi\)
0.833097 + 0.553127i \(0.186565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) −25.0623 43.4092i −1.32090 2.28787i
\(361\) −1.58359 + 2.74286i −0.0833470 + 0.144361i
\(362\) 35.1246 + 20.2792i 1.84611 + 1.06585i
\(363\) 16.5000 + 9.52628i 0.866025 + 0.500000i
\(364\) 0 0
\(365\) 0 0
\(366\) 21.4894 + 37.2207i 1.12327 + 1.94555i
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 34.1356i 1.77944i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 45.4058 + 11.3847i 2.35418 + 0.590268i
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 16.7705 9.68246i 0.866025 0.500000i
\(376\) −100.666 −5.19143
\(377\) 0 0
\(378\) 0 0
\(379\) 2.00000 + 3.46410i 0.102733 + 0.177939i 0.912810 0.408385i \(-0.133908\pi\)
−0.810077 + 0.586324i \(0.800575\pi\)
\(380\) −51.1033 −2.62155
\(381\) 0 0
\(382\) 0 0
\(383\) −9.79180 5.65330i −0.500337 0.288870i 0.228515 0.973540i \(-0.426613\pi\)
−0.728853 + 0.684670i \(0.759946\pi\)
\(384\) −1.63525 + 0.944115i −0.0834488 + 0.0481792i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 0 0
\(391\) 12.7082 + 22.0113i 0.642681 + 1.11316i
\(392\) 26.1525 45.2974i 1.32090 2.28787i
\(393\) 0 0
\(394\) 40.1976 + 23.2081i 2.02512 + 1.16921i
\(395\) 39.6441i 1.99471i
\(396\) 0 0
\(397\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(398\) 5.07295 + 2.92887i 0.254284 + 0.146811i
\(399\) 0 0
\(400\) −24.6353 42.6695i −1.23176 2.13348i
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 20.1246 1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) −47.4787 + 82.2355i −2.35055 + 4.07127i
\(409\) −6.08359 + 3.51236i −0.300814 + 0.173675i −0.642809 0.766027i \(-0.722231\pi\)
0.341994 + 0.939702i \(0.388898\pi\)
\(410\) 0 0
\(411\) −27.5410 −1.35850
\(412\) 0 0
\(413\) 0 0
\(414\) −23.5623 13.6037i −1.15802 0.668586i
\(415\) 33.3541 19.2570i 1.63729 0.945289i
\(416\) 0 0
\(417\) −7.06231 12.2323i −0.345843 0.599017i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −2.79180 + 4.83553i −0.136064 + 0.235669i −0.926003 0.377515i \(-0.876779\pi\)
0.789940 + 0.613185i \(0.210112\pi\)
\(422\) 36.6525 + 63.4840i 1.78421 + 3.09035i
\(423\) 20.2082 35.0016i 0.982556 1.70184i
\(424\) −89.6656 51.7685i −4.35455 2.51410i
\(425\) −31.7705 18.3427i −1.54110 0.889752i
\(426\) 0 0
\(427\) 0 0
\(428\) −43.4164 75.1994i −2.09861 3.63490i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 51.2034i 2.46353i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −67.9574 −3.25457
\(437\) −14.1246 + 8.15485i −0.675672 + 0.390099i
\(438\) 0 0
\(439\) −8.00000 + 13.8564i −0.381819 + 0.661330i −0.991322 0.131453i \(-0.958036\pi\)
0.609503 + 0.792784i \(0.291369\pi\)
\(440\) 0 0
\(441\) 10.5000 + 18.1865i 0.500000 + 0.866025i
\(442\) 0 0
\(443\) 20.9721 36.3248i 0.996416 1.72584i 0.424955 0.905214i \(-0.360290\pi\)
0.571461 0.820629i \(-0.306377\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 39.2705 1.85123
\(451\) 0 0
\(452\) −49.1140 + 85.0679i −2.31013 + 4.00126i
\(453\) 20.1246 + 34.8569i 0.945537 + 1.63772i
\(454\) −15.7812 + 27.3338i −0.740646 + 1.28284i
\(455\) 0 0
\(456\) −52.7705 30.4671i −2.47121 1.42675i
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 35.1246 20.2792i 1.64127 0.947585i
\(459\) −19.0623 33.0169i −0.889752 1.54110i
