Properties

Label 459.3.i.a.305.34
Level $459$
Weight $3$
Character 459.305
Analytic conductor $12.507$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(152,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.152"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.34
Character \(\chi\) \(=\) 459.305
Dual form 459.3.i.a.152.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.33588 + 1.92597i) q^{2} +(5.41875 + 9.38555i) q^{4} +(0.961073 + 1.66463i) q^{5} +(1.81586 + 1.04839i) q^{7} +26.3377i q^{8} +7.40400i q^{10} +(8.01476 - 13.8820i) q^{11} +(4.87777 + 8.44855i) q^{13} +(4.03833 + 6.99459i) q^{14} +(-29.0507 + 50.3174i) q^{16} +(-16.9068 - 1.77731i) q^{17} -4.56535 q^{19} +(-10.4156 + 18.0404i) q^{20} +(53.4727 - 30.8725i) q^{22} +(-10.8843 - 18.8521i) q^{23} +(10.6527 - 18.4510i) q^{25} +37.5778i q^{26} +22.7238i q^{28} +(-13.6294 + 23.6069i) q^{29} +(7.06013 - 4.07617i) q^{31} +(-102.583 + 59.2265i) q^{32} +(-52.9762 - 38.4910i) q^{34} +4.03030i q^{35} +59.8592i q^{37} +(-15.2295 - 8.79274i) q^{38} +(-43.8424 + 25.3125i) q^{40} +(-18.6406 - 32.2864i) q^{41} +(31.9800 - 55.3909i) q^{43} +173.720 q^{44} -83.8512i q^{46} +(49.9214 + 28.8221i) q^{47} +(-22.3018 - 38.6278i) q^{49} +(71.0722 - 41.0336i) q^{50} +(-52.8629 + 91.5612i) q^{52} -63.4712i q^{53} +30.8111 q^{55} +(-27.6121 + 47.8255i) q^{56} +(-90.9324 + 52.4999i) q^{58} +(-9.56077 + 5.51991i) q^{59} +(71.3234 + 41.1786i) q^{61} +31.4024 q^{62} -223.869 q^{64} +(-9.37578 + 16.2393i) q^{65} +(-15.9045 - 27.5475i) q^{67} +(-74.9330 - 168.311i) q^{68} +(-7.76225 + 13.4446i) q^{70} +108.385 q^{71} -9.85440i q^{73} +(-115.287 + 199.684i) q^{74} +(-24.7385 - 42.8483i) q^{76} +(29.1073 - 16.8051i) q^{77} +(-81.2952 - 46.9358i) q^{79} -111.679 q^{80} -143.605i q^{82} +(10.6690 + 6.15978i) q^{83} +(-13.2901 - 29.8517i) q^{85} +(213.363 - 123.185i) q^{86} +(365.620 + 211.091i) q^{88} +105.069i q^{89} +20.4551i q^{91} +(117.958 - 204.310i) q^{92} +(111.021 + 192.295i) q^{94} +(-4.38763 - 7.59960i) q^{95} +(-106.994 - 61.7732i) q^{97} -171.811i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 62 q^{4} - 2 q^{13} - 106 q^{16} - 32 q^{19} - 132 q^{25} - 27 q^{34} + 102 q^{38} + 58 q^{43} + 312 q^{47} + 152 q^{49} + 90 q^{50} + 70 q^{52} + 92 q^{55} + 258 q^{59} - 16 q^{64} + 82 q^{67}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.33588 + 1.92597i 1.66794 + 0.962987i 0.968745 + 0.248058i \(0.0797924\pi\)
0.699197 + 0.714929i \(0.253541\pi\)
\(3\) 0 0
\(4\) 5.41875 + 9.38555i 1.35469 + 2.34639i
\(5\) 0.961073 + 1.66463i 0.192215 + 0.332925i 0.945984 0.324214i \(-0.105100\pi\)
−0.753769 + 0.657139i \(0.771766\pi\)
\(6\) 0 0
\(7\) 1.81586 + 1.04839i 0.259408 + 0.149769i 0.624065 0.781373i \(-0.285480\pi\)
−0.364656 + 0.931142i \(0.618814\pi\)
\(8\) 26.3377i 3.29221i
\(9\) 0 0
\(10\) 7.40400i 0.740400i
\(11\) 8.01476 13.8820i 0.728615 1.26200i −0.228854 0.973461i \(-0.573498\pi\)
0.957469 0.288537i \(-0.0931689\pi\)
\(12\) 0 0
\(13\) 4.87777 + 8.44855i 0.375213 + 0.649888i 0.990359 0.138525i \(-0.0442362\pi\)
−0.615146 + 0.788413i \(0.710903\pi\)
\(14\) 4.03833 + 6.99459i 0.288452 + 0.499613i
\(15\) 0 0
\(16\) −29.0507 + 50.3174i −1.81567 + 3.14483i
\(17\) −16.9068 1.77731i −0.994520 0.104547i
\(18\) 0 0
\(19\) −4.56535 −0.240282 −0.120141 0.992757i \(-0.538335\pi\)
−0.120141 + 0.992757i \(0.538335\pi\)
\(20\) −10.4156 + 18.0404i −0.520781 + 0.902020i
\(21\) 0 0
\(22\) 53.4727 30.8725i 2.43058 1.40329i
\(23\) −10.8843 18.8521i −0.473229 0.819656i 0.526302 0.850298i \(-0.323578\pi\)
−0.999530 + 0.0306416i \(0.990245\pi\)
\(24\) 0 0
\(25\) 10.6527 18.4510i 0.426107 0.738039i
\(26\) 37.5778i 1.44530i
\(27\) 0 0
\(28\) 22.7238i 0.811563i
\(29\) −13.6294 + 23.6069i −0.469980 + 0.814030i −0.999411 0.0343235i \(-0.989072\pi\)
0.529430 + 0.848353i \(0.322406\pi\)
\(30\) 0 0
\(31\) 7.06013 4.07617i 0.227746 0.131489i −0.381786 0.924251i \(-0.624691\pi\)
0.609532 + 0.792762i \(0.291357\pi\)
\(32\) −102.583 + 59.2265i −3.20573 + 1.85083i
\(33\) 0 0
\(34\) −52.9762 38.4910i −1.55812 1.13209i
\(35\) 4.03030i 0.115151i
\(36\) 0 0
\(37\) 59.8592i 1.61782i 0.587934 + 0.808909i \(0.299941\pi\)
−0.587934 + 0.808909i \(0.700059\pi\)
\(38\) −15.2295 8.79274i −0.400776 0.231388i
\(39\) 0 0
\(40\) −43.8424 + 25.3125i −1.09606 + 0.632811i
\(41\) −18.6406 32.2864i −0.454648 0.787473i 0.544020 0.839072i \(-0.316901\pi\)
−0.998668 + 0.0515992i \(0.983568\pi\)
\(42\) 0 0
\(43\) 31.9800 55.3909i 0.743720 1.28816i −0.207070 0.978326i \(-0.566393\pi\)
0.950790 0.309835i \(-0.100274\pi\)
\(44\) 173.720 3.94818
\(45\) 0 0
\(46\) 83.8512i 1.82285i
\(47\) 49.9214 + 28.8221i 1.06216 + 0.613237i 0.926028 0.377455i \(-0.123201\pi\)
0.136129 + 0.990691i \(0.456534\pi\)
\(48\) 0 0
\(49\) −22.3018 38.6278i −0.455138 0.788323i
\(50\) 71.0722 41.0336i 1.42144 0.820671i
\(51\) 0 0
\(52\) −52.8629 + 91.5612i −1.01659 + 1.76079i
\(53\) 63.4712i 1.19757i −0.800910 0.598785i \(-0.795650\pi\)
0.800910 0.598785i \(-0.204350\pi\)
\(54\) 0 0
\(55\) 30.8111 0.560201
\(56\) −27.6121 + 47.8255i −0.493073 + 0.854027i
\(57\) 0 0
\(58\) −90.9324 + 52.4999i −1.56780 + 0.905170i
\(59\) −9.56077 + 5.51991i −0.162047 + 0.0935579i −0.578830 0.815448i \(-0.696491\pi\)
0.416783 + 0.909006i \(0.363157\pi\)
\(60\) 0 0
\(61\) 71.3234 + 41.1786i 1.16924 + 0.675059i 0.953500 0.301392i \(-0.0974514\pi\)
0.215737 + 0.976452i \(0.430785\pi\)
\(62\) 31.4024 0.506490
\(63\) 0 0
\(64\) −223.869 −3.49795
\(65\) −9.37578 + 16.2393i −0.144243 + 0.249836i
\(66\) 0 0
\(67\) −15.9045 27.5475i −0.237381 0.411157i 0.722581 0.691287i \(-0.242956\pi\)
−0.959962 + 0.280130i \(0.909622\pi\)
\(68\) −74.9330 168.311i −1.10196 2.47516i
\(69\) 0 0
\(70\) −7.76225 + 13.4446i −0.110889 + 0.192066i
\(71\) 108.385 1.52655 0.763275 0.646074i \(-0.223590\pi\)
