Properties

Label 459.3.i.a.152.31
Level $459$
Weight $3$
Character 459.152
Analytic conductor $12.507$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(152,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.152"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.31
Character \(\chi\) \(=\) 459.152
Dual form 459.3.i.a.305.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.82816 - 1.63284i) q^{2} +(3.33234 - 5.77179i) q^{4} +(-4.76697 + 8.25663i) q^{5} +(-0.760673 + 0.439175i) q^{7} -8.70203i q^{8} +31.1348i q^{10} +(4.44606 + 7.70081i) q^{11} +(-6.16052 + 10.6703i) q^{13} +(-1.43421 + 2.48412i) q^{14} +(-0.879664 - 1.52362i) q^{16} +(-2.43582 + 16.8246i) q^{17} +15.8202 q^{19} +(31.7703 + 55.0279i) q^{20} +(25.1484 + 14.5194i) q^{22} +(14.4724 - 25.0670i) q^{23} +(-32.9479 - 57.0675i) q^{25} +40.2366i q^{26} +5.85392i q^{28} +(5.73079 + 9.92603i) q^{29} +(-25.0398 - 14.4567i) q^{31} +(25.1691 + 14.5314i) q^{32} +(20.5830 + 51.5600i) q^{34} -8.37412i q^{35} +8.23116i q^{37} +(44.7422 - 25.8319i) q^{38} +(71.8494 + 41.4823i) q^{40} +(-31.0218 + 53.7314i) q^{41} +(1.16315 + 2.01464i) q^{43} +59.2633 q^{44} -94.5248i q^{46} +(42.2981 - 24.4208i) q^{47} +(-24.1143 + 41.7671i) q^{49} +(-186.364 - 107.598i) q^{50} +(41.0580 + 71.1145i) q^{52} +3.88416i q^{53} -84.7770 q^{55} +(3.82171 + 6.61940i) q^{56} +(32.4153 + 18.7150i) q^{58} +(-41.3195 - 23.8559i) q^{59} +(51.8668 - 29.9453i) q^{61} -94.4223 q^{62} +101.947 q^{64} +(-58.7340 - 101.730i) q^{65} +(45.1498 - 78.2017i) q^{67} +(88.9910 + 70.1244i) q^{68} +(-13.6736 - 23.6834i) q^{70} -0.732287 q^{71} -37.0254i q^{73} +(13.4402 + 23.2791i) q^{74} +(52.7185 - 91.3111i) q^{76} +(-6.76400 - 3.90520i) q^{77} +(91.8886 - 53.0519i) q^{79} +16.7733 q^{80} +202.615i q^{82} +(113.589 - 65.5804i) q^{83} +(-127.303 - 100.314i) q^{85} +(6.57916 + 3.79848i) q^{86} +(67.0127 - 38.6898i) q^{88} +110.840i q^{89} -10.8222i q^{91} +(-96.4543 - 167.064i) q^{92} +(79.7506 - 138.132i) q^{94} +(-75.4145 + 130.622i) q^{95} +(-35.1889 + 20.3163i) q^{97} +157.499i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 62 q^{4} - 2 q^{13} - 106 q^{16} - 32 q^{19} - 132 q^{25} - 27 q^{34} + 102 q^{38} + 58 q^{43} + 312 q^{47} + 152 q^{49} + 90 q^{50} + 70 q^{52} + 92 q^{55} + 258 q^{59} - 16 q^{64} + 82 q^{67}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82816 1.63284i 1.41408 0.816421i 0.418313 0.908303i \(-0.362622\pi\)
0.995770 + 0.0918822i \(0.0292883\pi\)
\(3\) 0 0
\(4\) 3.33234 5.77179i 0.833086 1.44295i
\(5\) −4.76697 + 8.25663i −0.953393 + 1.65133i −0.215390 + 0.976528i \(0.569102\pi\)
−0.738003 + 0.674797i \(0.764231\pi\)
\(6\) 0 0
\(7\) −0.760673 + 0.439175i −0.108668 + 0.0627392i −0.553349 0.832950i \(-0.686650\pi\)
0.444681 + 0.895689i \(0.353317\pi\)
\(8\) 8.70203i 1.08775i
\(9\) 0 0
\(10\) 31.1348i 3.11348i
\(11\) 4.44606 + 7.70081i 0.404188 + 0.700074i 0.994227 0.107301i \(-0.0342209\pi\)
−0.590039 + 0.807375i \(0.700888\pi\)
\(12\) 0 0
\(13\) −6.16052 + 10.6703i −0.473886 + 0.820795i −0.999553 0.0298955i \(-0.990483\pi\)
0.525667 + 0.850691i \(0.323816\pi\)
\(14\) −1.43421 + 2.48412i −0.102443 + 0.177437i
\(15\) 0 0
\(16\) −0.879664 1.52362i −0.0549790 0.0952265i
\(17\) −2.43582 + 16.8246i −0.143283 + 0.989682i
\(18\) 0 0