\(460\) −32.5623 18.7999i −1.51823 0.876548i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) −15.0000 + 15.4919i −0.695608 + 0.718421i
\(466\) 76.3951 3.53894
\(467\) −35.7771 −1.65557 −0.827783 0.561048i \(-0.810398\pi\)
−0.827783 + 0.561048i \(0.810398\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 39.4336 68.3010i 1.81894 3.15049i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −40.1976 + 69.6242i −1.84634 + 3.19795i
\(475\) 11.7705 20.3871i 0.540068 0.935425i
\(476\) 0 0
\(477\) 36.0000 20.7846i 1.64833 0.951662i
\(478\) 0 0
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 42.0378i 1.91875i
\(481\) 0 0
\(482\) −39.0517 + 22.5465i −1.77875 + 1.02696i
\(483\) 0 0
\(484\) 26.6976 + 46.2415i 1.21353 + 2.10189i
\(485\) 0 0
\(486\) 35.3435 + 20.4056i 1.60321 + 0.925615i
\(487\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 70.8210i 3.20592i
\(489\) 0 0
\(490\) 20.4894 + 35.4886i 0.925615 + 1.60321i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 39.4164 + 38.1648i 1.76985 + 1.71365i
\(497\) 0 0
\(498\) 78.1033 3.49989
\(499\) −6.70820 + 3.87298i −0.300300 + 0.173379i −0.642578 0.766220i \(-0.722135\pi\)
0.342277 + 0.939599i \(0.388802\pi\)
\(500\) 54.2705 2.42705
\(501\) −3.79180 + 6.56758i −0.169405 + 0.293418i
\(502\) 0 0
\(503\) 22.3607 + 38.7298i 0.997013 + 1.72688i 0.565388 + 0.824825i \(0.308726\pi\)
0.431625 + 0.902053i \(0.357940\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 19.5000 + 11.2583i 0.866025 + 0.500000i
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) −37.1976 64.4281i −1.64714 2.85292i
\(511\) 0 0
\(512\) 40.3050 1.78124
\(513\) 21.1869 12.2323i 0.935425 0.540068i
\(514\) 12.6353 21.8849i 0.557317 0.965302i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 38.7298i 1.70005i
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 61.0903i 2.66366i
\(527\) 39.6246 + 9.93516i 1.72608 + 0.432782i
\(528\) 0 0
\(529\) 11.0000 0.478261
\(530\) 70.2492 40.5584i 3.05143 1.76174i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 40.0000 1.72935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 48.8435 + 28.1998i 2.10189 + 1.21353i
\(541\) −19.6246 33.9908i −0.843728 1.46138i −0.886721 0.462304i \(-0.847023\pi\)
0.0429934 0.999075i \(-0.486311\pi\)
\(542\) 82.6927i 3.55196i
\(543\) −26.8328 −1.15151
\(544\) −68.9681 + 39.8187i −2.95698 + 1.70721i
\(545\) 15.6525 27.1109i 0.670478 1.16130i
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) −66.8435 38.5921i −2.85541 1.64857i
\(549\) −24.6246 14.2170i −1.05095 0.606768i
\(550\) 0 0
\(551\) 0 0
\(552\) −22.4164 38.8264i −0.954106 1.65256i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 39.5845i 1.67876i
\(557\) 1.41969i 0.0601543i 0.999548 + 0.0300772i \(0.00957530\pi\)
−0.999548 + 0.0300772i \(0.990425\pi\)
\(558\) −42.0517 + 11.9980i −1.78019 + 0.507916i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.55573 + 7.89075i −0.192001 + 0.332556i −0.945913 0.324420i \(-0.894831\pi\)
0.753912 + 0.656975i \(0.228164\pi\)
\(564\) 98.0927 56.6338i 4.13045 2.38471i
\(565\) −22.6246 39.1870i −0.951825 1.64861i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 41.3435 23.8697i 1.73169 0.999790i
\(571\) 33.5410 + 19.3649i 1.40365 + 0.810397i 0.994765 0.102190i \(-0.0325850\pi\)