0.763275 + 0.646074i \(0.223590\pi\)
\(72\) 0 0
\(73\) 9.85440i 0.134992i −0.997720 0.0674959i \(-0.978499\pi\)
0.997720 0.0674959i \(-0.0215009\pi\)
\(74\) −115.287 + 199.684i −1.55794 + 2.69843i
\(75\) 0 0
\(76\) −24.7385 42.8483i −0.325506 0.563794i
\(77\) 29.1073 16.8051i 0.378017 0.218248i
\(78\) 0 0
\(79\) −81.2952 46.9358i −1.02905 0.594124i −0.112340 0.993670i \(-0.535835\pi\)
−0.916713 + 0.399546i \(0.869168\pi\)
\(80\) −111.679 −1.39599
\(81\) 0 0
\(82\) 143.605i 1.75128i
\(83\) 10.6690 + 6.15978i 0.128543 + 0.0742142i 0.562893 0.826530i \(-0.309688\pi\)
−0.434350 + 0.900744i \(0.643022\pi\)
\(84\) 0 0
\(85\) −13.2901 29.8517i −0.156355 0.351196i
\(86\) 213.363 123.185i 2.48097 1.43239i
\(87\) 0 0
\(88\) 365.620 + 211.091i 4.15477 + 2.39876i
\(89\) 105.069i 1.18056i 0.807200 + 0.590278i \(0.200982\pi\)
−0.807200 + 0.590278i \(0.799018\pi\)
\(90\) 0 0
\(91\) 20.4551i 0.224782i
\(92\) 117.958 204.310i 1.28215 2.22076i
\(93\) 0 0
\(94\) 111.021 + 192.295i 1.18108 + 2.04569i
\(95\) −4.38763 7.59960i −0.0461856 0.0799958i
\(96\) 0 0
\(97\) −106.994 61.7732i −1.10303 0.636837i −0.166018 0.986123i \(-0.553091\pi\)
−0.937016 + 0.349286i \(0.886424\pi\)
\(98\) 171.811i 1.75317i
\(99\) 0 0
\(100\) 230.897 2.30897
\(101\) 118.803 + 68.5907i 1.17626 + 0.679116i 0.955147 0.296132i \(-0.0956967\pi\)
0.221116 + 0.975248i \(0.429030\pi\)
\(102\) 0 0
\(103\) −12.5477 21.7332i −0.121822 0.211002i 0.798664 0.601777i \(-0.205540\pi\)
−0.920486 + 0.390775i \(0.872207\pi\)
\(104\) −222.515 + 128.469i −2.13957 + 1.23528i
\(105\) 0 0
\(106\) 122.244 211.733i 1.15324 1.99748i
\(107\) −66.3062 −0.619684 −0.309842 0.950788i \(-0.600276\pi\)
−0.309842 + 0.950788i \(0.600276\pi\)
\(108\) 0 0
\(109\) 80.7042i 0.740405i −0.928951 0.370203i \(-0.879288\pi\)
0.928951 0.370203i \(-0.120712\pi\)
\(110\) 102.782 + 59.3413i 0.934384 + 0.539467i
\(111\) 0 0
\(112\) −105.504 + 60.9127i −0.942000 + 0.543864i
\(113\) 3.56143 + 6.16858i 0.0315171 + 0.0545892i 0.881354 0.472457i \(-0.156633\pi\)
−0.849837 + 0.527046i \(0.823299\pi\)
\(114\) 0 0
\(115\) 20.9211 36.2365i 0.181923 0.315100i
\(116\) −295.418 −2.54671
\(117\) 0 0
\(118\) −42.5248 −0.360380
\(119\) −28.8371 20.9522i −0.242329 0.176069i
\(120\) 0 0
\(121\) −67.9729 117.733i −0.561760 0.972996i
\(122\) 158.618 + 274.734i 1.30015 + 2.25192i
\(123\) 0 0
\(124\) 76.5142 + 44.1755i 0.617050 + 0.356254i
\(125\) 89.0056 0.712045
\(126\) 0 0
\(127\) −98.0581 −0.772111 −0.386055 0.922476i \(-0.626163\pi\)
−0.386055 + 0.922476i \(0.626163\pi\)
\(128\) −336.468 194.260i −2.62866 1.51765i
\(129\) 0 0
\(130\) −62.5531 + 36.1150i −0.481178 + 0.277808i
\(131\) −40.8758 70.7990i −0.312029 0.540451i 0.666772 0.745262i \(-0.267675\pi\)
−0.978802 + 0.204811i \(0.934342\pi\)
\(132\) 0 0
\(133\) −8.29002 4.78625i −0.0623310 0.0359868i
\(134\) 122.527i 0.914381i
\(135\) 0 0
\(136\) 46.8102 445.287i 0.344193 3.27417i
\(137\) −196.073 113.203i −1.43119 0.826298i −0.433978 0.900924i \(-0.642890\pi\)
−0.997212 + 0.0746261i \(0.976224\pi\)
\(138\) 0 0
\(139\) 7.63297 4.40690i 0.0549134 0.0317043i −0.472292 0.881442i \(-0.656573\pi\)
0.527205 + 0.849738i \(0.323240\pi\)
\(140\) −37.8266 + 21.8392i −0.270190 + 0.155994i
\(141\) 0 0
\(142\) 361.560 + 208.747i 2.54620 + 1.47005i
\(143\) 156.377 1.09354
\(144\) 0 0
\(145\) −52.3955 −0.361348
\(146\) 18.9793 32.8731i 0.129995 0.225158i
\(147\) 0 0
\(148\) −561.812 + 324.362i −3.79603 + 2.19164i
\(149\) −75.3329 + 43.4935i −0.505590 + 0.291903i −0.731019 0.682357i \(-0.760955\pi\)
0.225429 + 0.974260i \(0.427622\pi\)
\(150\) 0 0
\(151\) 31.4150 54.4124i 0.208047 0.360347i −0.743053 0.669233i \(-0.766623\pi\)
0.951099 + 0.308886i \(0.0999561\pi\)
\(152\) 120.241i 0.791058i
\(153\) 0 0
\(154\) 129.465 0.840681
\(155\) 13.5706 + 7.83499i 0.0875523 + 0.0505483i
\(156\) 0 0
\(157\) 74.2135 + 128.541i 0.472697 + 0.818736i 0.999512 0.0312447i \(-0.00994711\pi\)
−0.526815 + 0.849980i \(0.676614\pi\)
\(158\) −180.794 313.145i −1.14427 1.98193i
\(159\) 0 0
\(160\) −197.180 113.842i −1.23238 0.711512i
\(161\) 45.6436i 0.283501i
\(162\) 0 0
\(163\) 127.596i 0.782796i 0.920221 + 0.391398i \(0.128008\pi\)
−0.920221 + 0.391398i \(0.871992\pi\)
\(164\) 202.017 349.904i 1.23181 2.13356i
\(165\) 0 0
\(166\) 23.7271 + 41.0966i 0.142935 + 0.247570i
\(167\) 18.9481 + 32.8191i 0.113462 + 0.196522i 0.917164 0.398510i \(-0.130473\pi\)
−0.803702 + 0.595032i \(0.797139\pi\)
\(168\) 0 0
\(169\) 36.9147 63.9381i 0.218430 0.378332i
\(170\) 13.1592 125.178i 0.0774070 0.736343i
\(171\) 0 0
\(172\) 693.166 4.03004
\(173\) −129.833 + 224.877i −0.750478 + 1.29987i 0.197113 + 0.980381i \(0.436843\pi\)
−0.947591 + 0.319485i \(0.896490\pi\)
\(174\) 0 0
\(175\) 38.6875 22.3362i 0.221071 0.127636i
\(176\) 465.670 + 806.563i 2.64585 + 4.58275i
\(177\) 0 0
\(178\) −202.361 + 350.500i −1.13686 + 1.96910i
\(179\) 245.745i 1.37288i 0.727188 + 0.686439i \(0.240827\pi\)
−0.727188 + 0.686439i \(0.759173\pi\)
\(180\) 0 0
\(181\) 77.0628i 0.425761i −0.977078 0.212881i \(-0.931715\pi\)
0.977078 0.212881i \(-0.0682845\pi\)
\(182\) −39.3961 + 68.2360i −0.216462 + 0.374923i
\(183\) 0 0
\(184\) 496.521 286.667i 2.69848 1.55797i
\(185\) −99.6433 + 57.5291i −0.538612 + 0.310968i
\(186\) 0 0
\(187\) −160.177 + 220.456i −0.856561 + 1.17891i
\(188\) 624.720i 3.32298i
\(189\) 0 0
\(190\) 33.8019i 0.177905i
\(191\) 30.8485 + 17.8104i 0.161511 + 0.0932482i 0.578577 0.815628i \(-0.303608\pi\)
−0.417066 + 0.908876i \(0.636942\pi\)
\(192\) 0 0
\(193\) 155.857 89.9842i 0.807550 0.466239i −0.0385544 0.999257i \(-0.512275\pi\)
0.846104 + 0.533017i \(0.178942\pi\)
\(194\) −237.947 412.137i −1.22653 2.12442i
\(195\) 0 0
\(196\) 241.696 418.629i 1.23314 2.13586i
\(197\) −248.804 −1.26297 −0.631483 0.775390i \(-0.717553\pi\)
−0.631483 + 0.775390i \(0.717553\pi\)