\(19\) 15.8202 0.832644 0.416322 0.909217i \(-0.363319\pi\)
0.416322 + 0.909217i \(0.363319\pi\)
\(20\) 31.7703 + 55.0279i 1.58852 + 2.75139i
\(21\) 0 0
\(22\) 25.1484 + 14.5194i 1.14311 + 0.659975i
\(23\) 14.4724 25.0670i 0.629236 1.08987i −0.358469 0.933542i \(-0.616701\pi\)
0.987705 0.156327i \(-0.0499655\pi\)
\(24\) 0 0
\(25\) −32.9479 57.0675i −1.31792 2.28270i
\(26\) 40.2366i 1.54756i
\(27\) 0 0
\(28\) 5.85392i 0.209069i
\(29\) 5.73079 + 9.92603i 0.197614 + 0.342277i 0.947754 0.319002i \(-0.103348\pi\)
−0.750141 + 0.661278i \(0.770014\pi\)
\(30\) 0 0
\(31\) −25.0398 14.4567i −0.807736 0.466347i 0.0384328 0.999261i \(-0.487763\pi\)
−0.846169 + 0.532914i \(0.821097\pi\)
\(32\) 25.1691 + 14.5314i 0.786533 + 0.454105i
\(33\) 0 0
\(34\) 20.5830 + 51.5600i 0.605382 + 1.51647i
\(35\) 8.37412i 0.239261i
\(36\) 0 0
\(37\) 8.23116i 0.222464i 0.993794 + 0.111232i \(0.0354796\pi\)
−0.993794 + 0.111232i \(0.964520\pi\)
\(38\) 44.7422 25.8319i 1.17743 0.679788i
\(39\) 0 0
\(40\) 71.8494 + 41.4823i 1.79624 + 1.03706i
\(41\) −31.0218 + 53.7314i −0.756630 + 1.31052i 0.187929 + 0.982183i \(0.439822\pi\)
−0.944560 + 0.328340i \(0.893511\pi\)
\(42\) 0 0
\(43\) 1.16315 + 2.01464i 0.0270500 + 0.0468520i 0.879234 0.476391i \(-0.158055\pi\)
−0.852184 + 0.523243i \(0.824722\pi\)
\(44\) 59.2633 1.34689
\(45\) 0 0
\(46\) 94.5248i 2.05489i
\(47\) 42.2981 24.4208i 0.899959 0.519592i 0.0227721 0.999741i \(-0.492751\pi\)
0.877187 + 0.480149i \(0.159417\pi\)
\(48\) 0 0
\(49\) −24.1143 + 41.7671i −0.492128 + 0.852390i
\(50\) −186.364 107.598i −3.72729 2.15195i
\(51\) 0 0
\(52\) 41.0580 + 71.1145i 0.789576 + 1.36759i
\(53\) 3.88416i 0.0732859i 0.999328 + 0.0366430i \(0.0116664\pi\)
−0.999328 + 0.0366430i \(0.988334\pi\)
\(54\) 0 0
\(55\) −84.7770 −1.54140
\(56\) 3.82171 + 6.61940i 0.0682448 + 0.118204i
\(57\) 0 0
\(58\) 32.4153 + 18.7150i 0.558884 + 0.322672i
\(59\) −41.3195 23.8559i −0.700331 0.404336i 0.107139 0.994244i \(-0.465831\pi\)
−0.807471 + 0.589908i \(0.799164\pi\)
\(60\) 0 0
\(61\) 51.8668 29.9453i 0.850276 0.490907i −0.0104682 0.999945i \(-0.503332\pi\)
0.860744 + 0.509038i \(0.169999\pi\)
\(62\) −94.4223 −1.52294
\(63\) 0 0
\(64\) 101.947 1.59292
\(65\) −58.7340 101.730i −0.903600 1.56508i
\(66\) 0 0
\(67\) 45.1498 78.2017i 0.673877 1.16719i −0.302919 0.953016i \(-0.597961\pi\)
0.976796 0.214173i \(-0.0687056\pi\)
\(68\) 88.9910 + 70.1244i 1.30869 + 1.03124i
\(69\) 0 0
\(70\) −13.6736 23.6834i −0.195337 0.338334i
\(71\) −0.732287 −0.0103139 −0.00515695 0.999987i \(-0.501642\pi\)
−0.00515695 + 0.999987i \(0.501642\pi\)
\(72\) 0 0
\(73\) 37.0254i 0.507197i −0.967310 0.253598i \(-0.918386\pi\)
0.967310 0.253598i \(-0.0816142\pi\)
\(74\) 13.4402 + 23.2791i 0.181624 + 0.314582i
\(75\) 0 0
\(76\) 52.7185 91.3111i 0.693664 1.20146i
\(77\) −6.76400 3.90520i −0.0878442 0.0507168i
\(78\) 0 0
\(79\) 91.8886 53.0519i 1.16315 0.671543i 0.211090 0.977467i \(-0.432299\pi\)
0.952056 + 0.305924i \(0.0989652\pi\)
\(80\) 16.7733 0.209666
\(81\) 0 0
\(82\) 202.615i 2.47092i
\(83\) 113.589 65.5804i 1.36854 0.790126i 0.377796 0.925889i \(-0.376682\pi\)
0.990741 + 0.135763i \(0.0433486\pi\)
\(84\) 0 0
\(85\) −127.303 100.314i −1.49768 1.18016i
\(86\) 6.57916 + 3.79848i 0.0765019 + 0.0441684i
\(87\) 0 0
\(88\) 67.0127 38.6898i 0.761508 0.439657i