0.408883 + 0.912587i \(0.365918\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15.0000 8.66025i 0.625543 0.361158i
\(576\) 13.0623 22.6246i 0.544263 0.942691i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −48.2148 + 83.5105i −2.00547 + 3.47358i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −4.78115 8.28120i −0.197508 0.342093i
\(587\) 7.02473i 0.289942i −0.989436 0.144971i \(-0.953691\pi\)
0.989436 0.144971i \(-0.0463088\pi\)
\(588\) 58.8529i 2.42705i
\(589\) −6.37539 + 25.4271i −0.262693 + 1.04771i
\(590\) 0 0
\(591\) −30.7082 −1.26317
\(592\) 0 0
\(593\) −39.7639 −1.63291 −0.816454 0.577410i \(-0.804064\pi\)
−0.816454 + 0.577410i \(0.804064\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.87539 −0.158609
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 56.0410 + 32.3553i 2.28787 + 1.32090i
\(601\) 15.0836 8.70852i 0.615273 0.355228i −0.159754 0.987157i \(-0.551070\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 112.799i 4.58973i
\(605\) −24.5967 −1.00000
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) −25.5517 44.2568i −1.03626 1.79485i
\(609\) 0 0
\(610\) −48.0517 27.7426i −1.94555 1.12327i
\(611\) 0 0
\(612\) 106.845i 4.31895i
\(613\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −24.5967 42.6028i −0.990228 1.71512i −0.615889 0.787833i \(-0.711203\pi\)
−0.374338 0.927292i \(-0.622130\pi\)
\(618\) 0 0
\(619\) 26.4862i 1.06457i −0.846566 0.532284i \(-0.821334\pi\)
0.846566 0.532284i \(-0.178666\pi\)
\(620\) −58.1140 + 16.5808i −2.33391 + 0.665902i
\(621\) 18.0000 0.722315
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −7.22949 4.17395i −0.287801 0.166162i 0.349148 0.937067i \(-0.386471\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) −114.728 + 66.2382i −4.56363 + 2.63481i
\(633\) −42.0000 24.2487i −1.66935 0.963800i
\(634\) −16.7812 29.0658i −0.666465 1.15435i
\(635\) 0 0
\(636\) 116.498 4.61946
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.21885 2.11111i 0.0481792 0.0834488i
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 70.2492 + 40.5584i 2.77252 + 1.60071i
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −78.3222 45.2193i −3.08154 1.77913i
\(647\) 50.8542i 1.99928i −0.0267469 0.999642i \(-0.508515\pi\)
0.0267469 0.999642i \(-0.491485\pi\)
\(648\) 33.6246 + 58.2395i 1.32090 + 2.28787i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.5967 −1.43214 −0.716071 0.698028i \(-0.754061\pi\)
−0.716071 + 0.698028i \(0.754061\pi\)
\(654\) 54.9787 31.7420i 2.14984 1.24121i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −14.6246 + 25.3306i −0.568831 + 0.985245i 0.427850 + 0.903850i \(0.359271\pi\)
−0.996682 + 0.0813955i \(0.974062\pi\)
\(662\) −28.6353 16.5326i −1.11294 0.642557i
\(663\) 0 0
\(664\) 111.457 + 64.3500i 4.32539 + 2.49726i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −18.4058 + 10.6266i −0.712140 + 0.411154i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(674\) 0 0
\(675\) −22.5000 + 12.9904i −0.866025 + 0.500000i
\(676\) 31.5517 + 54.6491i 1.21353 + 2.10189i
\(677\) 36.0000 + 20.7846i 1.38359 + 0.798817i 0.992583 0.121569i \(-0.0387926\pi\)
0.391009 + 0.920387i \(0.372126\pi\)
\(678\) 91.7618i 3.52409i
\(679\) 0 0
\(680\) 122.590i 4.70109i