\(198\) 0 0
\(199\) 197.747i 0.993705i 0.867835 + 0.496852i \(0.165511\pi\)
−0.867835 + 0.496852i \(0.834489\pi\)
\(200\) 485.957 + 280.567i 2.42978 + 1.40284i
\(201\) 0 0
\(202\) 264.208 + 457.621i 1.30796 + 2.26545i
\(203\) −49.4982 + 28.5778i −0.243833 + 0.140777i
\(204\) 0 0
\(205\) 35.8299 62.0591i 0.174780 0.302727i
\(206\) 96.6661i 0.469253i
\(207\) 0 0
\(208\) −566.811 −2.72505
\(209\) −36.5902 + 63.3761i −0.175073 + 0.303235i
\(210\) 0 0
\(211\) 79.4854 45.8909i 0.376708 0.217492i −0.299677 0.954041i \(-0.596879\pi\)
0.676385 + 0.736548i \(0.263546\pi\)
\(212\) 595.712 343.935i 2.80996 1.62233i
\(213\) 0 0
\(214\) −221.190 127.704i −1.03360 0.596748i
\(215\) 122.940 0.571815
\(216\) 0 0
\(217\) 17.0936 0.0787723
\(218\) 155.434 269.220i 0.713001 1.23495i
\(219\) 0 0
\(220\) 166.958 + 289.179i 0.758898 + 1.31445i
\(221\) −67.4520 151.508i −0.305213 0.685554i
\(222\) 0 0
\(223\) −120.868 + 209.350i −0.542011 + 0.938790i 0.456778 + 0.889581i \(0.349003\pi\)
−0.998789 + 0.0492090i \(0.984330\pi\)
\(224\) −248.369 −1.10879
\(225\) 0 0
\(226\) 27.4369i 0.121402i
\(227\) −134.892 + 233.640i −0.594238 + 1.02925i 0.399416 + 0.916770i \(0.369213\pi\)
−0.993654 + 0.112480i \(0.964121\pi\)
\(228\) 0 0
\(229\) −177.933 308.190i −0.777002 1.34581i −0.933662 0.358154i \(-0.883406\pi\)
0.156661 0.987653i \(-0.449927\pi\)
\(230\) 139.581 80.5871i 0.606874 0.350379i
\(231\) 0 0
\(232\) −621.751 358.968i −2.67996 1.54728i
\(233\) 219.973 0.944089 0.472044 0.881575i \(-0.343516\pi\)
0.472044 + 0.881575i \(0.343516\pi\)
\(234\) 0 0
\(235\) 110.801i 0.471492i
\(236\) −103.615 59.8221i −0.439046 0.253483i
\(237\) 0 0
\(238\) −55.8438 125.434i −0.234638 0.527032i
\(239\) −138.734 + 80.0979i −0.580475 + 0.335138i −0.761322 0.648374i \(-0.775449\pi\)
0.180847 + 0.983511i \(0.442116\pi\)
\(240\) 0 0
\(241\) −9.30503 5.37226i −0.0386101 0.0222915i 0.480571 0.876956i \(-0.340430\pi\)
−0.519181 + 0.854664i \(0.673763\pi\)
\(242\) 523.656i 2.16387i
\(243\) 0 0
\(244\) 892.547i 3.65798i
\(245\) 42.8672 74.2483i 0.174968 0.303054i
\(246\) 0 0
\(247\) −22.2687 38.5706i −0.0901568 0.156156i
\(248\) 107.357 + 185.948i 0.432891 + 0.749789i
\(249\) 0 0
\(250\) 296.912 + 171.423i 1.18765 + 0.685690i
\(251\) 186.042i 0.741202i −0.928792 0.370601i \(-0.879152\pi\)
0.928792 0.370601i \(-0.120848\pi\)
\(252\) 0 0
\(253\) −348.939 −1.37921
\(254\) −327.110 188.857i −1.28784 0.743533i
\(255\) 0 0
\(256\) −300.541 520.552i −1.17399 2.03341i
\(257\) −95.1663 + 54.9443i −0.370297 + 0.213791i −0.673588 0.739107i \(-0.735248\pi\)
0.303291 + 0.952898i \(0.401914\pi\)
\(258\) 0 0
\(259\) −62.7556 + 108.696i −0.242299 + 0.419675i
\(260\) −203.220 −0.781616
\(261\) 0 0
\(262\) 314.903i 1.20192i
\(263\) −74.0287 42.7405i −0.281478 0.162511i 0.352614 0.935769i \(-0.385293\pi\)
−0.634092 + 0.773257i \(0.718626\pi\)
\(264\) 0 0
\(265\) 105.656 61.0004i 0.398701 0.230190i
\(266\) −18.4364 31.9327i −0.0693097 0.120048i
\(267\) 0 0
\(268\) 172.366 298.546i 0.643155 1.11398i
\(269\) 189.782 0.705509 0.352754 0.935716i \(-0.385245\pi\)
0.352754 + 0.935716i \(0.385245\pi\)
\(270\) 0 0
\(271\) −292.531 −1.07945 −0.539725 0.841842i \(-0.681472\pi\)
−0.539725 + 0.841842i \(0.681472\pi\)
\(272\) 580.585 799.075i 2.13451 2.93778i
\(273\) 0 0
\(274\) −436.051 755.263i −1.59143 2.75643i
\(275\) −170.757 295.761i −0.620936 1.07549i
\(276\) 0 0
\(277\) −113.202 65.3572i −0.408672 0.235947i 0.281547 0.959547i \(-0.409152\pi\)
−0.690219 + 0.723601i \(0.742486\pi\)
\(278\) 33.9503 0.122123
\(279\) 0 0
\(280\) −106.149 −0.379103
\(281\) −241.275 139.300i −0.858629 0.495730i 0.00492381 0.999988i \(-0.498433\pi\)
−0.863553 + 0.504258i \(0.831766\pi\)
\(282\) 0 0
\(283\) −378.741 + 218.666i −1.33831 + 0.772672i −0.986556 0.163421i \(-0.947747\pi\)
−0.351752 + 0.936093i \(0.614414\pi\)
\(284\) 587.311 + 1017.25i 2.06800 + 3.58188i
\(285\) 0 0
\(286\) 521.655 + 301.178i 1.82397 + 1.05307i
\(287\) 78.1700i 0.272369i
\(288\) 0 0
\(289\) 282.682 + 60.0973i 0.978140 + 0.207949i
\(290\) −174.785 100.912i −0.602708 0.347974i
\(291\) 0 0
\(292\) 92.4890 53.3985i 0.316743 0.182872i
\(293\) −226.129 + 130.556i −0.771771 + 0.445582i −0.833506 0.552510i \(-0.813670\pi\)
0.0617350 + 0.998093i \(0.480337\pi\)
\(294\) 0 0
\(295\) −18.3772 10.6101i −0.0622956 0.0359664i
\(296\) −1576.56 −5.32620
\(297\) 0 0
\(298\) −335.069 −1.12439
\(299\) 106.182 183.912i 0.355123 0.615092i
\(300\) 0 0
\(301\) 116.142 67.0547i 0.385854 0.222773i
\(302\) 209.594 121.009i 0.694019 0.400692i
\(303\) 0 0
\(304\) 132.627 229.716i 0.436272 0.755646i
\(305\) 158.303i 0.519025i
\(306\) 0 0
\(307\) 235.917 0.768458 0.384229 0.923238i \(-0.374467\pi\)
0.384229 + 0.923238i \(0.374467\pi\)
\(308\) 315.451 + 182.126i 1.02419 + 0.591317i
\(309\) 0 0
\(310\) 30.1800 + 52.2733i 0.0973548 + 0.168623i
\(311\) 192.749 + 333.851i 0.619772 + 1.07348i 0.989527 + 0.144347i \(0.0461081\pi\)
−0.369756 + 0.929129i \(0.620559\pi\)
\(312\) 0 0
\(313\) −201.048 116.075i −0.642325 0.370847i 0.143185 0.989696i \(-0.454266\pi\)
−0.785510 + 0.618849i \(0.787599\pi\)
\(314\) 571.733i 1.82081i
\(315\) 0 0
\(316\) 1017.33i 3.21941i
\(317\) −197.964 + 342.883i −0.624491 + 1.08165i 0.364148 + 0.931341i \(0.381360\pi\)
−0.988639 + 0.150309i \(0.951973\pi\)
\(318\) 0 0
\(319\) 218.473 + 378.407i 0.684869 + 1.18623i
\(320\) −215.154 372.658i −0.672357 1.16456i
\(321\) 0 0
\(322\) 87.9084 152.262i 0.273008 0.472863i
\(323\) 77.1856 + 8.11403i 0.238965 + 0.0251208i
\(324\) 0 0
\(325\) 207.845 0.639524
\(326\) −245.746 + 425.645i −0.753823 + 1.30566i
\(327\) 0 0
\(328\) 850.350 490.950i 2.59253 1.49680i
\(329\) 60.4334 + 104.674i 0.183688 + 0.318157i
\(330\) 0 0
\(331\) −32.3946 + 56.1092i −0.0978690 + 0.169514i −0.910802 0.412843i \(-0.864536\pi\)
