Properties

Label 459.3.i.a.305.5
Level $459$
Weight $3$
Character 459.305
Analytic conductor $12.507$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(152,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.152"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.5
Character \(\chi\) \(=\) 459.305
Dual form 459.3.i.a.152.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.65135 - 1.53076i) q^{2} +(2.68643 + 4.65303i) q^{4} +(-4.03905 - 6.99584i) q^{5} +(-8.17722 - 4.72112i) q^{7} -4.20301i q^{8} +24.7312i q^{10} +(-5.27158 + 9.13064i) q^{11} +(10.9174 + 18.9095i) q^{13} +(14.4538 + 25.0347i) q^{14} +(4.31192 - 7.46847i) q^{16} +(-15.3418 - 7.32324i) q^{17} -14.6494 q^{19} +(21.7012 - 37.5877i) q^{20} +(27.9536 - 16.1390i) q^{22} +(-3.86711 - 6.69802i) q^{23} +(-20.1279 + 34.8625i) q^{25} -66.8475i q^{26} -50.7318i q^{28} +(3.81538 - 6.60843i) q^{29} +(15.0154 - 8.66912i) q^{31} +(-37.4245 + 21.6070i) q^{32} +(29.4663 + 42.9010i) q^{34} +76.2754i q^{35} -13.8739i q^{37} +(38.8408 + 22.4247i) q^{38} +(-29.4036 + 16.9762i) q^{40} +(23.1373 + 40.0749i) q^{41} +(27.7975 - 48.1467i) q^{43} -56.6468 q^{44} +23.6784i q^{46} +(-18.6323 - 10.7574i) q^{47} +(20.0780 + 34.7761i) q^{49} +(106.732 - 61.6218i) q^{50} +(-58.6576 + 101.598i) q^{52} +61.3273i q^{53} +85.1687 q^{55} +(-19.8429 + 34.3690i) q^{56} +(-20.2318 + 11.6808i) q^{58} +(76.3789 - 44.0974i) q^{59} +(-34.9764 - 20.1936i) q^{61} -53.0812 q^{62} +97.8050 q^{64} +(88.1919 - 152.753i) q^{65} +(-36.3540 - 62.9669i) q^{67} +(-7.13935 - 91.0591i) q^{68} +(116.759 - 202.233i) q^{70} +10.1569 q^{71} +34.6373i q^{73} +(-21.2375 + 36.7845i) q^{74} +(-39.3547 - 68.1643i) q^{76} +(86.2137 - 49.7755i) q^{77} +(96.7823 + 55.8773i) q^{79} -69.6643 q^{80} -141.670i q^{82} +(3.77295 + 2.17831i) q^{83} +(10.7340 + 136.908i) q^{85} +(-147.402 + 85.1025i) q^{86} +(38.3762 + 22.1565i) q^{88} +67.1458i q^{89} -206.169i q^{91} +(20.7774 - 35.9875i) q^{92} +(32.9339 + 57.0431i) q^{94} +(59.1699 + 102.485i) q^{95} +(-89.7342 - 51.8080i) q^{97} -122.938i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 62 q^{4} - 2 q^{13} - 106 q^{16} - 32 q^{19} - 132 q^{25} - 27 q^{34} + 102 q^{38} + 58 q^{43} + 312 q^{47} + 152 q^{49} + 90 q^{50} + 70 q^{52} + 92 q^{55} + 258 q^{59} - 16 q^{64} + 82 q^{67}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.65135 1.53076i −1.32567 0.765378i −0.341046 0.940046i \(-0.610781\pi\)
−0.984627 + 0.174668i \(0.944115\pi\)
\(3\) 0 0
\(4\) 2.68643 + 4.65303i 0.671607 + 1.16326i
\(5\) −4.03905 6.99584i −0.807811 1.39917i −0.914377 0.404863i \(-0.867319\pi\)
0.106567 0.994306i \(-0.466014\pi\)
\(6\) 0 0
\(7\) −8.17722 4.72112i −1.16817 0.674446i −0.214925 0.976631i \(-0.568951\pi\)
−0.953249 + 0.302185i \(0.902284\pi\)
\(8\) 4.20301i 0.525377i
\(9\) 0 0
\(10\) 24.7312i 2.47312i
\(11\) −5.27158 + 9.13064i −0.479234 + 0.830058i −0.999716 0.0238145i \(-0.992419\pi\)
0.520482 + 0.853873i \(0.325752\pi\)
\(12\) 0 0
\(13\) 10.9174 + 18.9095i 0.839800 + 1.45458i 0.890062 + 0.455840i \(0.150661\pi\)
−0.0502618 + 0.998736i \(0.516006\pi\)
\(14\) 14.4538 + 25.0347i 1.03241 + 1.78819i
\(15\) 0 0
\(16\) 4.31192 7.46847i 0.269495 0.466779i
\(17\) −15.3418 7.32324i −0.902458 0.430779i
\(18\) 0 0
\(19\) −14.6494 −0.771023 −0.385512 0.922703i \(-0.625975\pi\)
−0.385512 + 0.922703i \(0.625975\pi\)
\(20\) 21.7012 37.5877i 1.08506 1.87938i
\(21\) 0 0
\(22\) 27.9536 16.1390i 1.27062 0.733591i
\(23\) −3.86711 6.69802i −0.168135 0.291218i 0.769629 0.638491i \(-0.220441\pi\)
−0.937764 + 0.347273i \(0.887108\pi\)
\(24\) 0 0
\(25\) −20.1279 + 34.8625i −0.805116 + 1.39450i
\(26\) 66.8475i 2.57106i
\(27\) 0 0
\(28\) 50.7318i 1.81185i
\(29\) 3.81538 6.60843i 0.131565 0.227877i −0.792715 0.609592i \(-0.791333\pi\)
0.924280 + 0.381715i \(0.124667\pi\)
\(30\) 0 0
\(31\) 15.0154 8.66912i 0.484366 0.279649i −0.237868 0.971297i \(-0.576449\pi\)
0.722234 + 0.691648i \(0.243115\pi\)
\(32\) −37.4245 + 21.6070i −1.16951 + 0.675220i
\(33\) 0 0
\(34\) 29.4663 + 42.9010i 0.866656 + 1.26179i
\(35\) 76.2754i 2.17930i
\(36\) 0 0
\(37\) 13.8739i 0.374970i −0.982267 0.187485i \(-0.939966\pi\)
0.982267 0.187485i \(-0.0600336\pi\)
\(38\) 38.8408 + 22.4247i 1.02213 + 0.590124i
\(39\) 0 0
\(40\) −29.4036 + 16.9762i −0.735091 + 0.424405i
\(41\) 23.1373 + 40.0749i 0.564324 + 0.977437i 0.997112 + 0.0759417i \(0.0241963\pi\)
−0.432789 + 0.901495i \(0.642470\pi\)
\(42\) 0 0
\(43\) 27.7975 48.1467i 0.646454 1.11969i −0.337509 0.941322i \(-0.609584\pi\)
0.983964 0.178370i \(-0.0570823\pi\)
\(44\) −56.6468 −1.28743
\(45\) 0 0
\(46\) 23.6784i 0.514747i
\(47\) −18.6323 10.7574i −0.396433 0.228881i 0.288511 0.957477i \(-0.406840\pi\)
−0.684944 + 0.728596i \(0.740173\pi\)
\(48\) 0 0
\(49\) 20.0780 + 34.7761i 0.409754 + 0.709716i
\(50\) 106.732 61.6218i 2.13464 1.23244i
\(51\) 0 0
\(52\) −58.6576 + 101.598i −1.12803 + 1.95381i
\(53\) 61.3273i 1.15712i 0.815640 + 0.578559i \(0.196385\pi\)
−0.815640 + 0.578559i \(0.803615\pi\)
\(54\) 0 0
\(55\) 85.1687 1.54852
\(56\) −19.8429 + 34.3690i −0.354338 + 0.613732i
\(57\) 0 0
\(58\) −20.2318 + 11.6808i −0.348824 + 0.201394i
\(59\) 76.3789 44.0974i 1.29456 0.747413i 0.315099 0.949059i \(-0.397962\pi\)
0.979459 + 0.201645i \(0.0646289\pi\)
\(60\) 0 0
\(61\) −34.9764 20.1936i −0.573383 0.331043i 0.185116 0.982717i \(-0.440734\pi\)
−0.758499 + 0.651674i \(0.774067\pi\)
\(62\) −53.0812 −0.856149
\(63\) 0 0
\(64\) 97.8050 1.52820
\(65\) 88.1919 152.753i 1.35680 2.35004i
\(66\) 0 0
\(67\) −36.3540 62.9669i −0.542596 0.939805i −0.998754 0.0499055i \(-0.984108\pi\)
0.456158 0.889899i \(-0.349225\pi\)
\(68\) −7.13935 91.0591i −0.104990 1.33910i
\(69\) 0 0
\(70\) 116.759 202.233i 1.66799 2.88904i
\(71\) 10.1569 0.143054 0.0715272 0.997439i \(-0.477213\pi\)
0.0715272 + 0.997439i \(0.477213\pi\)
\(72\) 0 0