\(681\) 20.8811i 0.800167i
\(682\) 0 0
\(683\) 50.8885 1.94720 0.973598 0.228269i \(-0.0733067\pi\)
0.973598 + 0.228269i \(0.0733067\pi\)
\(684\) 68.5623 2.62155
\(685\) 30.7918 17.7777i 1.17649 0.679249i
\(686\) 0 0
\(687\) −13.4164 + 23.2379i −0.511868 + 0.886581i
\(688\) 0 0
\(689\) 0 0
\(690\) 35.1246 1.33717
\(691\) −9.64590 + 16.7072i −0.366947 + 0.635571i −0.989087 0.147335i \(-0.952930\pi\)
0.622139 + 0.782907i \(0.286264\pi\)
\(692\) −54.2705 + 93.9993i −2.06306 + 3.57332i
\(693\) 0 0
\(694\) −82.0304 + 47.3603i −3.11383 + 1.79777i
\(695\) 15.7918 + 9.11740i 0.599017 + 0.345843i
\(696\) 0 0
\(697\) 0 0
\(698\) 79.6312 3.01408
\(699\) −43.7705 + 25.2709i −1.65555 + 0.955834i
\(700\) 0 0
\(701\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 52.1774i 1.96511i
\(706\) −37.9058 + 21.8849i −1.42660 + 0.823649i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.721240i 0.0270867i 0.999908 + 0.0135434i \(0.00431112\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) 0 0
\(711\) 53.1882i 1.99471i
\(712\) 0 0
\(713\) −13.4164 + 13.8564i −0.502448 + 0.518927i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 33.0517 + 57.2472i 1.23176 + 2.13348i
\(721\) 0 0
\(722\) 4.14590 7.18091i 0.154294 0.267246i
\(723\) 14.9164 25.8360i 0.554747 0.960850i
\(724\) −65.1246 37.5997i −2.42034 1.39738i
\(725\) 0 0
\(726\) −43.1976 24.9401i −1.60321 0.925615i
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −39.8435 69.0109i −1.47266 2.55072i
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) −23.4787 13.5554i −0.866025 0.500000i
\(736\) 37.5997i 1.38594i
\(737\) 0 0
\(738\) 0 0
\(739\) −26.4787 15.2875i −0.974035 0.562360i −0.0735712 0.997290i \(-0.523440\pi\)
−0.900464 + 0.434930i \(0.856773\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.1769i 1.14377i −0.820334 0.571885i \(-0.806212\pi\)
0.820334 0.571885i \(-0.193788\pi\)
\(744\) −69.8951 17.5249i −2.56248 0.642496i
\(745\) 0 0
\(746\) 0 0
\(747\) −44.7492 + 25.8360i −1.63729 + 0.945289i
\(748\) 0 0
\(749\) 0 0
\(750\) −43.9058 + 25.3490i −1.60321 + 0.925615i
\(751\) 25.4787 + 44.1304i 0.929731 + 1.61034i 0.783769 + 0.621052i \(0.213294\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 132.756 4.84111
\(753\) 0 0
\(754\) 0 0
\(755\) −45.0000 25.9808i −1.63772 0.945537i
\(756\) 0 0
\(757\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(758\) −5.23607 9.06914i −0.190183 0.329406i
\(759\) 0 0
\(760\) 78.6656 2.85350
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 42.6246 + 24.6093i 1.54110 + 0.889752i
\(766\) 25.6353 + 14.8005i 0.926239 + 0.534765i
\(767\) 0 0
\(768\) −21.8435 + 12.6113i −0.788208 + 0.455072i
\(769\) 24.9164 + 43.1565i 0.898509 + 1.55626i 0.829401 + 0.558653i \(0.188682\pi\)
0.0691074 + 0.997609i \(0.477985\pi\)
\(770\) 0 0
\(771\) 16.7186i 0.602105i
\(772\) 0 0
\(773\) 55.4256i 1.99352i 0.0804258 + 0.996761i \(0.474372\pi\)
−0.0804258 + 0.996761i \(0.525628\pi\)
\(774\) 0 0
\(775\) 6.77051 27.0030i 0.243204 0.969975i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −33.2705 57.6262i −1.18975 2.06071i
\(783\) 0 0
\(784\) −34.4894 + 59.7373i −1.23176 + 2.13348i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) −74.5304 43.0301i −2.65503 1.53289i
\(789\) 20.2082 + 35.0016i 0.719431 + 1.24609i