\(89\) 110.840i 1.24539i 0.782465 + 0.622694i \(0.213962\pi\)
−0.782465 + 0.622694i \(0.786038\pi\)
\(90\) 0 0
\(91\) 10.8222i 0.118925i
\(92\) −96.4543 167.064i −1.04842 1.81591i
\(93\) 0 0
\(94\) 79.7506 138.132i 0.848411 1.46949i
\(95\) −75.4145 + 130.622i −0.793837 + 1.37497i
\(96\) 0 0
\(97\) −35.1889 + 20.3163i −0.362772 + 0.209447i −0.670296 0.742094i \(-0.733833\pi\)
0.307524 + 0.951540i \(0.400500\pi\)
\(98\) 157.499i 1.60713i
\(99\) 0 0
\(100\) −439.175 −4.39175
\(101\) −49.3626 + 28.4995i −0.488739 + 0.282173i −0.724051 0.689746i \(-0.757722\pi\)
0.235312 + 0.971920i \(0.424389\pi\)
\(102\) 0 0
\(103\) −69.8551 + 120.993i −0.678205 + 1.17469i 0.297316 + 0.954779i \(0.403909\pi\)
−0.975521 + 0.219907i \(0.929425\pi\)
\(104\) 92.8536 + 53.6091i 0.892823 + 0.515472i
\(105\) 0 0
\(106\) 6.34221 + 10.9850i 0.0598322 + 0.103632i
\(107\) −80.1687 −0.749240 −0.374620 0.927178i \(-0.622227\pi\)
−0.374620 + 0.927178i \(0.622227\pi\)
\(108\) 0 0
\(109\) 116.611i 1.06982i −0.844908 0.534911i \(-0.820345\pi\)
0.844908 0.534911i \(-0.179655\pi\)
\(110\) −239.763 + 138.427i −2.17967 + 1.25843i
\(111\) 0 0
\(112\) 1.33827 + 0.772652i 0.0119489 + 0.00689868i
\(113\) −19.2459 + 33.3349i −0.170318 + 0.294999i −0.938531 0.345195i \(-0.887813\pi\)
0.768213 + 0.640194i \(0.221146\pi\)
\(114\) 0 0
\(115\) 137.979 + 238.987i 1.19982 + 2.07815i
\(116\) 76.3879 0.658517
\(117\) 0 0
\(118\) −155.811 −1.32044
\(119\) −5.53607 13.8678i −0.0465216 0.116536i
\(120\) 0 0
\(121\) 20.9650 36.3125i 0.173265 0.300103i
\(122\) 97.7919 169.381i 0.801573 1.38837i
\(123\) 0 0
\(124\) −166.883 + 96.3498i −1.34583 + 0.777014i
\(125\) 389.898 3.11919
\(126\) 0 0
\(127\) 180.664 1.42255 0.711274 0.702914i \(-0.248118\pi\)
0.711274 + 0.702914i \(0.248118\pi\)
\(128\) 187.647 108.338i 1.46599 0.846389i
\(129\) 0 0
\(130\) −332.219 191.807i −2.55553 1.47544i
\(131\) 59.0158 102.218i 0.450502 0.780293i −0.547915 0.836534i \(-0.684578\pi\)
0.998417 + 0.0562412i \(0.0179116\pi\)
\(132\) 0 0
\(133\) −12.0340 + 6.94785i −0.0904814 + 0.0522394i
\(134\) 294.890i 2.20067i
\(135\) 0 0
\(136\) 146.408 + 21.1966i 1.07653 + 0.155857i
\(137\) −151.448 + 87.4388i −1.10546 + 0.638239i −0.937651 0.347579i \(-0.887004\pi\)
−0.167813 + 0.985819i \(0.553670\pi\)
\(138\) 0 0
\(139\) 156.687 + 90.4634i 1.12725 + 0.650816i 0.943241 0.332110i \(-0.107760\pi\)
0.184005 + 0.982925i \(0.441094\pi\)
\(140\) −48.3337 27.9055i −0.345240 0.199325i
\(141\) 0 0
\(142\) −2.07103 + 1.19571i −0.0145847 + 0.00842048i
\(143\) −109.560 −0.766156
\(144\) 0 0
\(145\) −109.274 −0.753614
\(146\) −60.4566 104.714i −0.414086 0.717218i
\(147\) 0 0
\(148\) 47.5085 + 27.4291i 0.321004 + 0.185331i
\(149\) −7.92913 4.57788i −0.0532156 0.0307241i 0.473156 0.880979i \(-0.343115\pi\)
−0.526372 + 0.850255i \(0.676448\pi\)
\(150\) 0 0
\(151\) 3.49995 + 6.06209i 0.0231785 + 0.0401463i 0.877382 0.479793i \(-0.159288\pi\)
−0.854203 + 0.519939i \(0.825955\pi\)
\(152\) 137.668i 0.905712i
\(153\) 0 0
\(154\) −25.5063 −0.165625
\(155\) 238.728 137.830i 1.54018 0.889224i
\(156\) 0 0
\(157\) −1.20198 + 2.08189i −0.00765591 + 0.0132604i −0.869828 0.493355i \(-0.835770\pi\)
0.862172 + 0.506616i \(0.169104\pi\)
\(158\) 173.251 300.079i 1.09652 1.89923i
\(159\) 0 0