\(73\) 34.6373i 0.474484i 0.971451 + 0.237242i \(0.0762435\pi\)
−0.971451 + 0.237242i \(0.923757\pi\)
\(74\) −21.2375 + 36.7845i −0.286994 + 0.497088i
\(75\) 0 0
\(76\) −39.3547 68.1643i −0.517825 0.896899i
\(77\) 86.2137 49.7755i 1.11966 0.646435i
\(78\) 0 0
\(79\) 96.7823 + 55.8773i 1.22509 + 0.707308i 0.965999 0.258545i \(-0.0832429\pi\)
0.259093 + 0.965852i \(0.416576\pi\)
\(80\) −69.6643 −0.870804
\(81\) 0 0
\(82\) 141.670i 1.72768i
\(83\) 3.77295 + 2.17831i 0.0454572 + 0.0262447i 0.522556 0.852605i \(-0.324978\pi\)
−0.477099 + 0.878849i \(0.658312\pi\)
\(84\) 0 0
\(85\) 10.7340 + 136.908i 0.126283 + 1.61068i
\(86\) −147.402 + 85.1025i −1.71397 + 0.989564i
\(87\) 0 0
\(88\) 38.3762 + 22.1565i 0.436093 + 0.251779i
\(89\) 67.1458i 0.754447i 0.926122 + 0.377224i \(0.123121\pi\)
−0.926122 + 0.377224i \(0.876879\pi\)
\(90\) 0 0
\(91\) 206.169i 2.26560i
\(92\) 20.7774 35.9875i 0.225841 0.391169i
\(93\) 0 0
\(94\) 32.9339 + 57.0431i 0.350360 + 0.606842i
\(95\) 59.1699 + 102.485i 0.622841 + 1.07879i
\(96\) 0 0
\(97\) −89.7342 51.8080i −0.925094 0.534104i −0.0398377 0.999206i \(-0.512684\pi\)
−0.885257 + 0.465103i \(0.846017\pi\)
\(98\) 122.938i 1.25447i
\(99\) 0 0
\(100\) −216.289 −2.16289
\(101\) 87.3324 + 50.4214i 0.864677 + 0.499222i 0.865576 0.500778i \(-0.166953\pi\)
−0.000898689 1.00000i \(0.500286\pi\)
\(102\) 0 0
\(103\) 44.1151 + 76.4097i 0.428302 + 0.741841i 0.996722 0.0808971i \(-0.0257785\pi\)
−0.568420 + 0.822738i \(0.692445\pi\)
\(104\) 79.4769 45.8860i 0.764201 0.441211i
\(105\) 0 0
\(106\) 93.8771 162.600i 0.885633 1.53396i
\(107\) 169.171 1.58103 0.790517 0.612439i \(-0.209812\pi\)
0.790517 + 0.612439i \(0.209812\pi\)
\(108\) 0 0
\(109\) 87.9613i 0.806984i 0.914983 + 0.403492i \(0.132204\pi\)
−0.914983 + 0.403492i \(0.867796\pi\)
\(110\) −225.812 130.373i −2.05283 1.18520i
\(111\) 0 0
\(112\) −70.5191 + 40.7142i −0.629635 + 0.363520i
\(113\) −15.6861 27.1692i −0.138815 0.240435i 0.788233 0.615377i \(-0.210996\pi\)
−0.927048 + 0.374942i \(0.877663\pi\)
\(114\) 0 0
\(115\) −31.2389 + 54.1073i −0.271642 + 0.470499i
\(116\) 40.9990 0.353439
\(117\) 0 0
\(118\) −270.009 −2.28821
\(119\) 90.8792 + 132.314i 0.763691 + 1.11188i
\(120\) 0 0
\(121\) 4.92097 + 8.52337i 0.0406692 + 0.0704410i
\(122\) 61.8230 + 107.081i 0.506746 + 0.877710i
\(123\) 0 0
\(124\) 80.6754 + 46.5779i 0.650608 + 0.375629i
\(125\) 123.238 0.985903
\(126\) 0 0
\(127\) 70.3705 0.554098 0.277049 0.960856i \(-0.410644\pi\)
0.277049 + 0.960856i \(0.410644\pi\)
\(128\) −109.617 63.2875i −0.856384 0.494433i
\(129\) 0 0
\(130\) −467.655 + 270.001i −3.59734 + 2.07693i
\(131\) 16.3054 + 28.2417i 0.124468 + 0.215586i 0.921525 0.388319i \(-0.126944\pi\)
−0.797057 + 0.603905i \(0.793611\pi\)
\(132\) 0 0
\(133\) 119.792 + 69.1618i 0.900690 + 0.520013i
\(134\) 222.596i 1.66117i
\(135\) 0 0
\(136\) −30.7797 + 64.4817i −0.226321 + 0.474130i
\(137\) −102.728 59.3098i −0.749836 0.432918i 0.0757984 0.997123i \(-0.475849\pi\)
−0.825635 + 0.564205i \(0.809183\pi\)
\(138\) 0 0
\(139\) 79.2798 45.7722i 0.570358 0.329297i −0.186934 0.982372i \(-0.559855\pi\)
0.757292 + 0.653076i \(0.226522\pi\)
\(140\) −354.912 + 204.908i −2.53508 + 1.46363i
\(141\) 0 0
\(142\) −26.9294 15.5477i −0.189644 0.109491i
\(143\) −230.208 −1.60984
\(144\) 0 0
\(145\) −61.6421 −0.425118
\(146\) 53.0213 91.8356i 0.363160 0.629011i
\(147\) 0 0
\(148\) 64.5556 37.2712i 0.436187 0.251832i
\(149\) −143.387 + 82.7847i −0.962331 + 0.555602i −0.896890 0.442255i \(-0.854179\pi\)
−0.0654411 + 0.997856i \(0.520845\pi\)
\(150\) 0 0
\(151\) −109.267 + 189.256i −0.723621 + 1.25335i 0.235918 + 0.971773i \(0.424190\pi\)
−0.959539 + 0.281576i \(0.909143\pi\)
\(152\) 61.5718i 0.405078i
\(153\) 0 0
\(154\) −304.777 −1.97907
\(155\) −121.296 70.0301i −0.782553 0.451807i
\(156\) 0 0
\(157\) −134.982 233.796i −0.859758 1.48914i −0.872160 0.489221i \(-0.837281\pi\)
0.0124018 0.999923i \(-0.496052\pi\)
\(158\) −171.069 296.300i −1.08272 1.87532i
\(159\) 0 0
\(160\) 302.319 + 174.544i 1.88949 + 1.09090i
\(161\) 73.0283i 0.453592i
\(162\) 0 0
\(163\) 76.0320i 0.466454i 0.972422 + 0.233227i \(0.0749285\pi\)
−0.972422 + 0.233227i \(0.925071\pi\)
\(164\) −124.313 + 215.317i −0.758007 + 1.31291i
\(165\) 0 0
\(166\) −6.66893 11.5509i −0.0401743 0.0695839i
\(167\) 28.7854 + 49.8577i 0.172368 + 0.298549i 0.939247 0.343242i \(-0.111525\pi\)
−0.766880 + 0.641791i \(0.778192\pi\)
\(168\) 0 0
\(169\) −153.879 + 266.527i −0.910528 + 1.57708i
\(170\) 181.113 379.421i 1.06537 2.23189i
\(171\) 0 0
\(172\) 298.704 1.73665
\(173\) −18.4535 + 31.9624i −0.106667 + 0.184754i −0.914418 0.404771i \(-0.867351\pi\)
0.807751 + 0.589524i \(0.200685\pi\)
\(174\) 0 0
\(175\) 329.181 190.052i 1.88103 1.08601i
\(176\) 45.4612 + 78.7412i 0.258303 + 0.447393i
\(177\) 0 0
\(178\) 102.784 178.027i 0.577437 1.00015i
\(179\) 109.553i 0.612029i 0.952027 + 0.306015i \(0.0989956\pi\)
−0.952027 + 0.306015i \(0.901004\pi\)
\(180\) 0 0
\(181\) 0.415424i 0.00229516i 0.999999 + 0.00114758i \(0.000365286\pi\)
−0.999999 + 0.00114758i \(0.999635\pi\)
\(182\) −315.595 + 546.627i −1.73404 + 3.00344i
\(183\) 0 0
\(184\) −28.1519 + 16.2535i −0.152999 + 0.0883342i
\(185\) −97.0596 + 56.0374i −0.524646 + 0.302905i
\(186\) 0 0
\(187\) 147.741 101.475i 0.790060 0.542648i
\(188\) 115.596i 0.614871i
\(189\) 0 0
\(190\) 362.299i 1.90683i
\(191\) 135.260 + 78.0927i 0.708170 + 0.408862i 0.810383 0.585900i \(-0.199259\pi\)
−0.102213 + 0.994763i \(0.532592\pi\)
\(192\) 0 0
\(193\) −144.878 + 83.6451i −0.750661 + 0.433394i −0.825933 0.563769i \(-0.809351\pi\)
0.0752717 + 0.997163i \(0.476018\pi\)
\(194\) 158.611 + 274.722i 0.817582 + 1.41609i
\(195\) 0 0
\(196\) −107.876 + 186.847i −0.550388 + 0.953300i
\(197\) −168.129 −0.853449 −0.426724 0.904382i \(-0.640333\pi\)
−0.426724 + 0.904382i \(0.640333\pi\)