\(790\) 103.790i 3.69267i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −26.8328 + 46.4758i −0.951662 + 1.64833i
\(796\) −9.40576 5.43042i −0.333378 0.192476i
\(797\) 48.8951 + 28.2296i 1.73195 + 0.999944i 0.871262 + 0.490819i \(0.163302\pi\)
0.860693 + 0.509125i \(0.170031\pi\)
\(798\) 0 0
\(799\) 85.6033 49.4231i 3.02843 1.74846i
\(800\) 27.1353 + 46.9996i 0.959376 + 1.66169i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(810\) −52.6869 −1.85123
\(811\) −26.0000 + 45.0333i −0.912983 + 1.58133i −0.103156 + 0.994665i \(0.532894\pi\)
−0.809827 + 0.586669i \(0.800439\pi\)
\(812\) 0 0
\(813\) −27.3541 47.3787i −0.959350 1.66164i
\(814\) 0 0
\(815\) 0 0
\(816\) 62.6140 108.451i 2.19193 3.79653i
\(817\) 0 0
\(818\) 15.9271 9.19549i 0.556876 0.321513i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 72.1033 2.51489
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.33282 + 4.23360i 0.254987 + 0.147217i 0.622046 0.782981i \(-0.286302\pi\)
−0.367059 + 0.930198i \(0.619635\pi\)
\(828\) 43.6869 + 25.2227i 1.51823 + 0.876548i
\(829\) 52.6828i 1.82975i −0.403739 0.914874i \(-0.632290\pi\)
0.403739 0.914874i \(-0.367710\pi\)
\(830\) −87.3222 + 50.4155i −3.03100 + 1.74995i
\(831\) 0 0
\(832\) 0 0
\(833\) 51.3596i 1.77950i
\(834\) 18.4894 + 32.0245i 0.640234 + 1.10892i
\(835\) 9.79038i 0.338810i
\(836\) 0 0
\(837\) 20.1246 20.7846i 0.695608 0.718421i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 7.30902 12.6596i 0.251885 0.436278i
\(843\) 0 0
\(844\) −67.9574 117.706i −2.33919 4.05160i
\(845\) −29.0689 −1.00000
\(846\) −52.9058 + 91.6355i −1.81894 + 3.15049i
\(847\) 0 0
\(848\) 118.249 + 68.2712i 4.06070 + 2.34444i
\(849\) 0 0
\(850\) 83.1763 + 48.0218i 2.85292 + 1.64714i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) −15.7918 + 27.3522i −0.540068 + 0.935425i
\(856\) 66.8328 + 115.758i 2.28430 + 3.95652i
\(857\) 29.0689 50.3488i 0.992974 1.71988i 0.394009 0.919107i \(-0.371088\pi\)
0.598965 0.800775i \(-0.295579\pi\)
\(858\) 0 0
\(859\) 16.2295 + 9.37010i 0.553743 + 0.319704i 0.750630 0.660722i \(-0.229750\pi\)
−0.196887 + 0.980426i \(0.563083\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17.0410 9.83864i −0.580083 0.334911i 0.181083 0.983468i \(-0.442040\pi\)
−0.761166 + 0.648557i \(0.775373\pi\)
\(864\) 56.3996i 1.91875i
\(865\) −25.0000 43.3013i −0.850026 1.47229i
\(866\) 0 0
\(867\) 63.7963i 2.16664i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 104.610 3.54254
\(873\) 0 0
\(874\) 36.9787 21.3497i 1.25082 0.722163i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 20.9443 36.2765i 0.706835 1.22427i
\(879\) 5.47871 + 3.16314i 0.184792 + 0.106690i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) −27.4894 47.6130i −0.925615 1.60321i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −54.9058 + 95.0996i −1.84460 + 3.19493i
\(887\) −4.47214 7.74597i −0.150160 0.260084i 0.781126 0.624373i \(-0.214645\pi\)
−0.931286 + 0.364289i \(0.881312\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 31.7148 + 54.9316i 1.06129 + 1.83822i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −72.8115 −2.42705
\(901\) 101.666 3.38697
\(902\) 0 0
\(903\) 0 0
\(904\) 75.6033 130.949i 2.51453 4.35529i
\(905\) 30.0000 17.3205i 0.997234 0.575753i