\(160\) −239.960 + 138.541i −1.49975 + 0.865881i
\(161\) 25.4237i 0.157911i
\(162\) 0 0
\(163\) 89.2950i 0.547822i −0.961755 0.273911i \(-0.911683\pi\)
0.961755 0.273911i \(-0.0883174\pi\)
\(164\) 206.751 + 358.103i 1.26068 + 2.18356i
\(165\) 0 0
\(166\) 214.165 370.945i 1.29015 2.23461i
\(167\) −48.0053 + 83.1476i −0.287457 + 0.497890i −0.973202 0.229952i \(-0.926143\pi\)
0.685745 + 0.727842i \(0.259476\pi\)
\(168\) 0 0
\(169\) 8.59597 + 14.8886i 0.0508637 + 0.0880985i
\(170\) −523.830 75.8387i −3.08135 0.446110i
\(171\) 0 0
\(172\) 15.5041 0.0901400
\(173\) 106.189 + 183.925i 0.613811 + 1.06315i 0.990592 + 0.136850i \(0.0436977\pi\)
−0.376781 + 0.926303i \(0.622969\pi\)
\(174\) 0 0
\(175\) 50.1252 + 28.9398i 0.286430 + 0.165370i
\(176\) 7.82209 13.5483i 0.0444437 0.0769787i
\(177\) 0 0
\(178\) 180.983 + 313.473i 1.01676 + 1.76108i
\(179\) 89.6762i 0.500984i 0.968119 + 0.250492i \(0.0805924\pi\)
−0.968119 + 0.250492i \(0.919408\pi\)
\(180\) 0 0
\(181\) 137.630i 0.760387i −0.924907 0.380193i \(-0.875857\pi\)
0.924907 0.380193i \(-0.124143\pi\)
\(182\) −17.6709 30.6069i −0.0970929 0.168170i
\(183\) 0 0
\(184\) −218.134 125.940i −1.18551 0.684454i
\(185\) −67.9616 39.2377i −0.367360 0.212095i
\(186\) 0 0
\(187\) −140.393 + 56.0454i −0.750764 + 0.299708i
\(188\) 325.514i 1.73146i
\(189\) 0 0
\(190\) 492.560i 2.59242i
\(191\) −23.3318 + 13.4706i −0.122156 + 0.0705267i −0.559833 0.828606i \(-0.689135\pi\)
0.437677 + 0.899132i \(0.355801\pi\)
\(192\) 0 0
\(193\) 305.903 + 176.613i 1.58499 + 0.915094i 0.994115 + 0.108331i \(0.0345508\pi\)
0.590875 + 0.806763i \(0.298783\pi\)
\(194\) −66.3467 + 114.916i −0.341993 + 0.592350i
\(195\) 0 0
\(196\) 160.714 + 278.365i 0.819969 + 1.42023i
\(197\) 72.8379 0.369735 0.184868 0.982763i \(-0.440814\pi\)
0.184868 + 0.982763i \(0.440814\pi\)
\(198\) 0 0
\(199\) 179.774i 0.903389i −0.892173 0.451695i \(-0.850820\pi\)
0.892173 0.451695i \(-0.149180\pi\)
\(200\) −496.603 + 286.714i −2.48302 + 1.43357i
\(201\) 0 0
\(202\) −93.0704 + 161.203i −0.460745 + 0.798033i
\(203\) −8.71852 5.03364i −0.0429484 0.0247962i
\(204\) 0 0
\(205\) −295.760 512.272i −1.44273 2.49889i
\(206\) 456.250i 2.21480i
\(207\) 0 0
\(208\) 21.6768 0.104215
\(209\) 70.3378 + 121.829i 0.336545 + 0.582912i
\(210\) 0 0
\(211\) −137.194 79.2092i −0.650210 0.375399i 0.138327 0.990387i \(-0.455828\pi\)
−0.788537 + 0.614988i \(0.789161\pi\)
\(212\) 22.4185 + 12.9433i 0.105748 + 0.0610535i
\(213\) 0 0
\(214\) −226.730 + 130.903i −1.05949 + 0.611695i
\(215\) −22.1788 −0.103157
\(216\) 0 0
\(217\) 25.3961 0.117033
\(218\) −190.407 329.794i −0.873425 1.51282i
\(219\) 0 0
\(220\) −282.506 + 489.315i −1.28412 + 2.22416i
\(221\) −164.518 129.639i −0.744426 0.586603i
\(222\) 0 0
\(223\) −69.7050 120.733i −0.312578 0.541402i 0.666341 0.745647i \(-0.267859\pi\)
−0.978920 + 0.204245i \(0.934526\pi\)
\(224\) −25.5272 −0.113961
\(225\) 0 0
\(226\) 125.702i 0.556205i
\(227\) 77.3081 + 133.902i 0.340564 + 0.589875i 0.984538 0.175173i \(-0.0560485\pi\)
−0.643973 + 0.765048i \(0.722715\pi\)
\(228\) 0 0
\(229\) 69.3263 120.077i 0.302735 0.524352i −0.674019 0.738714i \(-0.735434\pi\)
0.976754 + 0.214361i \(0.0687670\pi\)
\(230\) 780.456 + 450.596i 3.39329 + 1.95911i
\(231\) 0 0
\(232\) 86.3766 49.8696i 0.372313 0.214955i