\(198\) 0 0
\(199\) 143.847i 0.722849i 0.932401 + 0.361424i \(0.117709\pi\)
−0.932401 + 0.361424i \(0.882291\pi\)
\(200\) 146.528 + 84.5978i 0.732639 + 0.422989i
\(201\) 0 0
\(202\) −154.366 267.369i −0.764186 1.32361i
\(203\) −62.3984 + 36.0257i −0.307381 + 0.177467i
\(204\) 0 0
\(205\) 186.905 323.729i 0.911733 1.57917i
\(206\) 270.118i 1.31125i
\(207\) 0 0
\(208\) 188.300 0.905288
\(209\) 77.2257 133.759i 0.369501 0.639994i
\(210\) 0 0
\(211\) −57.1214 + 32.9791i −0.270718 + 0.156299i −0.629214 0.777232i \(-0.716623\pi\)
0.358496 + 0.933531i \(0.383290\pi\)
\(212\) −285.358 + 164.751i −1.34603 + 0.777129i
\(213\) 0 0
\(214\) −448.530 258.959i −2.09594 1.21009i
\(215\) −449.103 −2.08885
\(216\) 0 0
\(217\) −163.712 −0.754433
\(218\) 134.647 233.216i 0.617648 1.06980i
\(219\) 0 0
\(220\) 228.800 + 396.292i 1.04000 + 1.80133i
\(221\) −29.0137 370.056i −0.131284 1.67446i
\(222\) 0 0
\(223\) −63.9158 + 110.705i −0.286618 + 0.496437i −0.973000 0.230804i \(-0.925864\pi\)
0.686382 + 0.727241i \(0.259198\pi\)
\(224\) 408.038 1.82160
\(225\) 0 0
\(226\) 96.0465i 0.424985i
\(227\) 15.6179 27.0510i 0.0688014 0.119168i −0.829573 0.558399i \(-0.811416\pi\)
0.898374 + 0.439231i \(0.144749\pi\)
\(228\) 0 0
\(229\) 197.416 + 341.934i 0.862078 + 1.49316i 0.869919 + 0.493194i \(0.164171\pi\)
−0.00784094 + 0.999969i \(0.502496\pi\)
\(230\) 165.650 95.6382i 0.720219 0.415818i
\(231\) 0 0
\(232\) −27.7753 16.0361i −0.119721 0.0691211i
\(233\) 46.9497 0.201501 0.100750 0.994912i \(-0.467876\pi\)
0.100750 + 0.994912i \(0.467876\pi\)
\(234\) 0 0
\(235\) 173.799i 0.739569i
\(236\) 410.373 + 236.929i 1.73887 + 1.00394i
\(237\) 0 0
\(238\) −38.4118 489.925i −0.161394 2.05851i
\(239\) 291.961 168.564i 1.22159 0.705288i 0.256336 0.966588i \(-0.417484\pi\)
0.965258 + 0.261300i \(0.0841511\pi\)
\(240\) 0 0
\(241\) 11.1211 + 6.42077i 0.0461457 + 0.0266422i 0.522895 0.852397i \(-0.324852\pi\)
−0.476750 + 0.879039i \(0.658185\pi\)
\(242\) 30.1312i 0.124509i
\(243\) 0 0
\(244\) 216.995i 0.889323i
\(245\) 162.192 280.925i 0.662008 1.14663i
\(246\) 0 0
\(247\) −159.934 277.013i −0.647505 1.12151i
\(248\) −36.4364 63.1098i −0.146921 0.254475i
\(249\) 0 0
\(250\) −326.746 188.647i −1.30699 0.754589i
\(251\) 48.3962i 0.192814i −0.995342 0.0964068i \(-0.969265\pi\)
0.995342 0.0964068i \(-0.0307350\pi\)
\(252\) 0 0
\(253\) 81.5430 0.322304
\(254\) −186.577 107.720i −0.734553 0.424095i
\(255\) 0 0
\(256\) −1.85466 3.21237i −0.00724478 0.0125483i
\(257\) −49.7329 + 28.7133i −0.193513 + 0.111725i −0.593626 0.804741i \(-0.702304\pi\)
0.400113 + 0.916466i \(0.368971\pi\)
\(258\) 0 0
\(259\) −65.5003 + 113.450i −0.252897 + 0.438030i
\(260\) 947.685 3.64494
\(261\) 0 0
\(262\) 99.8381i 0.381061i
\(263\) 206.973 + 119.496i 0.786970 + 0.454357i 0.838895 0.544294i \(-0.183202\pi\)
−0.0519251 + 0.998651i \(0.516536\pi\)
\(264\) 0 0
\(265\) 429.036 247.704i 1.61900 0.934733i
\(266\) −211.740 366.744i −0.796014 1.37874i
\(267\) 0 0
\(268\) 195.325 338.312i 0.728823 1.26236i
\(269\) 194.989 0.724867 0.362434 0.932010i \(-0.381946\pi\)
0.362434 + 0.932010i \(0.381946\pi\)
\(270\) 0 0
\(271\) 8.67112 0.0319967 0.0159984 0.999872i \(-0.494907\pi\)
0.0159984 + 0.999872i \(0.494907\pi\)
\(272\) −120.846 + 83.0024i −0.444286 + 0.305156i
\(273\) 0 0
\(274\) 181.578 + 314.502i 0.662692 + 1.14782i
\(275\) −212.211 367.561i −0.771678 1.33659i
\(276\) 0 0
\(277\) 4.04307 + 2.33427i 0.0145959 + 0.00842695i 0.507280 0.861781i \(-0.330651\pi\)
−0.492684 + 0.870208i \(0.663984\pi\)
\(278\) −280.264 −1.00815
\(279\) 0 0
\(280\) 320.587 1.14495
\(281\) −112.493 64.9476i −0.400329 0.231130i 0.286297 0.958141i \(-0.407576\pi\)
−0.686626 + 0.727011i \(0.740909\pi\)
\(282\) 0 0
\(283\) −302.468 + 174.630i −1.06879 + 0.617066i −0.927851 0.372952i \(-0.878346\pi\)
−0.140939 + 0.990018i \(0.545012\pi\)
\(284\) 27.2857 + 47.2602i 0.0960764 + 0.166409i
\(285\) 0 0
\(286\) 610.360 + 352.392i 2.13413 + 1.23214i
\(287\) 436.935i 1.52242i
\(288\) 0 0
\(289\) 181.740 + 224.703i 0.628860 + 0.777519i
\(290\) 163.434 + 94.3589i 0.563567 + 0.325376i
\(291\) 0 0
\(292\) −161.169 + 93.0507i −0.551947 + 0.318667i
\(293\) −153.145 + 88.4185i −0.522680 + 0.301770i −0.738031 0.674767i \(-0.764244\pi\)
0.215350 + 0.976537i \(0.430911\pi\)
\(294\) 0 0
\(295\) −616.997 356.223i −2.09151 1.20754i
\(296\) −58.3122 −0.197001
\(297\) 0 0
\(298\) 506.893 1.70098
\(299\) 84.4375 146.250i 0.282400 0.489130i
\(300\) 0 0
\(301\) −454.613 + 262.471i −1.51034 + 0.871997i
\(302\) 579.408 334.522i 1.91857 1.10769i
\(303\) 0 0
\(304\) −63.1672 + 109.409i −0.207787 + 0.359898i
\(305\) 326.252i 1.06968i
\(306\) 0 0
\(307\) 337.549 1.09951 0.549754 0.835327i \(-0.314722\pi\)
0.549754 + 0.835327i \(0.314722\pi\)
\(308\) 463.214 + 267.437i 1.50394 + 0.868301i
\(309\) 0 0
\(310\) 214.398 + 371.348i 0.691606 + 1.19790i
\(311\) 287.876 + 498.615i 0.925645 + 1.60327i 0.790520 + 0.612437i \(0.209811\pi\)
0.135126 + 0.990828i \(0.456856\pi\)
\(312\) 0 0
\(313\) 431.908 + 249.362i 1.37990 + 0.796685i 0.992147 0.125078i \(-0.0399182\pi\)
0.387752 + 0.921764i \(0.373252\pi\)
\(314\) 826.498i 2.63216i
\(315\) 0 0
\(316\) 600.441i 1.90013i
\(317\) −231.112 + 400.297i −0.729060 + 1.26277i 0.228222 + 0.973609i \(0.426709\pi\)
−0.957281 + 0.289159i \(0.906624\pi\)
\(318\) 0 0
\(319\) 40.2261 + 69.6737i 0.126101 + 0.218413i
\(320\) −395.040 684.229i −1.23450 2.13821i
\(321\) 0 0
\(322\) 111.788 193.623i 0.347169 0.601315i
\(323\) 224.749 + 107.281i 0.695816 + 0.332140i
\(324\) 0 0
\(325\) −878.977 −2.70454
\(326\) 116.386 201.587i 0.357014 0.618366i
\(327\) 0 0
\(328\) 168.435 97.2463i 0.513523 0.296483i
\(329\) 101.574 + 175.931i 0.308735 + 0.534745i
\(330\) 0 0
\(331\) −17.8432 + 30.9053i −0.0539068 + 0.0933694i −0.891720 0.452588i \(-0.850501\pi\)