0.812933 + 0.582357i \(0.197869\pi\)
\(332\) 133.513i 0.402148i
\(333\) 0 0
\(334\) 145.974i 0.437049i
\(335\) 30.5709 52.9503i 0.0912563 0.158061i
\(336\) 0 0
\(337\) 305.223 176.221i 0.905706 0.522910i 0.0266590 0.999645i \(-0.491513\pi\)
0.879047 + 0.476735i \(0.158180\pi\)
\(338\) 246.286 142.193i 0.728658 0.420691i
\(339\) 0 0
\(340\) 208.159 286.494i 0.612231 0.842630i
\(341\) 130.678i 0.383220i
\(342\) 0 0
\(343\) 196.265i 0.572202i
\(344\) 1458.87 + 842.279i 4.24090 + 2.44849i
\(345\) 0 0
\(346\) −866.214 + 500.109i −2.50351 + 1.44540i
\(347\) −261.090 452.222i −0.752422 1.30323i −0.946646 0.322276i \(-0.895552\pi\)
0.194224 0.980957i \(-0.437781\pi\)
\(348\) 0 0
\(349\) −117.864 + 204.146i −0.337718 + 0.584945i −0.984003 0.178151i \(-0.942988\pi\)
0.646285 + 0.763096i \(0.276322\pi\)
\(350\) 172.076 0.491646
\(351\) 0 0
\(352\) 1898.75i 5.39417i
\(353\) −588.207 339.601i −1.66631 0.962043i −0.969602 0.244686i \(-0.921315\pi\)
−0.696705 0.717357i \(-0.745351\pi\)
\(354\) 0 0
\(355\) 104.166 + 180.421i 0.293425 + 0.508227i
\(356\) −986.135 + 569.345i −2.77004 + 1.59928i
\(357\) 0 0
\(358\) −473.298 + 819.777i −1.32206 + 2.28988i
\(359\) 147.407i 0.410604i −0.978699 0.205302i \(-0.934182\pi\)
0.978699 0.205302i \(-0.0658177\pi\)
\(360\) 0 0
\(361\) −340.158 −0.942265
\(362\) 148.421 257.073i 0.410002 0.710145i
\(363\) 0 0
\(364\) −191.983 + 110.841i −0.527425 + 0.304509i
\(365\) 16.4039 9.47079i 0.0449422 0.0259474i
\(366\) 0 0
\(367\) 86.7223 + 50.0691i 0.236301 + 0.136428i 0.613475 0.789714i \(-0.289771\pi\)
−0.377175 + 0.926142i \(0.623104\pi\)
\(368\) 1264.78 3.43691
\(369\) 0 0
\(370\) −443.198 −1.19783
\(371\) 66.5423 115.255i 0.179359 0.310659i
\(372\) 0 0
\(373\) −192.174 332.856i −0.515213 0.892375i −0.999844 0.0176561i \(-0.994380\pi\)
0.484631 0.874718i \(-0.338954\pi\)
\(374\) −958.923 + 426.918i −2.56397 + 1.14149i
\(375\) 0 0
\(376\) −759.109 + 1314.81i −2.01891 + 3.49685i
\(377\) −265.925 −0.705371
\(378\) 0 0
\(379\) 169.020i 0.445963i −0.974823 0.222982i \(-0.928421\pi\)
0.974823 0.222982i \(-0.0715790\pi\)
\(380\) 47.5510 82.3607i 0.125134 0.216739i
\(381\) 0 0
\(382\) 68.6048 + 118.827i 0.179594 + 0.311065i
\(383\) 108.614 62.7085i 0.283588 0.163730i −0.351459 0.936203i \(-0.614314\pi\)
0.635047 + 0.772474i \(0.280981\pi\)
\(384\) 0 0
\(385\) 55.9485 + 32.3019i 0.145321 + 0.0839010i
\(386\) 693.229 1.79593
\(387\) 0 0
\(388\) 1338.93i 3.45086i
\(389\) −140.793 81.2868i −0.361936 0.208964i 0.307994 0.951388i \(-0.400342\pi\)
−0.669929 + 0.742425i \(0.733676\pi\)
\(390\) 0 0
\(391\) 150.513 + 338.074i 0.384943 + 0.864639i
\(392\) 1017.37 587.378i 2.59533 1.49841i
\(393\) 0 0
\(394\) −829.982 479.190i −2.10655 1.21622i
\(395\) 180.435i 0.456797i
\(396\) 0 0
\(397\) 377.627i 0.951202i 0.879661 + 0.475601i \(0.157769\pi\)
−0.879661 + 0.475601i \(0.842231\pi\)
\(398\) −380.856 + 659.662i −0.956925 + 1.65744i
\(399\) 0 0
\(400\) 618.936 + 1072.03i 1.54734 + 2.68007i
\(401\) 110.447 + 191.299i 0.275428 + 0.477055i 0.970243 0.242133i \(-0.0778471\pi\)
−0.694815 + 0.719189i \(0.744514\pi\)
\(402\) 0 0
\(403\) 68.8754 + 39.7653i 0.170907 + 0.0986731i
\(404\) 1486.70i 3.67996i
\(405\) 0 0
\(406\) −220.160 −0.542267
\(407\) 830.965 + 479.758i 2.04168 + 1.17877i
\(408\) 0 0
\(409\) 56.8884 + 98.5336i 0.139091 + 0.240914i 0.927153 0.374683i \(-0.122248\pi\)
−0.788061 + 0.615597i \(0.788915\pi\)
\(410\) 239.049 138.015i 0.583045 0.336621i
\(411\) 0 0
\(412\) 135.986 235.534i 0.330062 0.571684i
\(413\) −23.1480 −0.0560484
\(414\) 0 0
\(415\) 23.6800i 0.0570602i
\(416\) −1000.76 577.787i −2.40566 1.38891i
\(417\) 0 0
\(418\) −244.121 + 140.944i −0.584022 + 0.337185i
\(419\) 16.3853 + 28.3801i 0.0391056 + 0.0677329i 0.884916 0.465751i \(-0.154216\pi\)
−0.845810 + 0.533484i \(0.820882\pi\)
\(420\) 0 0
\(421\) −28.3823 + 49.1596i −0.0674164 + 0.116769i −0.897763 0.440478i \(-0.854809\pi\)
0.830347 + 0.557247i \(0.188142\pi\)
\(422\) 353.539 0.837769
\(423\) 0 0
\(424\) 1671.69 3.94265
\(425\) −212.896 + 293.015i −0.500932 + 0.689446i
\(426\) 0 0
\(427\) 86.3421 + 149.549i 0.202206 + 0.350232i
\(428\) −359.297 622.321i −0.839479 1.45402i
\(429\) 0 0
\(430\) 410.115 + 236.780i 0.953755 + 0.550651i
\(431\) 556.302 1.29072 0.645362 0.763877i \(-0.276707\pi\)
0.645362 + 0.763877i \(0.276707\pi\)
\(432\) 0 0
\(433\) 471.902 1.08984 0.544921 0.838487i \(-0.316560\pi\)
0.544921 + 0.838487i \(0.316560\pi\)
\(434\) 57.0223 + 32.9218i 0.131388 + 0.0758567i
\(435\) 0 0
\(436\) 757.454 437.316i 1.73728 1.00302i
\(437\) 49.6905 + 86.0664i 0.113708 + 0.196948i
\(438\) 0 0
\(439\) 79.8932 + 46.1264i 0.181989 + 0.105071i 0.588227 0.808696i \(-0.299826\pi\)
−0.406238 + 0.913767i \(0.633160\pi\)
\(440\) 811.493i 1.84430i
\(441\) 0 0
\(442\) 66.7874 635.323i 0.151103 1.43738i
\(443\) −100.591 58.0764i −0.227069 0.131098i 0.382150 0.924100i \(-0.375184\pi\)
−0.609219 + 0.793002i \(0.708517\pi\)
\(444\) 0 0
\(445\) −174.901 + 100.979i −0.393037 + 0.226920i
\(446\) −806.406 + 465.579i −1.80808 + 1.04390i
\(447\) 0 0
\(448\) −406.514 234.701i −0.907397 0.523886i
\(449\) 489.480 1.09016 0.545078 0.838385i \(-0.316500\pi\)
0.545078 + 0.838385i \(0.316500\pi\)
\(450\) 0 0
\(451\) −597.599 −1.32505
\(452\) −38.5971 + 66.8521i −0.0853917 + 0.147903i
\(453\) 0 0
\(454\) −899.968 + 519.597i −1.98231 + 1.14449i
\(455\) −34.0502 + 19.6589i −0.0748355 + 0.0432063i
\(456\) 0 0
\(457\) 192.068 332.672i 0.420280 0.727947i −0.575686 0.817671i \(-0.695265\pi\)
0.995967 + 0.0897236i \(0.0285984\pi\)
\(458\) 1370.78i 2.99297i
\(459\) 0 0
\(460\) 453.466 0.985795
\(461\) 175.353 + 101.240i 0.380375 + 0.219610i 0.677981 0.735079i \(-0.262855\pi\)
−0.297606 + 0.954689i \(0.596188\pi\)
\(462\) 0 0
\(463\) 52.1867 + 90.3901i 0.112714 + 0.195227i 0.916864 0.399200i \(-0.130712\pi\)