\(233\) 228.603 0.981127 0.490563 0.871406i \(-0.336791\pi\)
0.490563 + 0.871406i \(0.336791\pi\)
\(234\) 0 0
\(235\) 465.653i 1.98150i
\(236\) −275.382 + 158.992i −1.16687 + 0.673694i
\(237\) 0 0
\(238\) −38.3008 30.1808i −0.160928 0.126810i
\(239\) 0.520502 + 0.300512i 0.00217783 + 0.00125737i 0.501089 0.865396i \(-0.332933\pi\)
−0.498911 + 0.866653i \(0.666266\pi\)
\(240\) 0 0
\(241\) 160.180 92.4798i 0.664646 0.383734i −0.129399 0.991593i \(-0.541305\pi\)
0.794045 + 0.607859i \(0.207971\pi\)
\(242\) 136.930i 0.565827i
\(243\) 0 0
\(244\) 399.153i 1.63587i
\(245\) −229.904 398.205i −0.938382 1.62533i
\(246\) 0 0
\(247\) −97.4609 + 168.807i −0.394579 + 0.683430i
\(248\) −125.803 + 217.897i −0.507271 + 0.878619i
\(249\) 0 0
\(250\) 1102.70 636.642i 4.41079 2.54657i
\(251\) 457.444i 1.82249i −0.411869 0.911243i \(-0.635124\pi\)
0.411869 0.911243i \(-0.364876\pi\)
\(252\) 0 0
\(253\) 257.381 1.01732
\(254\) 510.947 294.995i 2.01160 1.16140i
\(255\) 0 0
\(256\) 149.903 259.640i 0.585559 1.01422i
\(257\) 220.223 + 127.146i 0.856901 + 0.494732i 0.862973 0.505250i \(-0.168600\pi\)
−0.00607253 + 0.999982i \(0.501933\pi\)
\(258\) 0 0
\(259\) −3.61491 6.26122i −0.0139572 0.0241746i
\(260\) −782.888 −3.01111
\(261\) 0 0
\(262\) 385.454i 1.47120i
\(263\) 153.715 88.7471i 0.584466 0.337442i −0.178440 0.983951i \(-0.557105\pi\)
0.762906 + 0.646509i \(0.223772\pi\)
\(264\) 0 0
\(265\) −32.0700 18.5156i −0.121019 0.0698703i
\(266\) −22.6895 + 39.2993i −0.0852987 + 0.147742i
\(267\) 0 0
\(268\) −300.909 521.190i −1.12280 1.94474i
\(269\) 82.9631 0.308413 0.154206 0.988039i \(-0.450718\pi\)
0.154206 + 0.988039i \(0.450718\pi\)
\(270\) 0 0
\(271\) 127.621 0.470926 0.235463 0.971883i \(-0.424339\pi\)
0.235463 + 0.971883i \(0.424339\pi\)
\(272\) 27.7770 11.0887i 0.102121 0.0407674i
\(273\) 0 0
\(274\) −285.547 + 494.583i −1.04214 + 1.80505i
\(275\) 292.977 507.452i 1.06537 1.84528i
\(276\) 0 0
\(277\) −239.752 + 138.421i −0.865529 + 0.499714i −0.865860 0.500286i \(-0.833228\pi\)
0.000330781 1.00000i \(0.499895\pi\)
\(278\) 590.849 2.12536
\(279\) 0 0
\(280\) −72.8719 −0.260257
\(281\) −395.521 + 228.354i −1.40755 + 0.812648i −0.995151 0.0983557i \(-0.968642\pi\)
−0.412397 + 0.911004i \(0.635308\pi\)
\(282\) 0 0
\(283\) 162.926 + 94.0654i 0.575710 + 0.332387i 0.759427 0.650593i \(-0.225479\pi\)
−0.183716 + 0.982979i \(0.558813\pi\)
\(284\) −2.44023 + 4.22661i −0.00859237 + 0.0148824i
\(285\) 0 0
\(286\) −309.855 + 178.895i −1.08341 + 0.625506i
\(287\) 54.4960i 0.189882i
\(288\) 0 0
\(289\) −277.134 81.9633i −0.958940 0.283610i
\(290\) −309.045 + 178.427i −1.06567 + 0.615266i
\(291\) 0 0
\(292\) −213.703 123.381i −0.731858 0.422539i
\(293\) −468.026 270.215i −1.59736 0.922235i −0.991994 0.126287i \(-0.959694\pi\)
−0.605365 0.795948i \(-0.706973\pi\)
\(294\) 0 0
\(295\) 393.938 227.440i 1.33538 0.770983i
\(296\) 71.6278 0.241986
\(297\) 0 0
\(298\) −29.8998 −0.100335
\(299\) 178.315 + 308.851i 0.596373 + 1.03295i
\(300\) 0 0
\(301\) −1.76955 1.02165i −0.00587892 0.00339419i
\(302\) 19.7969 + 11.4297i 0.0655526 + 0.0378468i
\(303\) 0 0
\(304\) −13.9165 24.1041i −0.0457780 0.0792898i
\(305\) 570.993i 1.87211i
\(306\) 0 0
\(307\) −75.1841 −0.244899 −0.122450 0.992475i \(-0.539075\pi\)
−0.122450 + 0.992475i \(0.539075\pi\)