0.837813 + 0.545958i \(0.183834\pi\)
\(332\) 23.4075i 0.0705046i
\(333\) 0 0
\(334\) 176.254i 0.527705i
\(335\) −293.671 + 508.653i −0.876630 + 1.51837i
\(336\) 0 0
\(337\) 436.273 251.882i 1.29458 0.747425i 0.315116 0.949053i \(-0.397957\pi\)
0.979462 + 0.201628i \(0.0646232\pi\)
\(338\) 815.974 471.103i 2.41413 1.39380i
\(339\) 0 0
\(340\) −608.199 + 417.738i −1.78882 + 1.22864i
\(341\) 182.800i 0.536070i
\(342\) 0 0
\(343\) 83.5078i 0.243463i
\(344\) −202.362 116.833i −0.588260 0.339632i
\(345\) 0 0
\(346\) 97.8531 56.4955i 0.282813 0.163282i
\(347\) 100.785 + 174.564i 0.290446 + 0.503067i 0.973915 0.226912i \(-0.0728630\pi\)
−0.683469 + 0.729979i \(0.739530\pi\)
\(348\) 0 0
\(349\) −103.083 + 178.544i −0.295366 + 0.511588i −0.975070 0.221898i \(-0.928775\pi\)
0.679704 + 0.733486i \(0.262108\pi\)
\(350\) −1163.70 −3.32485
\(351\) 0 0
\(352\) 455.612i 1.29435i
\(353\) −387.685 223.830i −1.09826 0.634080i −0.162496 0.986709i \(-0.551954\pi\)
−0.935763 + 0.352629i \(0.885288\pi\)
\(354\) 0 0
\(355\) −41.0241 71.0559i −0.115561 0.200157i
\(356\) −312.432 + 180.382i −0.877617 + 0.506692i
\(357\) 0 0
\(358\) 167.699 290.464i 0.468434 0.811351i
\(359\) 366.344i 1.02046i −0.860039 0.510228i \(-0.829561\pi\)
0.860039 0.510228i \(-0.170439\pi\)
\(360\) 0 0
\(361\) −146.394 −0.405523
\(362\) 0.635913 1.10143i 0.00175666 0.00304263i
\(363\) 0 0
\(364\) 959.313 553.859i 2.63547 1.52159i
\(365\) 242.317 139.902i 0.663884 0.383293i
\(366\) 0 0
\(367\) −236.295 136.425i −0.643855 0.371730i 0.142243 0.989832i \(-0.454568\pi\)
−0.786098 + 0.618102i \(0.787902\pi\)
\(368\) −66.6986 −0.181246
\(369\) 0 0
\(370\) 343.118 0.927346
\(371\) 289.534 501.487i 0.780414 1.35172i
\(372\) 0 0
\(373\) −126.588 219.258i −0.339379 0.587822i 0.644937 0.764236i \(-0.276884\pi\)
−0.984316 + 0.176414i \(0.943550\pi\)
\(374\) −547.047 + 42.8904i −1.46269 + 0.114680i
\(375\) 0 0
\(376\) −45.2135 + 78.3120i −0.120249 + 0.208277i
\(377\) 166.616 0.441952
\(378\) 0 0
\(379\) 497.597i 1.31292i −0.754360 0.656461i \(-0.772053\pi\)
0.754360 0.656461i \(-0.227947\pi\)
\(380\) −317.911 + 550.638i −0.836608 + 1.44905i
\(381\) 0 0
\(382\) −239.082 414.101i −0.625868 1.08404i
\(383\) 643.789 371.692i 1.68091 0.970474i 0.719854 0.694126i \(-0.244209\pi\)
0.961057 0.276349i \(-0.0891244\pi\)
\(384\) 0 0
\(385\) −696.443 402.092i −1.80894 1.04439i
\(386\) 512.161 1.32684
\(387\) 0 0
\(388\) 556.714i 1.43483i
\(389\) −502.792 290.287i −1.29252 0.746240i −0.313424 0.949613i \(-0.601476\pi\)
−0.979101 + 0.203374i \(0.934809\pi\)
\(390\) 0 0
\(391\) 10.2771 + 131.079i 0.0262841 + 0.335241i
\(392\) 146.164 84.3880i 0.372868 0.215276i
\(393\) 0 0
\(394\) 445.769 + 257.365i 1.13139 + 0.653211i
\(395\) 902.765i 2.28548i
\(396\) 0 0
\(397\) 752.926i 1.89654i 0.317465 + 0.948270i \(0.397168\pi\)
−0.317465 + 0.948270i \(0.602832\pi\)
\(398\) 220.194 381.388i 0.553252 0.958261i
\(399\) 0 0
\(400\) 173.580 + 300.649i 0.433950 + 0.751623i
\(401\) 16.6360 + 28.8144i 0.0414863 + 0.0718564i 0.886023 0.463641i \(-0.153457\pi\)
−0.844537 + 0.535498i \(0.820124\pi\)
\(402\) 0 0
\(403\) 327.857 + 189.288i 0.813542 + 0.469698i
\(404\) 541.814i 1.34112i
\(405\) 0 0
\(406\) 220.586 0.543316
\(407\) 126.677 + 73.1373i 0.311247 + 0.179698i
\(408\) 0 0
\(409\) 55.9973 + 96.9902i 0.136913 + 0.237140i 0.926327 0.376722i \(-0.122949\pi\)
−0.789414 + 0.613862i \(0.789615\pi\)
\(410\) −991.102 + 572.213i −2.41732 + 1.39564i
\(411\) 0 0
\(412\) −237.024 + 410.538i −0.575302 + 0.996452i
\(413\) −832.756 −2.01636
\(414\) 0 0
\(415\) 35.1933i 0.0848031i
\(416\) −817.156 471.785i −1.96432 1.13410i
\(417\) 0 0
\(418\) −409.504 + 236.427i −0.979675 + 0.565616i
\(419\) 210.700 + 364.943i 0.502864 + 0.870986i 0.999995 + 0.00331046i \(0.00105376\pi\)
−0.497130 + 0.867676i \(0.665613\pi\)
\(420\) 0 0
\(421\) 200.328 346.979i 0.475839 0.824178i −0.523778 0.851855i \(-0.675478\pi\)
0.999617 + 0.0276772i \(0.00881106\pi\)
\(422\) 201.932 0.478511
\(423\) 0 0
\(424\) 257.760 0.607923
\(425\) 564.104 387.452i 1.32730 0.911652i
\(426\) 0 0
\(427\) 190.673 + 330.255i 0.446541 + 0.773432i
\(428\) 454.465 + 787.156i 1.06183 + 1.83915i
\(429\) 0 0
\(430\) 1190.73 + 687.467i 2.76913 + 1.59876i
\(431\) −769.605 −1.78563 −0.892814 0.450426i \(-0.851272\pi\)
−0.892814 + 0.450426i \(0.851272\pi\)
\(432\) 0 0
\(433\) 212.894 0.491671 0.245836 0.969312i \(-0.420938\pi\)
0.245836 + 0.969312i \(0.420938\pi\)
\(434\) 434.057 + 250.603i 1.00013 + 0.577426i
\(435\) 0 0
\(436\) −409.286 + 236.302i −0.938730 + 0.541976i
\(437\) 56.6509 + 98.1223i 0.129636 + 0.224536i
\(438\) 0 0
\(439\) 32.0975 + 18.5315i 0.0731150 + 0.0422130i 0.536112 0.844147i \(-0.319893\pi\)
−0.462997 + 0.886360i \(0.653226\pi\)
\(440\) 357.965i 0.813558i
\(441\) 0 0
\(442\) −489.540 + 1025.56i −1.10756 + 2.32027i
\(443\) −356.817 206.009i −0.805457 0.465031i 0.0399189 0.999203i \(-0.487290\pi\)
−0.845376 + 0.534172i \(0.820623\pi\)
\(444\) 0 0
\(445\) 469.742 271.206i 1.05560 0.609451i
\(446\) 338.926 195.679i 0.759924 0.438742i
\(447\) 0 0
\(448\) −799.773 461.749i −1.78521 1.03069i
\(449\) 629.945 1.40300 0.701498 0.712672i \(-0.252515\pi\)
0.701498 + 0.712672i \(0.252515\pi\)
\(450\) 0 0
\(451\) −487.879 −1.08177
\(452\) 84.2793 145.976i 0.186459 0.322956i
\(453\) 0 0
\(454\) −82.8171 + 47.8145i −0.182417 + 0.105318i
\(455\) −1442.33 + 832.729i −3.16995 + 1.83017i
\(456\) 0 0
\(457\) −399.682 + 692.270i −0.874579 + 1.51481i −0.0173675 + 0.999849i \(0.505529\pi\)
−0.857211 + 0.514965i \(0.827805\pi\)
\(458\) 1208.78i 2.63926i
\(459\) 0 0
\(460\) −335.684 −0.729748
\(461\) 487.175 + 281.271i 1.05678 + 0.610131i 0.924539 0.381086i \(-0.124450\pi\)
0.132239 + 0.991218i \(0.457783\pi\)
\(462\) 0 0
\(463\) −39.1962 67.8898i −0.0846570 0.146630i 0.820588 0.571520i \(-0.193646\pi\)