−0.804149 + 0.594427i \(0.797379\pi\)
\(464\) −791.890 1371.59i −1.70666 2.95602i
\(465\) 0 0
\(466\) 733.804 + 423.662i 1.57469 + 0.909145i
\(467\) 791.486i 1.69483i 0.530930 + 0.847416i \(0.321843\pi\)
−0.530930 + 0.847416i \(0.678157\pi\)
\(468\) 0 0
\(469\) 66.6964i 0.142210i
\(470\) −213.399 + 369.618i −0.454041 + 0.786421i
\(471\) 0 0
\(472\) −145.382 251.809i −0.308013 0.533493i
\(473\) −512.624 887.891i −1.08377 1.87715i
\(474\) 0 0
\(475\) −48.6332 + 84.2352i −0.102386 + 0.177337i
\(476\) 40.3871 384.187i 0.0848468 0.807116i
\(477\) 0 0
\(478\) −617.066 −1.29093
\(479\) −11.1736 + 19.3533i −0.0233270 + 0.0404035i −0.877453 0.479662i \(-0.840759\pi\)
0.854126 + 0.520066i \(0.174093\pi\)
\(480\) 0 0
\(481\) −505.724 + 291.980i −1.05140 + 0.607026i
\(482\) −20.6937 35.8425i −0.0429329 0.0743620i
\(483\) 0 0
\(484\) 736.657 1275.93i 1.52202 2.63621i
\(485\) 237.474i 0.489637i
\(486\) 0 0
\(487\) 186.736i 0.383441i 0.981450 + 0.191721i \(0.0614067\pi\)
−0.981450 + 0.191721i \(0.938593\pi\)
\(488\) −1084.55 + 1878.50i −2.22244 + 3.84938i
\(489\) 0 0
\(490\) 286.000 165.122i 0.583674 0.336985i
\(491\) 403.887 233.184i 0.822581 0.474917i −0.0287247 0.999587i \(-0.509145\pi\)
0.851306 + 0.524670i \(0.175811\pi\)
\(492\) 0 0
\(493\) 272.387 374.894i 0.552510 0.760434i
\(494\) 171.556i 0.347279i
\(495\) 0 0
\(496\) 473.663i 0.954966i
\(497\) 196.812 + 113.629i 0.395999 + 0.228630i
\(498\) 0 0
\(499\) 261.353 150.892i 0.523753 0.302389i −0.214716 0.976677i \(-0.568883\pi\)
0.738469 + 0.674288i \(0.235549\pi\)
\(500\) 482.299 + 835.367i 0.964599 + 1.67073i
\(501\) 0 0
\(502\) 358.312 620.614i 0.713768 1.23628i
\(503\) 181.984 0.361798 0.180899 0.983502i \(-0.442099\pi\)
0.180899 + 0.983502i \(0.442099\pi\)
\(504\) 0 0
\(505\) 263.683i 0.522144i
\(506\) −1164.02 672.048i −2.30044 1.32816i
\(507\) 0 0
\(508\) −531.352 920.329i −1.04597 1.81167i
\(509\) 100.063 57.7716i 0.196588 0.113500i −0.398475 0.917179i \(-0.630460\pi\)
0.595063 + 0.803679i \(0.297127\pi\)
\(510\) 0 0
\(511\) 10.3312 17.8942i 0.0202176 0.0350180i
\(512\) 761.256i 1.48683i
\(513\) 0 0
\(514\) −423.285 −0.823512
\(515\) 24.1185 41.7744i 0.0468320 0.0811154i
\(516\) 0 0
\(517\) 800.216 462.005i 1.54781 0.893627i
\(518\) −418.691 + 241.731i −0.808283 + 0.466662i
\(519\) 0 0
\(520\) −427.707 246.937i −0.822513 0.474878i
\(521\) −561.330 −1.07741 −0.538704 0.842495i \(-0.681086\pi\)
−0.538704 + 0.842495i \(0.681086\pi\)
\(522\) 0 0
\(523\) 387.856 0.741599 0.370799 0.928713i \(-0.379084\pi\)
0.370799 + 0.928713i \(0.379084\pi\)
\(524\) 442.992 767.285i 0.845405 1.46428i
\(525\) 0 0
\(526\) −164.634 285.155i −0.312993 0.542119i
\(527\) −126.609 + 56.3671i −0.240245 + 0.106958i
\(528\) 0 0
\(529\) 27.5656 47.7451i 0.0521089 0.0902553i
\(530\) 469.941 0.886681
\(531\) 0 0
\(532\) 103.742i 0.195004i
\(533\) 181.849 314.971i 0.341180 0.590940i
\(534\) 0 0
\(535\) −63.7251 110.375i −0.119112 0.206309i
\(536\) 725.538 418.889i 1.35362 0.781510i
\(537\) 0 0
\(538\) 633.090 + 365.515i 1.17675 + 0.679396i
\(539\) −714.974 −1.32648
\(540\) 0 0
\(541\) 602.045i 1.11284i 0.830902 + 0.556419i \(0.187825\pi\)
−0.830902 + 0.556419i \(0.812175\pi\)
\(542\) −975.849 563.407i −1.80046 1.03950i
\(543\) 0 0
\(544\) 1839.62 819.011i 3.38166 1.50553i
\(545\) 134.342 77.5626i 0.246500 0.142317i
\(546\) 0 0
\(547\) 34.8771 + 20.1363i 0.0637608 + 0.0368123i 0.531541 0.847032i \(-0.321613\pi\)
−0.467781 + 0.883845i \(0.654946\pi\)
\(548\) 2453.67i 4.47750i
\(549\) 0 0
\(550\) 1315.50i 2.39181i
\(551\) 62.2231 107.774i 0.112928 0.195596i
\(552\) 0 0
\(553\) −98.4137 170.457i −0.177963 0.308241i
\(554\) −251.753 436.048i −0.454427 0.787091i
\(555\) 0 0
\(556\) 82.7223 + 47.7598i 0.148781 + 0.0858988i
\(557\) 986.424i 1.77096i −0.464680 0.885479i \(-0.653830\pi\)
0.464680 0.885479i \(-0.346170\pi\)
\(558\) 0 0
\(559\) 623.964 1.11621
\(560\) −202.794 117.083i −0.362132 0.209077i
\(561\) 0 0
\(562\) −536.577 929.378i −0.954763 1.65370i
\(563\) 592.060 341.826i 1.05162 0.607151i 0.128514 0.991708i \(-0.458979\pi\)
0.923101 + 0.384557i \(0.125646\pi\)
\(564\) 0 0
\(565\) −6.84559 + 11.8569i −0.0121161 + 0.0209857i
\(566\) −1684.58 −2.97629
\(567\) 0 0
\(568\) 2854.61i 5.02573i
\(569\) 479.317 + 276.734i 0.842385 + 0.486351i 0.858074 0.513526i \(-0.171661\pi\)
−0.0156891 + 0.999877i \(0.504994\pi\)
\(570\) 0 0
\(571\) 10.9653 6.33080i 0.0192036 0.0110872i −0.490367 0.871516i \(-0.663137\pi\)
0.509571 + 0.860429i \(0.329804\pi\)
\(572\) 847.367 + 1467.68i 1.48141 + 2.56588i
\(573\) 0 0
\(574\) 150.553 260.766i 0.262288 0.454296i
\(575\) −463.786 −0.806585
\(576\) 0 0
\(577\) −363.680 −0.630294 −0.315147 0.949043i \(-0.602054\pi\)
−0.315147 + 0.949043i \(0.602054\pi\)
\(578\) 827.250 + 744.916i 1.43123 + 1.28878i
\(579\) 0 0
\(580\) −283.918 491.761i −0.489514 0.847863i
\(581\) 12.9156 + 22.3705i 0.0222300 + 0.0385035i
\(582\) 0 0
\(583\) −881.106 508.707i −1.51133 0.872567i
\(584\) 259.542 0.444422
\(585\) 0 0
\(586\) −1005.79 −1.71636
\(587\) 233.131 + 134.598i 0.397157 + 0.229299i 0.685257 0.728302i \(-0.259690\pi\)
−0.288099 + 0.957601i \(0.593023\pi\)
\(588\) 0 0
\(589\) −32.2320 + 18.6091i −0.0547232 + 0.0315945i
\(590\) −40.8695 70.7880i −0.0692703 0.119980i
\(591\) 0 0
\(592\) −3011.96 1738.96i −5.08777 2.93742i
\(593\) 531.551i 0.896376i 0.893939 + 0.448188i \(0.147931\pi\)
−0.893939 + 0.448188i \(0.852069\pi\)
\(594\) 0 0
\(595\) 7.16308 68.1396i 0.0120388 0.114520i
\(596\) −816.421 471.361i −1.36983 0.790874i
\(597\) 0 0
\(598\) 708.421 409.007i 1.18465 0.683958i
\(599\) 203.598 117.548i 0.339897 0.196240i −0.320330 0.947306i \(-0.603794\pi\)
0.660226 + 0.751067i \(0.270460\pi\)
\(600\) 0 0
\(601\) −853.915 493.008i −1.42082 0.820313i −0.424454 0.905450i \(-0.639534\pi\)