\(308\) −45.0800 + 26.0269i −0.146363 + 0.0845030i
\(309\) 0 0
\(310\) 450.108 779.610i 1.45196 2.51487i
\(311\) 161.009 278.877i 0.517715 0.896709i −0.482073 0.876131i \(-0.660116\pi\)
0.999788 0.0205782i \(-0.00655069\pi\)
\(312\) 0 0
\(313\) 372.141 214.856i 1.18895 0.686441i 0.230882 0.972982i \(-0.425839\pi\)
0.958068 + 0.286541i \(0.0925055\pi\)
\(314\) 7.85056i 0.0250018i
\(315\) 0 0
\(316\) 707.149i 2.23781i
\(317\) −176.843 306.301i −0.557865 0.966251i −0.997674 0.0681595i \(-0.978287\pi\)
0.439809 0.898091i \(-0.355046\pi\)
\(318\) 0 0
\(319\) −50.9590 + 88.2635i −0.159746 + 0.276688i
\(320\) −485.978 + 841.738i −1.51868 + 2.63043i
\(321\) 0 0
\(322\) 41.5129 + 71.9024i 0.128922 + 0.223299i
\(323\) −38.5352 + 266.169i −0.119304 + 0.824053i
\(324\) 0 0
\(325\) 811.906 2.49817
\(326\) −145.805 252.541i −0.447253 0.774666i
\(327\) 0 0
\(328\) 467.573 + 269.953i 1.42553 + 0.823028i
\(329\) −21.4500 + 37.1525i −0.0651975 + 0.112925i
\(330\) 0 0
\(331\) −29.2504 50.6631i −0.0883697 0.153061i 0.818452 0.574574i \(-0.194832\pi\)
−0.906822 + 0.421513i \(0.861499\pi\)
\(332\) 874.146i 2.63297i
\(333\) 0 0
\(334\) 313.540i 0.938743i
\(335\) 430.455 + 745.570i 1.28494 + 2.22558i
\(336\) 0 0
\(337\) 64.0122 + 36.9575i 0.189947 + 0.109666i 0.591958 0.805969i \(-0.298355\pi\)
−0.402011 + 0.915635i \(0.631689\pi\)
\(338\) 48.6216 + 28.0717i 0.143851 + 0.0830524i
\(339\) 0 0
\(340\) −1003.21 + 400.485i −2.95061 + 1.17790i
\(341\) 257.103i 0.753967i
\(342\) 0 0
\(343\) 85.4006i 0.248981i
\(344\) 17.5314 10.1218i 0.0509635 0.0294238i
\(345\) 0 0
\(346\) 600.642 + 346.781i 1.73596 + 1.00226i
\(347\) −230.091 + 398.529i −0.663086 + 1.14850i 0.316714 + 0.948521i \(0.397420\pi\)
−0.979800 + 0.199978i \(0.935913\pi\)
\(348\) 0 0
\(349\) 81.1272 + 140.517i 0.232456 + 0.402626i 0.958530 0.284990i \(-0.0919904\pi\)
−0.726074 + 0.687616i \(0.758657\pi\)
\(350\) 189.016 0.540047
\(351\) 0 0
\(352\) 258.429i 0.734175i
\(353\) 143.865 83.0607i 0.407550 0.235299i −0.282186 0.959360i \(-0.591060\pi\)
0.689737 + 0.724060i \(0.257726\pi\)
\(354\) 0 0
\(355\) 3.49079 6.04622i 0.00983320 0.0170316i
\(356\) 639.743 + 369.356i 1.79703 + 1.03752i
\(357\) 0 0
\(358\) 146.427 + 253.619i 0.409014 + 0.708433i
\(359\) 273.618i 0.762166i −0.924541 0.381083i \(-0.875551\pi\)
0.924541 0.381083i \(-0.124449\pi\)
\(360\) 0 0
\(361\) −110.720 −0.306704
\(362\) −224.728 389.240i −0.620796 1.07525i
\(363\) 0 0
\(364\) −62.4633 36.0632i −0.171603 0.0990748i
\(365\) 305.705 + 176.499i 0.837547 + 0.483558i
\(366\) 0 0
\(367\) −444.098 + 256.400i −1.21008 + 0.698638i −0.962776 0.270301i \(-0.912877\pi\)
−0.247301 + 0.968939i \(0.579544\pi\)
\(368\) −50.9235 −0.138379
\(369\) 0 0
\(370\) −256.276 −0.692636
\(371\) −1.70582 2.95457i −0.00459790 0.00796380i
\(372\) 0 0
\(373\) −6.62533 + 11.4754i −0.0177623 + 0.0307652i −0.874770 0.484539i \(-0.838988\pi\)
0.857008 + 0.515304i \(0.172321\pi\)
\(374\) −305.541 + 387.745i −0.816953 + 1.03675i
\(375\) 0 0
\(376\) −212.511 368.079i −0.565188 0.978934i
\(377\) −141.219 −0.374585
\(378\) 0 0
\(379\) 193.185i 0.509723i 0.966978 + 0.254862i \(0.0820299\pi\)
−0.966978 + 0.254862i \(0.917970\pi\)
\(380\) 502.615 + 870.554i 1.32267 + 2.29093i
\(381\) 0 0
