| L(s) = 1 | − 2.61·2-s + (1.5 − 0.866i)3-s + 4.85·4-s + (−1.11 + 1.93i)5-s + (−3.92 + 2.26i)6-s − 7.47·8-s + (1.5 − 2.59i)9-s + (2.92 − 5.06i)10-s + (7.28 − 4.20i)12-s + 3.87i·15-s + 9.85·16-s + (6.35 − 3.66i)17-s + (−3.92 + 6.80i)18-s + (2.35 + 4.07i)19-s + (−5.42 + 9.39i)20-s + ⋯ |
| L(s) = 1 | − 1.85·2-s + (0.866 − 0.499i)3-s + 2.42·4-s + (−0.499 + 0.866i)5-s + (−1.60 + 0.925i)6-s − 2.64·8-s + (0.5 − 0.866i)9-s + (0.925 − 1.60i)10-s + (2.10 − 1.21i)12-s + 1.00i·15-s + 2.46·16-s + (1.54 − 0.889i)17-s + (−0.925 + 1.60i)18-s + (0.540 + 0.935i)19-s + (−1.21 + 2.10i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.000719i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.000719i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.798634 - 0.000287356i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.798634 - 0.000287356i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 5 | \( 1 + (1.11 - 1.93i)T \) |
| 31 | \( 1 + (-4 - 3.87i)T \) |
| good | 2 | \( 1 + 2.61T + 2T^{2} \) |
| 7 | \( 1 + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.35 + 3.66i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.35 - 4.07i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.46iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 37 | \( 1 + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 13.4T + 47T^{2} \) |
| 53 | \( 1 + (-12 - 6.92i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 9.47iT - 61T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-15.3 + 8.86i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (14.9 + 8.61i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65797789020241444392840990022, −9.942742851178892991598564314178, −9.259789600296464196057772107712, −8.206324639720022731956705156131, −7.57435206588545513916780533890, −7.11886202439262669788636555184, −5.97098382003047487445037243950, −3.48844340518373593595468814286, −2.61400673863914626657821254179, −1.15632190428874774905344454738,
1.06392684881715801462541517504, 2.55139144419489316253408119160, 3.91965885965044618307453507341, 5.45918973602223957355988541782, 7.02966620444303347061194907151, 7.908710387023186247723065264520, 8.413330293251860221209668506332, 9.158555742004003434526957100807, 9.902083457557329310151306890043, 10.59049506873456378842535521515