−0.996369 + 0.0851370i \(0.972867\pi\)
\(602\) 516.582 0.858110
\(603\) 0 0
\(604\) 680.921 1.12735
\(605\) 130.654 226.299i 0.215957 0.374048i
\(606\) 0 0
\(607\) 181.598 104.846i 0.299173 0.172728i −0.342898 0.939373i \(-0.611409\pi\)
0.642072 + 0.766645i \(0.278075\pi\)
\(608\) 468.329 270.390i 0.770277 0.444720i
\(609\) 0 0
\(610\) −304.887 + 528.079i −0.499814 + 0.865703i
\(611\) 562.351i 0.920378i
\(612\) 0 0
\(613\) 635.527 1.03675 0.518374 0.855154i \(-0.326538\pi\)
0.518374 + 0.855154i \(0.326538\pi\)
\(614\) 786.990 + 454.369i 1.28174 + 0.740015i
\(615\) 0 0
\(616\) 442.609 + 766.620i 0.718520 + 1.24451i
\(617\) 93.9470 + 162.721i 0.152264 + 0.263729i 0.932059 0.362305i \(-0.118010\pi\)
−0.779795 + 0.626035i \(0.784677\pi\)
\(618\) 0 0
\(619\) 737.742 + 425.936i 1.19183 + 0.688103i 0.958721 0.284348i \(-0.0917770\pi\)
0.233108 + 0.972451i \(0.425110\pi\)
\(620\) 169.823i 0.273909i
\(621\) 0 0
\(622\) 1484.92i 2.38733i
\(623\) −110.153 + 190.791i −0.176811 + 0.306246i
\(624\) 0 0
\(625\) −180.776 313.113i −0.289242 0.500981i
\(626\) −447.115 774.426i −0.714241 1.23710i
\(627\) 0 0
\(628\) −804.289 + 1393.07i −1.28071 + 2.21826i
\(629\) 106.388 1012.03i 0.169139 1.60895i
\(630\) 0 0
\(631\) 593.612 0.940748 0.470374 0.882467i \(-0.344119\pi\)
0.470374 + 0.882467i \(0.344119\pi\)
\(632\) 1236.18 2141.13i 1.95598 3.38786i
\(633\) 0 0
\(634\) −1320.77 + 762.546i −2.08323 + 1.20275i
\(635\) −94.2409 163.230i −0.148411 0.257055i
\(636\) 0 0
\(637\) 217.566 376.835i 0.341548 0.591578i
\(638\) 1683.10i 2.63808i
\(639\) 0 0
\(640\) 746.791i 1.16686i
\(641\) 194.586 337.034i 0.303567 0.525793i −0.673374 0.739302i \(-0.735156\pi\)
0.976941 + 0.213508i \(0.0684891\pi\)
\(642\) 0 0
\(643\) 676.406 390.523i 1.05195 0.607346i 0.128758 0.991676i \(-0.458901\pi\)
0.923196 + 0.384330i \(0.125568\pi\)
\(644\) 428.391 247.331i 0.665203 0.384055i
\(645\) 0 0
\(646\) 241.855 + 175.725i 0.374388 + 0.272020i
\(647\) 621.675i 0.960858i 0.877033 + 0.480429i \(0.159519\pi\)
−0.877033 + 0.480429i \(0.840481\pi\)
\(648\) 0 0
\(649\) 176.963i 0.272671i
\(650\) 693.348 + 400.305i 1.06669 + 0.615853i
\(651\) 0 0
\(652\) −1197.56 + 691.410i −1.83674 + 1.06044i
\(653\) 354.528 + 614.060i 0.542921 + 0.940367i 0.998735 + 0.0502918i \(0.0160151\pi\)
−0.455813 + 0.890075i \(0.650652\pi\)
\(654\) 0 0
\(655\) 78.5693 136.086i 0.119953 0.207765i
\(656\) 2166.09 3.30196
\(657\) 0 0
\(658\) 465.572i 0.707557i
\(659\) 772.563 + 446.040i 1.17233 + 0.676843i 0.954227 0.299083i \(-0.0966809\pi\)
0.218100 + 0.975926i \(0.430014\pi\)
\(660\) 0 0
\(661\) 29.8378 + 51.6805i 0.0451403 + 0.0781853i 0.887713 0.460398i \(-0.152293\pi\)
−0.842572 + 0.538583i \(0.818960\pi\)
\(662\) −216.130 + 124.782i −0.326480 + 0.188493i
\(663\) 0 0
\(664\) −162.234 + 280.998i −0.244329 + 0.423190i
\(665\) 18.3997i 0.0276687i
\(666\) 0 0
\(667\) 593.385 0.889633
\(668\) −205.351 + 355.678i −0.307411 + 0.532451i
\(669\) 0 0
\(670\) 203.962 117.757i 0.304420 0.175757i
\(671\) 1143.28 660.074i 1.70385 0.983716i
\(672\) 0 0
\(673\) 421.512 + 243.360i 0.626317 + 0.361605i 0.779325 0.626621i \(-0.215562\pi\)
−0.153007 + 0.988225i \(0.548896\pi\)
\(674\) 1357.58 2.01422
\(675\) 0 0
\(676\) 800.126 1.18362
\(677\) 386.478 669.399i 0.570868 0.988773i −0.425609 0.904907i \(-0.639940\pi\)
0.996477 0.0838654i \(-0.0267266\pi\)
\(678\) 0 0
\(679\) −129.524 224.343i −0.190757 0.330402i
\(680\) 786.225 350.032i 1.15621 0.514753i
\(681\) 0 0
\(682\) 251.683 435.927i 0.369036 0.639190i
\(683\) 267.933 0.392288 0.196144 0.980575i \(-0.437158\pi\)
0.196144 + 0.980575i \(0.437158\pi\)
\(684\) 0 0
\(685\) 435.184i 0.635305i
\(686\) 378.002 654.718i 0.551023 0.954400i
\(687\) 0 0
\(688\) 1858.08 + 3218.29i 2.70070 + 4.67775i
\(689\) 536.239 309.598i 0.778286 0.449344i
\(690\) 0 0
\(691\) 302.043 + 174.385i 0.437110 + 0.252366i 0.702371 0.711811i \(-0.252125\pi\)
−0.265261 + 0.964177i \(0.585458\pi\)
\(692\) −2814.12 −4.06665
\(693\) 0 0
\(694\) 2011.41i 2.89829i
\(695\) 14.6717 + 8.47069i 0.0211103 + 0.0121880i
\(696\) 0 0
\(697\) 257.770 + 578.991i 0.369828 + 0.830690i
\(698\) −786.359 + 454.004i −1.12659 + 0.650436i
\(699\) 0 0
\(700\) 419.276 + 242.069i 0.598965 + 0.345813i
\(701\) 26.4726i 0.0377641i 0.999822 + 0.0188821i \(0.00601070\pi\)
−0.999822 + 0.0188821i \(0.993989\pi\)
\(702\) 0 0
\(703\) 273.278i 0.388732i
\(704\) −1794.26 + 3107.74i −2.54866 + 4.41441i
\(705\) 0 0
\(706\) −1308.13 2265.74i −1.85287 3.20927i
\(707\) 143.819 + 249.102i 0.203421 + 0.352336i
\(708\) 0 0
\(709\) −487.401 281.401i −0.687448 0.396899i 0.115207 0.993341i \(-0.463247\pi\)
−0.802655 + 0.596443i \(0.796580\pi\)
\(710\) 802.483i 1.13026i
\(711\) 0 0
\(712\) −2767.29 −3.88664
\(713\) −153.689 88.7322i −0.215552 0.124449i
\(714\) 0 0
\(715\) 150.289 + 260.309i 0.210195 + 0.364068i
\(716\) −2306.45 + 1331.63i −3.22130 + 1.85982i
\(717\) 0 0
\(718\) 283.902 491.732i 0.395406 0.684864i
\(719\) −298.002 −0.414467 −0.207234 0.978291i \(-0.566446\pi\)
−0.207234 + 0.978291i \(0.566446\pi\)
\(720\) 0 0
\(721\) 52.6193i 0.0729809i
\(722\) −1134.73 655.135i −1.57164 0.907389i
\(723\) 0 0
\(724\) 723.277 417.584i 0.999001 0.576773i
\(725\) 290.380 + 502.953i 0.400524 + 0.693728i
\(726\) 0 0
\(727\) −590.193 + 1022.24i −0.811819 + 1.40611i 0.0997704 + 0.995010i \(0.468189\pi\)
−0.911590 + 0.411102i \(0.865144\pi\)
\(728\) −538.742 −0.740030
\(729\) 0 0
\(730\) 72.9620 0.0999479
\(731\) −639.127 + 879.647i −0.874319 + 1.20335i
\(732\) 0 0
\(733\) −130.429 225.909i −0.177938 0.308198i 0.763236 0.646120i \(-0.223609\pi\)
−0.941174 + 0.337922i \(0.890276\pi\)
\(734\) 192.864 + 334.050i 0.262757 + 0.455109i
\(735\) 0 0
\(736\) 2233.09 + 1289.27i 3.03409 + 1.75173i
\(737\) −509.885 −0.691838
\(738\) 0 0
\(739\) −761.457 −1.03039 −0.515194 0.857074i \(-0.672280\pi\)