\(382\) −43.9907 + 76.1941i −0.115159 + 0.199461i
\(383\) −513.258 296.330i −1.34010 0.773706i −0.353277 0.935519i \(-0.614933\pi\)
−0.986822 + 0.161812i \(0.948266\pi\)
\(384\) 0 0
\(385\) 64.4875 37.2319i 0.167500 0.0967062i
\(386\) 1153.53 2.98841
\(387\) 0 0
\(388\) 270.804i 0.697949i
\(389\) 555.852 320.921i 1.42892 0.824990i 0.431888 0.901927i \(-0.357847\pi\)
0.997036 + 0.0769373i \(0.0245141\pi\)
\(390\) 0 0
\(391\) 386.489 + 304.551i 0.988464 + 0.778904i
\(392\) 363.459 + 209.843i 0.927191 + 0.535314i
\(393\) 0 0
\(394\) 205.997 118.933i 0.522836 0.301860i
\(395\) 1011.59i 2.56098i
\(396\) 0 0
\(397\) 82.8506i 0.208692i 0.994541 + 0.104346i \(0.0332749\pi\)
−0.994541 + 0.104346i \(0.966725\pi\)
\(398\) −293.543 508.432i −0.737546 1.27747i
\(399\) 0 0
\(400\) −57.9662 + 100.400i −0.144916 + 0.251001i
\(401\) 131.632 227.993i 0.328259 0.568561i −0.653908 0.756574i \(-0.726872\pi\)
0.982166 + 0.188014i \(0.0602049\pi\)
\(402\) 0 0
\(403\) 308.517 178.122i 0.765550 0.441991i
\(404\) 379.881i 0.940299i
\(405\) 0 0
\(406\) −32.8765 −0.0809767
\(407\) −63.3866 + 36.5963i −0.155741 + 0.0899171i
\(408\) 0 0
\(409\) −262.484 + 454.636i −0.641771 + 1.11158i 0.343266 + 0.939238i \(0.388467\pi\)
−0.985037 + 0.172342i \(0.944867\pi\)
\(410\) −1672.92 965.859i −4.08029 2.35575i
\(411\) 0 0
\(412\) 465.563 + 806.378i 1.13001 + 1.95723i
\(413\) 41.9075 0.101471
\(414\) 0 0
\(415\) 1250.48i 3.01320i
\(416\) −310.109 + 179.042i −0.745454 + 0.430388i
\(417\) 0 0
\(418\) 397.854 + 229.701i 0.951804 + 0.549524i
\(419\) −228.233 + 395.311i −0.544709 + 0.943464i 0.453916 + 0.891045i \(0.350027\pi\)
−0.998625 + 0.0524196i \(0.983307\pi\)
\(420\) 0 0
\(421\) 245.380 + 425.010i 0.582850 + 1.00953i 0.995140 + 0.0984726i \(0.0313957\pi\)
−0.412290 + 0.911053i \(0.635271\pi\)
\(422\) −517.344 −1.22593
\(423\) 0 0
\(424\) 33.8000 0.0797171
\(425\) 1040.39 415.329i 2.44798 0.977246i
\(426\) 0 0
\(427\) −26.3024 + 45.5572i −0.0615982 + 0.106691i
\(428\) −267.150 + 462.717i −0.624182 + 1.08111i
\(429\) 0 0
\(430\) −62.7253 + 36.2145i −0.145873 + 0.0842197i
\(431\) −472.289 −1.09580 −0.547899 0.836544i \(-0.684572\pi\)
−0.547899 + 0.836544i \(0.684572\pi\)
\(432\) 0 0
\(433\) 43.2832 0.0999611 0.0499806 0.998750i \(-0.484084\pi\)
0.0499806 + 0.998750i \(0.484084\pi\)
\(434\) 71.8245 41.4679i 0.165494 0.0955481i
\(435\) 0 0
\(436\) −673.052 388.587i −1.54370 0.891254i
\(437\) 228.957 396.566i 0.523930 0.907473i
\(438\) 0 0
\(439\) −547.444 + 316.067i −1.24702 + 0.719970i −0.970515 0.241042i \(-0.922511\pi\)
−0.276509 + 0.961011i \(0.589178\pi\)
\(440\) 737.732i 1.67666i
\(441\) 0 0
\(442\) −676.965 98.0091i −1.53159 0.221740i
\(443\) −65.6955 + 37.9293i −0.148297 + 0.0856192i −0.572312 0.820036i \(-0.693954\pi\)
0.424016 + 0.905655i \(0.360620\pi\)
\(444\) 0 0
\(445\) −915.161 528.368i −2.05654 1.18734i
\(446\) −394.274 227.634i −0.884023 0.510391i
\(447\) 0 0
\(448\) −77.5483 + 44.7725i −0.173099 + 0.0999386i
\(449\) 205.960 0.458708 0.229354 0.973343i \(-0.426339\pi\)
0.229354 + 0.973343i \(0.426339\pi\)
\(450\) 0 0
\(451\) −551.701 −1.22328
\(452\) 128.268 + 222.167i 0.283779 + 0.491520i
\(453\) 0 0
\(454\) 437.280 + 252.464i 0.963172 + 0.556088i
\(455\) 89.3547 + 51.5889i 0.196384 + 0.113382i
\(456\) 0 0