\(906\) −52.6869 91.2564i −1.75041 3.03179i
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 29.2599 50.6796i 0.971023 1.68186i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 69.5927 + 40.1794i 2.30444 + 1.33047i
\(913\) 0 0
\(914\) 0 0
\(915\) 36.7082 1.21354
\(916\) −65.1246 + 37.5997i −2.15178 + 1.24233i
\(917\) 0 0
\(918\) 49.9058 + 86.4393i 1.64714 + 2.85292i
\(919\) 24.0623 41.6771i 0.793742 1.37480i −0.129893 0.991528i \(-0.541463\pi\)
0.923635 0.383274i \(-0.125203\pi\)
\(920\) 50.1246 + 28.9395i 1.65256 + 0.954106i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 39.2705 40.5584i 1.28773 1.32996i
\(931\) −32.9574 −1.08014
\(932\) −141.644 −4.63971
\(933\) 0 0
\(934\) 93.6656 3.06483
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −73.1140 + 126.637i −2.38471 + 4.13045i
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.9164 22.4684i 1.26461 0.730125i 0.290650 0.956830i \(-0.406129\pi\)
0.973964 + 0.226705i \(0.0727952\pi\)
\(948\) 74.5304 129.090i 2.42063 4.19266i
\(949\) 0 0
\(950\) −30.8156 + 53.3742i −0.999790 + 1.73169i
\(951\) 19.2295 + 11.1022i 0.623559 + 0.360012i
\(952\) 0 0
\(953\) 60.7411i 1.96760i 0.179278 + 0.983798i \(0.442624\pi\)
−0.179278 + 0.983798i \(0.557376\pi\)
\(954\) −94.2492 + 54.4148i −3.05143 + 1.76174i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 33.7267i 1.08853i
\(961\) 1.00000 + 30.9839i 0.0322581 + 0.999480i
\(962\) 0 0
\(963\) −53.6656 −1.72935
\(964\) 72.4058 41.8035i 2.33203 1.34640i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(968\) −41.0967 71.1817i −1.32090 2.28787i
\(969\) 59.8328 1.92211
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) −65.5304 37.8340i −2.10189 1.21353i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 93.3974i 2.98958i
\(977\) −51.7639 −1.65607 −0.828037 0.560673i \(-0.810543\pi\)
−0.828037 + 0.560673i \(0.810543\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −37.9894 65.7995i −1.21353 2.10189i
\(981\) −21.0000 + 36.3731i −0.670478 + 1.16130i
\(982\) 0 0
\(983\) −48.4574 27.9769i −1.54555 0.892325i −0.998473 0.0552438i \(-0.982406\pi\)
−0.547079 0.837081i \(-0.684260\pi\)
\(984\) 0 0
\(985\) 34.3328 19.8221i 1.09393 0.631583i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 54.8237i 1.74153i 0.491698 + 0.870766i \(0.336377\pi\)
−0.491698 + 0.870766i \(0.663623\pi\)
\(992\) −43.4164 42.0378i −1.37847 1.33470i
\(993\) 21.8754 0.694194
\(994\) 0 0
\(995\) 4.33282 2.50155i 0.137359 0.0793045i
\(996\) −144.812 −4.58853
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 17.5623 10.1396i 0.555925 0.320963i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.t.a.254.1 yes 4
3.2 odd 2 465.2.t.b.254.2 yes 4
5.4 even 2 465.2.t.b.254.2 yes 4
15.14 odd 2 CM 465.2.t.a.254.1 yes 4
31.26 odd 6 inner 465.2.t.a.119.1 4
93.26 even 6 465.2.t.b.119.2 yes 4
155.119 odd 6 465.2.t.b.119.2 yes 4
465.119 even 6 inner 465.2.t.a.119.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.t.a.119.1 4 31.26 odd 6 inner
465.2.t.a.119.1 4 465.119 even 6 inner
465.2.t.a.254.1 yes 4 1.1 even 1 trivial
465.2.t.a.254.1 yes 4 15.14 odd 2 CM
465.2.t.b.119.2 yes 4 93.26 even 6
465.2.t.b.119.2 yes 4 155.119 odd 6
465.2.t.b.254.2 yes 4 3.2 odd 2
465.2.t.b.254.2 yes 4 5.4 even 2