−0.905245 + 0.424890i \(0.860313\pi\)
\(464\) −32.9032 56.9901i −0.0709121 0.122823i
\(465\) 0 0
\(466\) −124.480 71.8685i −0.267124 0.154224i
\(467\) 427.234i 0.914849i −0.889249 0.457424i \(-0.848772\pi\)
0.889249 0.457424i \(-0.151228\pi\)
\(468\) 0 0
\(469\) 686.526i 1.46381i
\(470\) 266.043 460.801i 0.566050 0.980427i
\(471\) 0 0
\(472\) −185.342 321.022i −0.392674 0.680131i
\(473\) 293.074 + 507.619i 0.619606 + 1.07319i
\(474\) 0 0
\(475\) 294.862 510.717i 0.620763 1.07519i
\(476\) −371.521 + 778.316i −0.780506 + 1.63512i
\(477\) 0 0
\(478\) −1032.12 −2.15925
\(479\) 11.2455 19.4777i 0.0234770 0.0406633i −0.854048 0.520194i \(-0.825860\pi\)
0.877525 + 0.479531i \(0.159193\pi\)
\(480\) 0 0
\(481\) 262.348 151.467i 0.545422 0.314900i
\(482\) −19.6573 34.0474i −0.0407827 0.0706378i
\(483\) 0 0
\(484\) −26.4396 + 45.7948i −0.0546274 + 0.0946174i
\(485\) 837.022i 1.72582i
\(486\) 0 0
\(487\) 507.974i 1.04307i −0.853230 0.521534i \(-0.825360\pi\)
0.853230 0.521534i \(-0.174640\pi\)
\(488\) −84.8741 + 147.006i −0.173922 + 0.301242i
\(489\) 0 0
\(490\) −860.054 + 496.553i −1.75521 + 1.01337i
\(491\) −122.685 + 70.8320i −0.249867 + 0.144261i −0.619703 0.784836i \(-0.712747\pi\)
0.369837 + 0.929097i \(0.379414\pi\)
\(492\) 0 0
\(493\) −106.930 + 73.4441i −0.216896 + 0.148974i
\(494\) 979.279i 1.98235i
\(495\) 0 0
\(496\) 149.522i 0.301456i
\(497\) −83.0550 47.9518i −0.167113 0.0964825i
\(498\) 0 0
\(499\) 161.668 93.3388i 0.323983 0.187052i −0.329183 0.944266i \(-0.606773\pi\)
0.653167 + 0.757214i \(0.273440\pi\)
\(500\) 331.070 + 573.430i 0.662139 + 1.14686i
\(501\) 0 0
\(502\) −74.0828 + 128.315i −0.147575 + 0.255608i
\(503\) 228.337 0.453950 0.226975 0.973901i \(-0.427116\pi\)
0.226975 + 0.973901i \(0.427116\pi\)
\(504\) 0 0
\(505\) 814.618i 1.61311i
\(506\) −216.199 124.822i −0.427270 0.246685i
\(507\) 0 0
\(508\) 189.045 + 327.436i 0.372136 + 0.644559i
\(509\) −26.2022 + 15.1279i −0.0514778 + 0.0297207i −0.525518 0.850782i \(-0.676128\pi\)
0.474040 + 0.880503i \(0.342795\pi\)
\(510\) 0 0
\(511\) 163.527 283.237i 0.320014 0.554280i
\(512\) 517.656i 1.01105i
\(513\) 0 0
\(514\) 175.812 0.342047
\(515\) 356.367 617.245i 0.691974 1.19853i
\(516\) 0 0
\(517\) 196.444 113.417i 0.379968 0.219375i
\(518\) 347.328 200.530i 0.670518 0.387124i
\(519\) 0 0
\(520\) −642.023 370.672i −1.23466 0.712831i
\(521\) 38.9717 0.0748017 0.0374009 0.999300i \(-0.488092\pi\)
0.0374009 + 0.999300i \(0.488092\pi\)
\(522\) 0 0
\(523\) 383.762 0.733771 0.366886 0.930266i \(-0.380424\pi\)
0.366886 + 0.930266i \(0.380424\pi\)
\(524\) −87.6063 + 151.739i −0.167188 + 0.289578i
\(525\) 0 0
\(526\) −365.838 633.650i −0.695510 1.20466i
\(527\) −293.848 + 23.0387i −0.557587 + 0.0437167i
\(528\) 0 0
\(529\) 234.591 406.324i 0.443461 0.768097i
\(530\) −1516.70 −2.86170
\(531\) 0 0
\(532\) 743.193i 1.39698i
\(533\) −505.197 + 875.028i −0.947838 + 1.64170i
\(534\) 0 0
\(535\) −683.290 1183.49i −1.27718 2.21213i
\(536\) −264.651 + 152.796i −0.493752 + 0.285068i
\(537\) 0 0
\(538\) −516.984 298.481i −0.960938 0.554798i
\(539\) −423.370 −0.785473
\(540\) 0 0
\(541\) 991.043i 1.83187i 0.401324 + 0.915936i \(0.368550\pi\)
−0.401324 + 0.915936i \(0.631450\pi\)
\(542\) −22.9901 13.2734i −0.0424172 0.0244896i
\(543\) 0 0
\(544\) 732.391 57.4220i 1.34631 0.105555i
\(545\) 615.363 355.280i 1.12911 0.651890i
\(546\) 0 0
\(547\) −464.221 268.018i −0.848667 0.489978i 0.0115342 0.999933i \(-0.496328\pi\)
−0.860201 + 0.509956i \(0.829662\pi\)
\(548\) 637.326i 1.16300i
\(549\) 0 0
\(550\) 1299.38i 2.36250i
\(551\) −55.8932 + 96.8098i −0.101440 + 0.175698i
\(552\) 0 0
\(553\) −527.607 913.842i −0.954081 1.65252i
\(554\) −7.14638 12.3779i −0.0128996 0.0223428i
\(555\) 0 0
\(556\) 425.959 + 245.928i 0.766113 + 0.442316i
\(557\) 798.037i 1.43274i 0.697720 + 0.716370i \(0.254198\pi\)
−0.697720 + 0.716370i \(0.745802\pi\)
\(558\) 0 0
\(559\) 1213.91 2.17157
\(560\) 569.661 + 328.894i 1.01725 + 0.587310i
\(561\) 0 0
\(562\) 198.838 + 344.397i 0.353804 + 0.612806i
\(563\) 856.083 494.260i 1.52057 0.877904i 0.520869 0.853637i \(-0.325608\pi\)
0.999706 0.0242674i \(-0.00772532\pi\)
\(564\) 0 0
\(565\) −126.714 + 219.475i −0.224273 + 0.388452i
\(566\) 1069.26 1.88916
\(567\) 0 0
\(568\) 42.6895i 0.0751575i
\(569\) 581.846 + 335.929i 1.02258 + 0.590384i 0.914849 0.403796i \(-0.132309\pi\)
0.107727 + 0.994181i \(0.465643\pi\)
\(570\) 0 0
\(571\) −873.895 + 504.543i −1.53046 + 0.883614i −0.531124 + 0.847294i \(0.678230\pi\)
−0.999340 + 0.0363195i \(0.988437\pi\)
\(572\) −618.436 1071.16i −1.08118 1.87266i
\(573\) 0 0
\(574\) −668.841 + 1158.47i −1.16523 + 2.01824i
\(575\) 311.347 0.541473
\(576\) 0 0
\(577\) 365.156 0.632852 0.316426 0.948617i \(-0.397517\pi\)
0.316426 + 0.948617i \(0.397517\pi\)
\(578\) −137.892 873.966i −0.238567 1.51205i
\(579\) 0 0
\(580\) −165.597 286.822i −0.285512 0.494521i
\(581\) −20.5682 35.6251i −0.0354013 0.0613169i
\(582\) 0 0
\(583\) −559.957 323.291i −0.960476 0.554531i
\(584\) 145.581 0.249283
\(585\) 0 0
\(586\) 541.388 0.923871
\(587\) −388.428 224.259i −0.661718 0.382043i 0.131213 0.991354i \(-0.458113\pi\)
−0.792931 + 0.609311i \(0.791446\pi\)
\(588\) 0 0
\(589\) −219.967 + 126.998i −0.373458 + 0.215616i
\(590\) 1090.58 + 1888.94i 1.84844 + 3.20160i
\(591\) 0 0
\(592\) −103.617 59.8231i −0.175028 0.101053i
\(593\) 65.3628i 0.110224i −0.998480 0.0551120i \(-0.982448\pi\)
0.998480 0.0551120i \(-0.0175516\pi\)
\(594\) 0 0
\(595\) 558.583 1170.20i 0.938795 1.96672i
\(596\) −770.399 444.790i −1.29262 0.746292i
\(597\) 0 0
\(598\) −447.746 + 258.506i −0.748739 + 0.432285i
\(599\) −854.077 + 493.102i −1.42584 + 0.823208i −0.996789 0.0800729i \(-0.974485\pi\)
−0.429049 + 0.903281i \(0.641151\pi\)
\(600\) 0 0
\(601\) −107.558 62.0987i −0.178965 0.103326i 0.407841 0.913053i \(-0.366282\pi\)