−0.515194 + 0.857074i \(0.672280\pi\)
\(740\) −1079.88 623.472i −1.45930 0.842529i
\(741\) 0 0
\(742\) 443.955 256.317i 0.598322 0.345441i
\(743\) 350.832 + 607.658i 0.472183 + 0.817844i 0.999493 0.0318282i \(-0.0101329\pi\)
−0.527311 + 0.849673i \(0.676800\pi\)
\(744\) 0 0
\(745\) −144.801 83.6008i −0.194363 0.112216i
\(746\) 1480.49i 1.98457i
\(747\) 0 0
\(748\) −2937.06 308.754i −3.92655 0.412773i
\(749\) −120.403 69.5145i −0.160751 0.0928097i
\(750\) 0 0
\(751\) −1236.19 + 713.715i −1.64606 + 0.950353i −0.667442 + 0.744662i \(0.732611\pi\)
−0.978617 + 0.205691i \(0.934056\pi\)
\(752\) −2900.51 + 1674.61i −3.85705 + 2.22687i
\(753\) 0 0
\(754\) −887.095 512.165i −1.17652 0.679263i
\(755\) 120.768 0.159958
\(756\) 0 0
\(757\) 668.338 0.882878 0.441439 0.897291i \(-0.354468\pi\)
0.441439 + 0.897291i \(0.354468\pi\)
\(758\) 325.528 563.832i 0.429457 0.743841i
\(759\) 0 0
\(760\) 200.156 115.560i 0.263363 0.152053i
\(761\) −177.215 + 102.315i −0.232872 + 0.134449i −0.611896 0.790938i \(-0.709593\pi\)
0.379024 + 0.925387i \(0.376260\pi\)
\(762\) 0 0
\(763\) 84.6091 146.547i 0.110890 0.192067i
\(764\) 386.041i 0.505289i
\(765\) 0 0
\(766\) 483.099 0.630678
\(767\) −93.2705 53.8498i −0.121604 0.0702083i
\(768\) 0 0
\(769\) −312.900 541.959i −0.406892 0.704758i 0.587647 0.809117i \(-0.300054\pi\)
−0.994540 + 0.104359i \(0.966721\pi\)
\(770\) 124.425 + 215.511i 0.161591 + 0.279884i
\(771\) 0 0
\(772\) 1689.10 + 975.204i 2.18796 + 1.26322i
\(773\) 925.923i 1.19783i −0.800812 0.598915i \(-0.795599\pi\)
0.800812 0.598915i \(-0.204401\pi\)
\(774\) 0 0
\(775\) 173.689i 0.224114i
\(776\) 1626.96 2817.99i 2.09660 3.63142i
\(777\) 0 0
\(778\) −313.113 542.327i −0.402458 0.697079i
\(779\) 85.1006 + 147.399i 0.109243 + 0.189215i
\(780\) 0 0
\(781\) 868.680 1504.60i 1.11227 1.92650i
\(782\) −149.029 + 1417.66i −0.190575 + 1.81286i
\(783\) 0 0
\(784\) 2591.53 3.30553
\(785\) −142.649 + 247.075i −0.181719 + 0.314746i
\(786\) 0 0
\(787\) 938.824 542.030i 1.19292 0.688730i 0.233949 0.972249i \(-0.424835\pi\)
0.958967 + 0.283519i \(0.0915019\pi\)
\(788\) −1348.21 2335.16i −1.71092 2.96341i
\(789\) 0 0
\(790\) 347.513 601.910i 0.439890 0.761911i
\(791\) 14.9350i 0.0188812i
\(792\) 0 0
\(793\) 803.439i 1.01316i
\(794\) −727.300 + 1259.72i −0.915995 + 1.58655i
\(795\) 0 0
\(796\) −1855.97 + 1071.54i −2.33162 + 1.34616i
\(797\) −347.182 + 200.446i −0.435611 + 0.251500i −0.701734 0.712439i \(-0.747591\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(798\) 0 0
\(799\) −792.787 576.016i −0.992224 0.720922i
\(800\) 2523.68i 3.15460i
\(801\) 0 0
\(802\) 850.870i 1.06093i
\(803\) −136.799 78.9807i −0.170359 0.0983570i
\(804\) 0 0
\(805\) 75.9796 43.8668i 0.0943846 0.0544930i
\(806\) 153.174 + 265.305i 0.190042 + 0.329162i
\(807\) 0 0
\(808\) −1806.52 + 3128.99i −2.23579 + 3.87251i
\(809\) 1350.56 1.66942 0.834712 0.550686i \(-0.185634\pi\)
0.834712 + 0.550686i \(0.185634\pi\)
\(810\) 0 0
\(811\) 1313.82i 1.62000i −0.586429 0.810000i \(-0.699467\pi\)
0.586429 0.810000i \(-0.300533\pi\)
\(812\) −536.437 309.712i −0.660637 0.381419i
\(813\) 0 0
\(814\) 1848.00 + 3200.83i 2.27027 + 3.93223i
\(815\) −212.399 + 122.629i −0.260613 + 0.150465i
\(816\) 0 0
\(817\) −146.000 + 252.879i −0.178702 + 0.309521i
\(818\) 438.262i 0.535773i
\(819\) 0 0
\(820\) 776.612 0.947088
\(821\) −117.459 + 203.444i −0.143068 + 0.247800i −0.928650 0.370956i \(-0.879030\pi\)
0.785583 + 0.618757i \(0.212363\pi\)
\(822\) 0 0
\(823\) −436.903 + 252.246i −0.530867 + 0.306496i −0.741369 0.671097i \(-0.765823\pi\)
0.210503 + 0.977593i \(0.432490\pi\)
\(824\) 572.404 330.477i 0.694664 0.401065i
\(825\) 0 0
\(826\) −77.2190 44.5824i −0.0934855 0.0539739i
\(827\) −1619.10 −1.95779 −0.978897 0.204354i \(-0.934491\pi\)
−0.978897 + 0.204354i \(0.934491\pi\)
\(828\) 0 0
\(829\) 949.863 1.14579 0.572897 0.819627i \(-0.305819\pi\)
0.572897 + 0.819627i \(0.305819\pi\)
\(830\) −45.6070 + 78.9936i −0.0549482 + 0.0951731i
\(831\) 0 0
\(832\) −1091.98 1891.37i −1.31248 2.27328i
\(833\) 308.399 + 692.711i 0.370227 + 0.831586i
\(834\) 0 0
\(835\) −36.4211 + 63.0831i −0.0436180 + 0.0755487i
\(836\) −793.093 −0.948676
\(837\) 0 0
\(838\) 126.230i 0.150633i
\(839\) 236.894 410.312i 0.282352 0.489049i −0.689611 0.724180i \(-0.742219\pi\)
0.971964 + 0.235131i \(0.0755519\pi\)
\(840\) 0 0
\(841\) 48.9772 + 84.8310i 0.0582369 + 0.100869i
\(842\) −189.360 + 109.327i −0.224893 + 0.129842i
\(843\) 0 0
\(844\) 861.423 + 497.343i 1.02064 + 0.589269i
\(845\) 141.911 0.167942
\(846\) 0 0
\(847\) 285.047i 0.336537i
\(848\) 3193.70 + 1843.88i 3.76616 + 2.17439i
\(849\) 0 0
\(850\) −1274.54 + 567.431i −1.49945 + 0.667566i
\(851\) 1128.47 651.524i 1.32605 0.765598i
\(852\) 0 0
\(853\) −1465.59 846.158i −1.71816 0.991979i −0.922282 0.386519i \(-0.873677\pi\)
−0.795876 0.605460i \(-0.792989\pi\)
\(854\) 665.171i 0.778888i
\(855\) 0 0
\(856\) 1746.35i 2.04013i
\(857\) 723.424 1253.01i 0.844135 1.46208i −0.0422354 0.999108i \(-0.513448\pi\)
0.886370 0.462977i \(-0.153219\pi\)
\(858\) 0 0
\(859\) 770.329 + 1334.25i 0.896774 + 1.55326i 0.831593 + 0.555385i \(0.187429\pi\)
0.0651810 + 0.997873i \(0.479238\pi\)
\(860\) 666.183 + 1153.86i 0.774631 + 1.34170i
\(861\) 0 0
\(862\) 1855.76 + 1071.42i 2.15285 + 1.24295i
\(863\) 544.316i 0.630725i 0.948971 + 0.315362i \(0.102126\pi\)
−0.948971 + 0.315362i \(0.897874\pi\)
\(864\) 0 0
\(865\) −499.115 −0.577011
\(866\) 1574.21 + 908.870i 1.81779 + 1.04950i
\(867\) 0 0
\(868\) 92.6259 + 160.433i 0.106712 + 0.184830i
\(869\) −1303.12 + 752.359i −1.49957 + 0.865776i
\(870\) 0 0
\(871\) 155.158 268.741i 0.178137 0.308543i
\(872\) 2125.56 2.43757
\(873\) 0 0
\(874\) 382.810i 0.437998i
\(875\) 161.621 + 93.3122i 0.184710 + 0.106643i
\(876\) 0 0