−0.586806 + 0.809727i \(0.699615\pi\)
\(602\) 1607.12 2.66963
\(603\) 0 0
\(604\) −1174.15 −1.94396
\(605\) 39.7521 68.8526i 0.0657059 0.113806i
\(606\) 0 0
\(607\) 839.562 484.721i 1.38313 0.798552i 0.390604 0.920559i \(-0.372266\pi\)
0.992529 + 0.122007i \(0.0389330\pi\)
\(608\) 548.248 316.531i 0.901723 0.520610i
\(609\) 0 0
\(610\) 499.413 865.008i 0.818709 1.41805i
\(611\) 469.771i 0.768856i
\(612\) 0 0
\(613\) 730.706 1.19202 0.596008 0.802978i \(-0.296753\pi\)
0.596008 + 0.802978i \(0.296753\pi\)
\(614\) −894.959 516.705i −1.45759 0.841539i
\(615\) 0 0
\(616\) −209.207 362.357i −0.339622 0.588243i
\(617\) −283.553 491.128i −0.459567 0.795994i 0.539371 0.842069i \(-0.318662\pi\)
−0.998938 + 0.0460743i \(0.985329\pi\)
\(618\) 0 0
\(619\) 246.723 + 142.446i 0.398583 + 0.230122i 0.685872 0.727722i \(-0.259421\pi\)
−0.287289 + 0.957844i \(0.592754\pi\)
\(620\) 752.523i 1.21375i
\(621\) 0 0
\(622\) 1762.67i 2.83387i
\(623\) 317.004 549.066i 0.508834 0.881326i
\(624\) 0 0
\(625\) 5.43303 + 9.41029i 0.00869285 + 0.0150565i
\(626\) −763.426 1322.29i −1.21953 2.11229i
\(627\) 0 0
\(628\) 725.239 1256.15i 1.15484 2.00024i
\(629\) −101.602 + 212.850i −0.161529 + 0.338395i
\(630\) 0 0
\(631\) 226.146 0.358394 0.179197 0.983813i \(-0.442650\pi\)
0.179197 + 0.983813i \(0.442650\pi\)
\(632\) 234.853 406.778i 0.371603 0.643635i
\(633\) 0 0
\(634\) 1225.52 707.552i 1.93299 1.11601i
\(635\) −284.230 492.301i −0.447606 0.775277i
\(636\) 0 0
\(637\) −438.398 + 759.328i −0.688223 + 1.19204i
\(638\) 246.305i 0.386059i
\(639\) 0 0
\(640\) 1022.49i 1.59763i
\(641\) −112.238 + 194.403i −0.175099 + 0.303280i −0.940195 0.340635i \(-0.889358\pi\)
0.765097 + 0.643915i \(0.222691\pi\)
\(642\) 0 0
\(643\) −348.707 + 201.326i −0.542313 + 0.313105i −0.746016 0.665928i \(-0.768036\pi\)
0.203703 + 0.979033i \(0.434702\pi\)
\(644\) −339.803 + 196.185i −0.527644 + 0.304635i
\(645\) 0 0
\(646\) −431.665 628.475i −0.668212 0.972872i
\(647\) 669.881i 1.03537i 0.855573 + 0.517683i \(0.173205\pi\)
−0.855573 + 0.517683i \(0.826795\pi\)
\(648\) 0 0
\(649\) 929.851i 1.43274i
\(650\) 2330.47 + 1345.50i 3.58534 + 2.07000i
\(651\) 0 0
\(652\) −353.779 + 204.255i −0.542606 + 0.313274i
\(653\) 258.224 + 447.257i 0.395442 + 0.684926i 0.993158 0.116783i \(-0.0372580\pi\)
−0.597715 + 0.801708i \(0.703925\pi\)
\(654\) 0 0
\(655\) 131.716 228.139i 0.201094 0.348305i
\(656\) 399.064 0.608330
\(657\) 0 0
\(658\) 621.939i 0.945196i
\(659\) 332.304 + 191.856i 0.504255 + 0.291132i 0.730469 0.682946i \(-0.239301\pi\)
−0.226214 + 0.974078i \(0.572635\pi\)
\(660\) 0 0
\(661\) −370.080 640.998i −0.559879 0.969739i −0.997506 0.0705824i \(-0.977514\pi\)
0.437627 0.899157i \(-0.355819\pi\)
\(662\) 94.6168 54.6271i 0.142926 0.0825182i
\(663\) 0 0
\(664\) 9.15548 15.8578i 0.0137884 0.0238822i
\(665\) 1117.39i 1.68029i
\(666\) 0 0
\(667\) −59.0179 −0.0884826
\(668\) −154.660 + 267.878i −0.231526 + 0.401016i
\(669\) 0 0
\(670\) 1557.25 899.078i 2.32425 1.34191i
\(671\) 368.761 212.904i 0.549570 0.317294i
\(672\) 0 0
\(673\) −694.469 400.952i −1.03190 0.595768i −0.114372 0.993438i \(-0.536486\pi\)
−0.917529 + 0.397670i \(0.869819\pi\)
\(674\) −1542.28 −2.28825
\(675\) 0 0
\(676\) −1653.54 −2.44607
\(677\) −426.164 + 738.138i −0.629490 + 1.09031i 0.358165 + 0.933658i \(0.383403\pi\)
−0.987654 + 0.156649i \(0.949931\pi\)
\(678\) 0 0
\(679\) 489.184 + 847.292i 0.720448 + 1.24785i
\(680\) 575.425 45.1153i 0.846213 0.0663460i
\(681\) 0 0
\(682\) 279.822 484.666i 0.410296 0.710653i
\(683\) −281.224 −0.411748 −0.205874 0.978579i \(-0.566004\pi\)
−0.205874 + 0.978579i \(0.566004\pi\)
\(684\) 0 0
\(685\) 958.222i 1.39886i
\(686\) 127.830 221.408i 0.186341 0.322752i
\(687\) 0 0
\(688\) −239.722 415.210i −0.348433 0.603503i
\(689\) −1159.67 + 669.534i −1.68312 + 0.971748i
\(690\) 0 0
\(691\) 755.748 + 436.331i 1.09370 + 0.631449i 0.934560 0.355807i \(-0.115794\pi\)
0.159142 + 0.987256i \(0.449127\pi\)
\(692\) −198.296 −0.286555
\(693\) 0 0
\(694\) 617.108i 0.889204i
\(695\) −640.431 369.753i −0.921483 0.532018i
\(696\) 0 0
\(697\) −61.4887 784.260i −0.0882191 1.12519i
\(698\) 546.616 315.589i 0.783117 0.452133i
\(699\) 0 0
\(700\) 1768.64 + 1021.12i 2.52663 + 1.45875i
\(701\) 477.598i 0.681309i 0.940189 + 0.340655i \(0.110649\pi\)
−0.940189 + 0.340655i \(0.889351\pi\)
\(702\) 0 0
\(703\) 203.245i 0.289111i
\(704\) −515.586 + 893.022i −0.732367 + 1.26850i
\(705\) 0 0
\(706\) 685.259 + 1186.90i 0.970622 + 1.68117i
\(707\) −476.091 824.613i −0.673396 1.16636i
\(708\) 0 0
\(709\) −749.650 432.811i −1.05733 0.610452i −0.132641 0.991164i \(-0.542346\pi\)
−0.924694 + 0.380712i \(0.875679\pi\)
\(710\) 251.192i 0.353791i
\(711\) 0 0
\(712\) 282.215 0.396369
\(713\) −116.132 67.0488i −0.162878 0.0940376i
\(714\) 0 0
\(715\) 929.821 + 1610.50i 1.30045 + 2.25244i
\(716\) −509.754 + 294.307i −0.711947 + 0.411043i
\(717\) 0 0
\(718\) −560.783 + 971.304i −0.781035 + 1.35279i
\(719\) −875.206 −1.21725 −0.608627 0.793456i \(-0.708280\pi\)
−0.608627 + 0.793456i \(0.708280\pi\)
\(720\) 0 0
\(721\) 833.092i 1.15547i
\(722\) 388.141 + 224.093i 0.537591 + 0.310378i
\(723\) 0 0
\(724\) −1.93298 + 1.11601i −0.00266986 + 0.00154145i
\(725\) 153.591 + 266.028i 0.211850 + 0.366935i
\(726\) 0 0
\(727\) 11.7147 20.2904i 0.0161137 0.0279098i −0.857856 0.513890i \(-0.828204\pi\)
0.873970 + 0.485980i \(0.161537\pi\)
\(728\) −866.533 −1.19029
\(729\) 0 0
\(730\) −856.624 −1.17346
\(731\) −779.054 + 535.089i −1.06574 + 0.731996i
\(732\) 0 0
\(733\) 405.654 + 702.614i 0.553417 + 0.958546i 0.998025 + 0.0628206i \(0.0200096\pi\)
−0.444608 + 0.895725i \(0.646657\pi\)
\(734\) 417.666 + 723.419i 0.569027 + 0.985584i
\(735\) 0 0
\(736\) 289.449 + 167.113i 0.393273 + 0.227056i
\(737\) 766.571 1.04012
\(738\) 0 0
\(739\) 436.655 0.590873 0.295436 0.955362i \(-0.404535\pi\)
0.295436 + 0.955362i \(0.404535\pi\)
\(740\) −521.487 301.081i −0.704712 0.406866i
\(741\) 0 0
\(742\) −1535.31 + 886.410i −2.06915 + 1.19462i
\(743\) −694.330 1202.61i −0.934495 1.61859i −0.775532 0.631308i \(-0.782518\pi\)
−0.158963 0.987285i \(-0.550815\pi\)
\(744\) 0 0
\(745\) 1158.30 + 668.743i 1.55476 + 0.897642i
\(746\) 775.104i 1.03901i
\(747\) 0 0
\(748\) 869.063 + 414.838i 1.16185 + 0.554597i
\(749\) −1383.35 798.676i −1.84692 1.06632i
\(750\) 0 0
\(751\) −813.248 + 469.529i −1.08289 + 0.625205i −0.931674 0.363296i \(-0.881651\pi\)
−0.151213 + 0.988501i \(0.548318\pi\)
\(752\) −160.682 + 92.7700i −0.213673 + 0.123364i
\(753\) 0 0
\(754\) −441.757 255.048i −0.585884 0.338261i
\(755\) 1765.34 2.33820
\(756\) 0 0
\(757\) −687.805 −0.908594 −0.454297 0.890850i \(-0.650109\pi\)
−0.454297 + 0.890850i \(0.650109\pi\)
\(758\) −761.700 + 1319.30i −1.00488 + 1.74050i
\(759\) 0 0
\(760\) 430.747 248.692i 0.566772 0.327226i
\(761\) 1278.64 738.221i 1.68021 0.970067i 0.718685 0.695336i \(-0.244745\pi\)
0.961521 0.274731i \(-0.0885888\pi\)
\(762\) 0 0
\(763\) 415.276 719.279i 0.544267 0.942698i
\(764\) 839.161i 1.09838i
\(765\) 0 0
\(766\) −2275.88 −2.97112
\(767\) 1667.72 + 962.857i 2.17434 + 1.25536i
\(768\) 0 0
\(769\) −491.435 851.191i −0.639058 1.10688i −0.985640 0.168861i \(-0.945991\pi\)
0.346582 0.938020i \(-0.387342\pi\)
\(770\) 1231.01 + 2132.17i 1.59871 + 2.76905i
\(771\) 0 0
\(772\) −778.406 449.413i −1.00830 0.582141i
\(773\) 1082.93i 1.40095i 0.713679 + 0.700473i \(0.247028\pi\)
−0.713679 + 0.700473i \(0.752972\pi\)
\(774\) 0 0
\(775\) 697.965i 0.900599i
\(776\) −217.750 + 377.154i −0.280606 + 0.486023i
\(777\) 0 0
\(778\) 888.718 + 1539.30i 1.14231 + 1.97854i
\(779\) −338.948 587.075i −0.435107 0.753627i
\(780\) 0 0
\(781\) −53.5427 + 92.7387i −0.0685566 + 0.118744i
\(782\) 173.402 363.268i 0.221742 0.464538i
\(783\) 0 0
\(784\) 346.298 0.441707
\(785\) −1090.40 + 1888.63i −1.38904 + 2.40589i
\(786\) 0 0
\(787\) −108.379 + 62.5729i −0.137712 + 0.0795081i −0.567273 0.823530i \(-0.692002\pi\)
0.429561 + 0.903038i \(0.358668\pi\)
\(788\) −451.668 782.311i −0.573182 0.992781i
\(789\) 0 0
\(790\) −1381.91 + 2393.54i −1.74926 + 3.02980i
\(791\) 296.224i 0.374494i
\(792\) 0 0
\(793\) 881.847i 1.11204i
\(794\) 1152.55 1996.27i 1.45157 2.51419i
\(795\) 0 0
\(796\) −669.324 + 386.434i −0.840859 + 0.485470i
\(797\) −623.250 + 359.834i −0.781995 + 0.451485i −0.837137 0.546994i \(-0.815772\pi\)
0.0551419 + 0.998479i \(0.482439\pi\)
\(798\) 0 0
\(799\) 207.074 + 301.487i 0.259167 + 0.377330i
\(800\) 1739.62i 2.17452i
\(801\) 0 0
\(802\) 101.863i 0.127011i
\(803\) −316.261 182.593i −0.393849 0.227389i
\(804\) 0 0
\(805\) 510.895 294.965i 0.634652 0.366416i
\(806\) −579.509 1003.74i −0.718994 1.24533i
\(807\) 0 0
\(808\) 211.922 367.059i 0.262279 0.454281i
\(809\) 1176.98 1.45486 0.727429 0.686183i \(-0.240715\pi\)
0.727429 + 0.686183i \(0.240715\pi\)
\(810\) 0 0
\(811\) 423.706i 0.522449i 0.965278 + 0.261225i \(0.0841263\pi\)
−0.965278 + 0.261225i \(0.915874\pi\)
\(812\) −335.258 193.561i −0.412879 0.238376i
\(813\) 0 0
\(814\) −223.911 387.825i −0.275074 0.476443i
\(815\) 531.908 307.097i 0.652648 0.376807i
\(816\) 0 0
\(817\) −407.218 + 705.323i −0.498431 + 0.863309i
\(818\) 342.873i 0.419160i
\(819\) 0 0
\(820\) 2008.43 2.44931
\(821\) 296.427 513.427i 0.361057 0.625368i −0.627078 0.778956i \(-0.715749\pi\)
0.988135 + 0.153588i \(0.0490828\pi\)
\(822\) 0 0
\(823\) 537.310 310.216i 0.652868 0.376933i −0.136686 0.990614i \(-0.543645\pi\)
0.789554 + 0.613681i \(0.210312\pi\)
\(824\) 321.151 185.417i 0.389746 0.225020i
\(825\) 0 0
\(826\) 2207.93 + 1274.75i 2.67303 + 1.54328i
\(827\) −411.264 −0.497296 −0.248648 0.968594i \(-0.579986\pi\)
−0.248648 + 0.968594i \(0.579986\pi\)
\(828\) 0 0
\(829\) −861.153 −1.03878 −0.519392 0.854536i \(-0.673842\pi\)
−0.519392 + 0.854536i \(0.673842\pi\)
\(830\) −53.8723 + 93.3096i −0.0649064 + 0.112421i
\(831\) 0 0
\(832\) 1067.78 + 1849.44i 1.28338 + 2.22289i
\(833\) −53.3584 680.562i −0.0640558 0.817002i
\(834\) 0 0
\(835\) 232.531 402.756i 0.278481 0.482343i
\(836\) 829.845 0.992637
\(837\) 0 0
\(838\) 1290.12i 1.53952i
\(839\) 329.019 569.877i 0.392156 0.679234i −0.600578 0.799566i \(-0.705063\pi\)
0.992734 + 0.120333i \(0.0383961\pi\)
\(840\) 0 0
\(841\) 391.386 + 677.900i 0.465381 + 0.806064i
\(842\) −1062.28 + 613.308i −1.26162 + 0.728394i
\(843\) 0 0
\(844\) −306.905 177.192i −0.363632 0.209943i
\(845\) 2486.10 2.94214
\(846\) 0 0
\(847\) 92.9299i 0.109717i
\(848\) 458.021 + 264.438i 0.540119 + 0.311838i
\(849\) 0 0
\(850\) −2088.73 + 163.764i −2.45733 + 0.192663i
\(851\) −92.9276 + 53.6518i −0.109198 + 0.0630456i
\(852\) 0 0
\(853\) −684.590 395.248i −0.802567 0.463362i 0.0418011 0.999126i \(-0.486690\pi\)
−0.844368 + 0.535764i \(0.820024\pi\)
\(854\) 1167.50i 1.36709i
\(855\) 0 0
\(856\) 711.027i 0.830639i
\(857\) 204.881 354.864i 0.239068 0.414077i −0.721379 0.692540i \(-0.756492\pi\)
0.960447 + 0.278463i \(0.0898249\pi\)
\(858\) 0 0
\(859\) −110.043 190.600i −0.128106 0.221886i 0.794837 0.606823i \(-0.207556\pi\)
−0.922943 + 0.384937i \(0.874223\pi\)
\(860\) −1206.48 2089.69i −1.40289 2.42987i
\(861\) 0 0
\(862\) 2040.49 + 1178.08i 2.36716 + 1.36668i
\(863\) 1689.85i 1.95811i −0.203603 0.979053i \(-0.565265\pi\)
0.203603 0.979053i \(-0.434735\pi\)
\(864\) 0 0
\(865\) 298.138 0.344669
\(866\) −564.455 325.888i −0.651795 0.376314i
\(867\) 0 0
\(868\) −439.800 761.756i −0.506682 0.877599i
\(869\) −1020.39 + 589.123i −1.17421 + 0.677932i
\(870\) 0 0
\(871\) 793.781 1374.87i 0.911345 1.57850i
\(872\) 369.703 0.423971
\(873\) 0 0
\(874\) 346.875i 0.396882i
\(875\) −1007.74 581.821i −1.15171 0.664938i
\(876\) 0 0
\(877\) −233.067 + 134.561i −0.265755 + 0.153434i −0.626957 0.779054i \(-0.715700\pi\)