\(877\) 607.579 350.786i 0.692793 0.399984i −0.111865 0.993723i \(-0.535682\pi\)
0.804657 + 0.593739i \(0.202349\pi\)
\(878\) 177.676 + 307.744i 0.202365 + 0.350506i
\(879\) 0 0
\(880\) −895.085 + 1550.33i −1.01714 + 1.76174i
\(881\) 4.84762 0.00550241 0.00275121 0.999996i \(-0.499124\pi\)
0.00275121 + 0.999996i \(0.499124\pi\)
\(882\) 0 0
\(883\) −123.439 −0.139795 −0.0698976 0.997554i \(-0.522267\pi\)
−0.0698976 + 0.997554i \(0.522267\pi\)
\(884\) 1056.48 1454.06i 1.19511 1.64486i
\(885\) 0 0
\(886\) −223.707 387.473i −0.252491 0.437328i
\(887\) 217.673 + 377.021i 0.245403 + 0.425051i 0.962245 0.272185i \(-0.0877462\pi\)
−0.716841 + 0.697236i \(0.754413\pi\)
\(888\) 0 0
\(889\) −178.059 102.803i −0.200292 0.115639i
\(890\) −777.935 −0.874084
\(891\) 0 0
\(892\) −2619.82 −2.93702
\(893\) −227.908 131.583i −0.255217 0.147349i
\(894\) 0 0
\(895\) −409.074 + 236.179i −0.457066 + 0.263887i
\(896\) −407.318 705.496i −0.454596 0.787384i
\(897\) 0 0
\(898\) 1632.85 + 942.726i 1.81832 + 1.04981i
\(899\) 222.224i 0.247190i
\(900\) 0 0
\(901\) −112.808 + 1073.10i −0.125203 + 1.19101i
\(902\) −1993.52 1150.96i −2.21011 1.27601i
\(903\) 0 0
\(904\) −162.466 + 93.8000i −0.179719 + 0.103761i
\(905\) 128.281 74.0629i 0.141747 0.0818375i
\(906\) 0 0
\(907\) 788.571 + 455.282i 0.869428 + 0.501964i 0.867158 0.498033i \(-0.165944\pi\)
0.00226956 + 0.999997i \(0.499278\pi\)
\(908\) −2923.78 −3.22003
\(909\) 0 0
\(910\) −151.450 −0.166428
\(911\) 230.613 399.434i 0.253143 0.438456i −0.711247 0.702943i \(-0.751869\pi\)
0.964389 + 0.264486i \(0.0852024\pi\)
\(912\) 0 0
\(913\) 171.020 98.7383i 0.187316 0.108147i
\(914\) 1281.43 739.837i 1.40201 0.809449i
\(915\) 0 0
\(916\) 1928.35 3340.01i 2.10519 3.64630i
\(917\) 171.415i 0.186930i
\(918\) 0 0
\(919\) −888.394 −0.966696 −0.483348 0.875428i \(-0.660579\pi\)
−0.483348 + 0.875428i \(0.660579\pi\)
\(920\) 954.386 + 551.015i 1.03738 + 0.598929i
\(921\) 0 0
\(922\) 389.971 + 675.450i 0.422962 + 0.732592i
\(923\) 528.677 + 915.696i 0.572781 + 0.992086i
\(924\) 0 0
\(925\) 1104.46 + 637.661i 1.19401 + 0.689364i
\(926\) 402.041i 0.434170i
\(927\) 0 0
\(928\) 3228.89i 3.47941i
\(929\) 146.755 254.186i 0.157971 0.273613i −0.776166 0.630528i \(-0.782838\pi\)
0.934137 + 0.356915i \(0.116172\pi\)
\(930\) 0 0
\(931\) 101.815 + 176.349i 0.109361 + 0.189419i
\(932\) 1191.98 + 2064.57i 1.27895 + 2.21520i
\(933\) 0 0
\(934\) −1524.38 + 2640.31i −1.63210 + 2.82688i
\(935\) −520.918 54.7607i −0.557132 0.0585676i
\(936\) 0 0
\(937\) −1540.93 −1.64453 −0.822266 0.569104i \(-0.807290\pi\)
−0.822266 + 0.569104i \(0.807290\pi\)
\(938\) 128.456 222.492i 0.136946 0.237198i
\(939\) 0 0
\(940\) −1039.92 + 600.401i −1.10630 + 0.638724i
\(941\) −62.8561 108.870i −0.0667971 0.115696i 0.830693 0.556731i \(-0.187945\pi\)
−0.897490 + 0.441035i \(0.854611\pi\)
\(942\) 0 0
\(943\) −405.777 + 702.827i −0.430305 + 0.745310i
\(944\) 641.430i 0.679481i
\(945\) 0 0
\(946\) 3949.20i 4.17463i
\(947\) 105.533 182.789i 0.111440 0.193019i −0.804911 0.593395i \(-0.797787\pi\)
0.916351 + 0.400376i \(0.131121\pi\)
\(948\) 0 0
\(949\) 83.2553 48.0675i 0.0877295 0.0506507i
\(950\) −324.469 + 187.333i −0.341547 + 0.197192i
\(951\) 0 0
\(952\) 551.833 759.503i 0.579657 0.797797i
\(953\) 252.571i 0.265028i 0.991181 + 0.132514i \(0.0423049\pi\)
−0.991181 + 0.132514i \(0.957695\pi\)
\(954\) 0 0
\(955\) 68.4684i 0.0716947i
\(956\) −1503.53 868.061i −1.57273 0.908014i
\(957\) 0 0
\(958\) −74.5479 + 43.0402i −0.0778162 + 0.0449272i
\(959\) −237.360 411.120i −0.247508 0.428697i
\(960\) 0 0
\(961\) −447.270 + 774.694i −0.465421 + 0.806133i
\(962\) −2249.38 −2.33823
\(963\) 0 0
\(964\) 116.444i 0.120792i
\(965\) 299.580 + 172.963i 0.310446 + 0.179236i
\(966\) 0 0
\(967\) −171.788 297.546i −0.177651 0.307700i 0.763425 0.645897i \(-0.223516\pi\)
−0.941075 + 0.338197i \(0.890183\pi\)
\(968\) 3100.80 1790.25i 3.20331 1.84943i
\(969\) 0 0
\(970\) 457.369 792.186i 0.471514 0.816687i
\(971\) 1446.79i 1.49000i −0.667063 0.745001i \(-0.732449\pi\)
0.667063 0.745001i \(-0.267551\pi\)
\(972\) 0 0
\(973\) 18.4805 0.0189933
\(974\) −359.648 + 622.929i −0.369249 + 0.639558i
\(975\) 0 0
\(976\) −4144.00 + 2392.54i −4.24590 + 2.45137i
\(977\) −1014.73 + 585.856i −1.03862 + 0.599648i −0.919442 0.393225i \(-0.871359\pi\)
−0.119178 + 0.992873i \(0.538026\pi\)
\(978\) 0 0
\(979\) 1458.57 + 842.107i 1.48986 + 0.860171i
\(980\) 929.148 0.948110
\(981\) 0 0
\(982\) 1796.43 1.82936
\(983\) 546.711 946.930i 0.556165 0.963307i −0.441646 0.897189i \(-0.645605\pi\)
0.997812 0.0661175i \(-0.0210612\pi\)
\(984\) 0 0
\(985\) −239.119 414.166i −0.242760 0.420473i
\(986\) 1630.69 725.992i 1.65384 0.736300i
\(987\) 0 0
\(988\) 241.337 418.009i 0.244269 0.423086i
\(989\) −1392.31 −1.40780
\(990\) 0 0
\(991\) 1036.20i 1.04561i 0.852451 + 0.522806i \(0.175115\pi\)
−0.852451 + 0.522806i \(0.824885\pi\)
\(992\) −482.835 + 836.294i −0.486729 + 0.843038i
\(993\) 0 0
\(994\) 437.694 + 758.108i 0.440336 + 0.762684i
\(995\) −329.175 + 190.049i −0.330829 + 0.191004i
\(996\) 0 0
\(997\) −1505.65 869.289i −1.51018 0.871905i −0.999929 0.0118815i \(-0.996218\pi\)
−0.510254 0.860024i \(-0.670449\pi\)
\(998\) 1162.46 1.16479
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.i.a.305.34 68
3.2 odd 2 153.3.i.a.101.2 yes 68
9.4 even 3 153.3.i.a.50.1 68
9.5 odd 6 inner 459.3.i.a.152.33 68
17.16 even 2 inner 459.3.i.a.305.33 68
51.50 odd 2 153.3.i.a.101.1 yes 68
153.50 odd 6 inner 459.3.i.a.152.34 68
153.67 even 6 153.3.i.a.50.2 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.1 68 9.4 even 3
153.3.i.a.50.2 yes 68 153.67 even 6
153.3.i.a.101.1 yes 68 51.50 odd 2
153.3.i.a.101.2 yes 68 3.2 odd 2
459.3.i.a.152.33 68 9.5 odd 6 inner
459.3.i.a.152.34 68 153.50 odd 6 inner
459.3.i.a.305.33 68 17.16 even 2 inner
459.3.i.a.305.34 68 1.1 even 1 trivial