0.361202 + 0.932488i \(0.382366\pi\)
\(878\) −56.7344 98.2669i −0.0646178 0.111921i
\(879\) 0 0
\(880\) 367.241 636.080i 0.417319 0.722818i
\(881\) −353.706 −0.401482 −0.200741 0.979644i \(-0.564335\pi\)
−0.200741 + 0.979644i \(0.564335\pi\)
\(882\) 0 0
\(883\) −1123.57 −1.27245 −0.636224 0.771504i \(-0.719505\pi\)
−0.636224 + 0.771504i \(0.719505\pi\)
\(884\) 1643.94 1129.13i 1.85966 1.27730i
\(885\) 0 0
\(886\) 630.698 + 1092.40i 0.711848 + 1.23296i
\(887\) 14.4433 + 25.0166i 0.0162834 + 0.0282036i 0.874052 0.485832i \(-0.161483\pi\)
−0.857769 + 0.514036i \(0.828150\pi\)
\(888\) 0 0
\(889\) −575.435 332.228i −0.647283 0.373709i
\(890\) −1660.60 −1.86584
\(891\) 0 0
\(892\) −686.821 −0.769979
\(893\) 272.953 + 157.590i 0.305659 + 0.176472i
\(894\) 0 0
\(895\) 766.417 442.491i 0.856332 0.494404i
\(896\) 597.576 + 1035.03i 0.666937 + 1.15517i
\(897\) 0 0
\(898\) −1670.20 964.292i −1.85991 1.07382i
\(899\) 132.304i 0.147168i
\(900\) 0 0
\(901\) 449.114 940.870i 0.498462 1.04425i
\(902\) 1293.54 + 746.824i 1.43408 + 0.827965i
\(903\) 0 0
\(904\) −114.192 + 65.9290i −0.126319 + 0.0729303i
\(905\) 2.90624 1.67792i 0.00321132 0.00185405i
\(906\) 0 0
\(907\) 1311.74 + 757.336i 1.44624 + 0.834990i 0.998255 0.0590488i \(-0.0188068\pi\)
0.447990 + 0.894039i \(0.352140\pi\)
\(908\) 167.826 0.184830
\(909\) 0 0
\(910\) 5098.82 5.60310
\(911\) −68.1335 + 118.011i −0.0747897 + 0.129540i −0.900995 0.433830i \(-0.857162\pi\)
0.826205 + 0.563369i \(0.190495\pi\)
\(912\) 0 0
\(913\) −39.7788 + 22.9663i −0.0435693 + 0.0251547i
\(914\) 2119.39 1223.63i 2.31881 1.33877i
\(915\) 0 0
\(916\) −1060.69 + 1837.16i −1.15796 + 2.00564i
\(917\) 307.918i 0.335789i
\(918\) 0 0
\(919\) −1224.19 −1.33209 −0.666046 0.745911i \(-0.732015\pi\)
−0.666046 + 0.745911i \(0.732015\pi\)
\(920\) 227.414 + 131.297i 0.247189 + 0.142715i
\(921\) 0 0
\(922\) −861.113 1491.49i −0.933962 1.61767i
\(923\) 110.887 + 192.061i 0.120137 + 0.208084i
\(924\) 0 0
\(925\) 483.679 + 279.252i 0.522896 + 0.301894i
\(926\) 239.999i 0.259178i
\(927\) 0 0
\(928\) 329.756i 0.355340i
\(929\) 403.664 699.167i 0.434515 0.752601i −0.562741 0.826633i \(-0.690253\pi\)
0.997256 + 0.0740317i \(0.0235866\pi\)
\(930\) 0 0
\(931\) −294.131 509.450i −0.315930 0.547207i
\(932\) 126.127 + 218.458i 0.135329 + 0.234397i
\(933\) 0 0
\(934\) −653.992 + 1132.75i −0.700205 + 1.21279i
\(935\) −1306.64 623.711i −1.39748 0.667070i
\(936\) 0 0
\(937\) 515.871 0.550556 0.275278 0.961365i \(-0.411230\pi\)
0.275278 + 0.961365i \(0.411230\pi\)
\(938\) 1050.90 1820.22i 1.12037 1.94053i
\(939\) 0 0
\(940\) −808.690 + 466.898i −0.860309 + 0.496700i
\(941\) 224.355 + 388.594i 0.238422 + 0.412959i 0.960262 0.279101i \(-0.0900365\pi\)
−0.721840 + 0.692060i \(0.756703\pi\)
\(942\) 0 0
\(943\) 178.948 309.948i 0.189765 0.328683i
\(944\) 760.578i 0.805697i
\(945\) 0 0
\(946\) 1794.50i 1.89693i
\(947\) −825.128 + 1429.16i −0.871307 + 1.50915i −0.0106617 + 0.999943i \(0.503394\pi\)
−0.860645 + 0.509205i \(0.829940\pi\)
\(948\) 0 0
\(949\) −654.975 + 378.150i −0.690173 + 0.398472i
\(950\) −1563.57 + 902.725i −1.64586 + 0.950237i
\(951\) 0 0
\(952\) 556.118 381.967i 0.584158 0.401226i
\(953\) 707.450i 0.742340i −0.928565 0.371170i \(-0.878957\pi\)
0.928565 0.371170i \(-0.121043\pi\)
\(954\) 0 0
\(955\) 1261.68i 1.32113i
\(956\) 1568.66 + 905.669i 1.64086 + 0.947352i
\(957\) 0 0
\(958\) −59.6313 + 34.4281i −0.0622456 + 0.0359375i
\(959\) 560.017 + 969.979i 0.583960 + 1.01145i
\(960\) 0 0
\(961\) −330.193 + 571.911i −0.343593 + 0.595120i
\(962\) −927.435 −0.964069
\(963\) 0 0
\(964\) 68.9958i 0.0715724i
\(965\) 1170.34 + 675.694i 1.21278 + 0.700201i
\(966\) 0 0
\(967\) −47.4516 82.1887i −0.0490710 0.0849934i 0.840447 0.541894i \(-0.182293\pi\)
−0.889518 + 0.456901i \(0.848959\pi\)
\(968\) 35.8238 20.6829i 0.0370081 0.0213666i
\(969\) 0 0
\(970\) 1281.28 2219.24i 1.32090 2.28787i
\(971\) 1370.65i 1.41159i 0.708417 + 0.705794i \(0.249410\pi\)
−0.708417 + 0.705794i \(0.750590\pi\)
\(972\) 0 0
\(973\) −864.385 −0.888371
\(974\) −777.585 + 1346.82i −0.798341 + 1.38277i
\(975\) 0 0
\(976\) −301.631 + 174.147i −0.309048 + 0.178429i
\(977\) 21.6395 12.4936i 0.0221489 0.0127877i −0.488885 0.872348i \(-0.662596\pi\)
0.511034 + 0.859561i \(0.329263\pi\)
\(978\) 0 0
\(979\) −613.084 353.964i −0.626235 0.361557i
\(980\) 1742.87 1.77844
\(981\) 0 0
\(982\) 433.706 0.441656
\(983\) −756.964 + 1311.10i −0.770055 + 1.33377i 0.167478 + 0.985876i \(0.446438\pi\)
−0.937532 + 0.347898i \(0.886896\pi\)
\(984\) 0 0
\(985\) 679.084 + 1176.21i 0.689425 + 1.19412i
\(986\) 395.933 31.0425i 0.401555 0.0314833i
\(987\) 0 0
\(988\) 859.301 1488.35i 0.869738 1.50643i
\(989\) −429.984 −0.434766
\(990\) 0 0
\(991\) 1110.97i 1.12106i −0.828133 0.560531i \(-0.810597\pi\)
0.828133 0.560531i \(-0.189403\pi\)
\(992\) −374.628 + 648.875i −0.377649 + 0.654107i
\(993\) 0 0
\(994\) 146.805 + 254.274i 0.147691 + 0.255809i
\(995\) 1006.33 581.005i 1.01139 0.583925i
\(996\) 0 0
\(997\) −16.8689 9.73925i −0.0169196 0.00976856i 0.491516 0.870868i \(-0.336443\pi\)
−0.508436 + 0.861100i \(0.669776\pi\)
\(998\) −571.516 −0.572661
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.i.a.305.5 68
3.2 odd 2 153.3.i.a.101.29 yes 68
9.4 even 3 153.3.i.a.50.30 yes 68
9.5 odd 6 inner 459.3.i.a.152.6 68
17.16 even 2 inner 459.3.i.a.305.6 68
51.50 odd 2 153.3.i.a.101.30 yes 68
153.50 odd 6 inner 459.3.i.a.152.5 68
153.67 even 6 153.3.i.a.50.29 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.29 68 153.67 even 6
153.3.i.a.50.30 yes 68 9.4 even 3
153.3.i.a.101.29 yes 68 3.2 odd 2
153.3.i.a.101.30 yes 68 51.50 odd 2
459.3.i.a.152.5 68 153.50 odd 6 inner
459.3.i.a.152.6 68 9.5 odd 6 inner
459.3.i.a.305.5 68 1.1 even 1 trivial
459.3.i.a.305.6 68 17.16 even 2 inner