\(457\) 66.3571 + 114.934i 0.145201 + 0.251496i 0.929448 0.368953i \(-0.120284\pi\)
−0.784247 + 0.620449i \(0.786950\pi\)
\(458\) 452.796i 0.988637i
\(459\) 0 0
\(460\) 1839.18 3.99821
\(461\) 28.9527 16.7158i 0.0628041 0.0362600i −0.468269 0.883586i \(-0.655122\pi\)
0.531073 + 0.847326i \(0.321789\pi\)
\(462\) 0 0
\(463\) −215.524 + 373.299i −0.465495 + 0.806260i −0.999224 0.0393952i \(-0.987457\pi\)
0.533729 + 0.845656i \(0.320790\pi\)
\(464\) 10.0823 17.4631i 0.0217292 0.0376361i
\(465\) 0 0
\(466\) 646.526 373.272i 1.38739 0.801012i
\(467\) 151.083i 0.323517i 0.986830 + 0.161759i \(0.0517166\pi\)
−0.986830 + 0.161759i \(0.948283\pi\)
\(468\) 0 0
\(469\) 79.3145i 0.169114i
\(470\) 760.337 + 1316.94i 1.61774 + 2.80200i
\(471\) 0 0
\(472\) −207.594 + 359.564i −0.439819 + 0.761788i
\(473\) −10.3429 + 17.9144i −0.0218666 + 0.0378740i
\(474\) 0 0
\(475\) −521.244 902.821i −1.09736 1.90068i
\(476\) −98.4899 14.2591i −0.206911 0.0299561i
\(477\) 0 0
\(478\) 1.96275 0.00410618
\(479\) 4.46879 + 7.74018i 0.00932942 + 0.0161590i 0.870652 0.491899i \(-0.163697\pi\)
−0.861323 + 0.508058i \(0.830364\pi\)
\(480\) 0 0
\(481\) −87.8292 50.7082i −0.182597 0.105422i
\(482\) 302.010 523.097i 0.626577 1.08526i
\(483\) 0 0
\(484\) −139.725 242.011i −0.288689 0.500023i
\(485\) 387.389i 0.798741i
\(486\) 0 0
\(487\) 565.088i 1.16035i −0.814493 0.580173i \(-0.802985\pi\)
0.814493 0.580173i \(-0.197015\pi\)
\(488\) −260.585 451.347i −0.533986 0.924891i
\(489\) 0 0
\(490\) −1300.41 750.793i −2.65390 1.53223i
\(491\) 419.975 + 242.472i 0.855345 + 0.493834i 0.862451 0.506141i \(-0.168928\pi\)
−0.00710548 + 0.999975i \(0.502262\pi\)
\(492\) 0 0
\(493\) −180.960 + 72.2403i −0.367060 + 0.146532i
\(494\) 636.553i 1.28857i
\(495\) 0 0
\(496\) 50.8683i 0.102557i
\(497\) 0.557031 0.321602i 0.00112079 0.000647086i
\(498\) 0 0
\(499\) −554.670 320.239i −1.11156 0.641762i −0.172330 0.985039i \(-0.555129\pi\)
−0.939234 + 0.343278i \(0.888463\pi\)
\(500\) 1299.28 2250.41i 2.59855 4.50082i
\(501\) 0 0
\(502\) −746.934 1293.73i −1.48792 2.57715i
\(503\) −404.960 −0.805090 −0.402545 0.915400i \(-0.631874\pi\)
−0.402545 + 0.915400i \(0.631874\pi\)
\(504\) 0 0
\(505\) 543.425i 1.07609i
\(506\) 727.917 420.263i 1.43857 0.830560i
\(507\) 0 0
\(508\) 602.034 1042.75i 1.18511 2.05266i
\(509\) −491.624 283.839i −0.965863 0.557641i −0.0678907 0.997693i \(-0.521627\pi\)
−0.897973 + 0.440051i \(0.854960\pi\)
\(510\) 0 0
\(511\) 16.2606 + 28.1642i 0.0318211 + 0.0551158i
\(512\) 112.370i 0.219472i
\(513\) 0 0
\(514\) 830.438 1.61564
\(515\) −665.994 1153.54i −1.29319 2.23987i
\(516\) 0 0
\(517\) 376.120 + 217.153i 0.727505 + 0.420025i
\(518\) −20.4472 11.8052i −0.0394733 0.0227899i
\(519\) 0 0
\(520\) −885.260 + 511.105i −1.70242 + 0.982894i
\(521\) 857.106 1.64512 0.822558 0.568681i \(-0.192546\pi\)
0.822558 + 0.568681i \(0.192546\pi\)
\(522\) 0 0
\(523\) −142.429 −0.272332 −0.136166 0.990686i \(-0.543478\pi\)
−0.136166 + 0.990686i \(0.543478\pi\)
\(524\) −393.322 681.254i −0.750614 1.30010i
\(525\) 0 0
\(526\) 289.820 501.983i 0.550989 0.954341i
\(527\) 304.221 386.071i 0.577270 0.732582i
\(528\) 0 0
\(529\) −154.402 267.433i −0.291876 0.505544i
\(530\) −120.932 −0.228174
\(531\) 0 0
\(532\) 92.6105i 0.174080i
\(533\) −382.221 662.027i −0.717113 1.24208i
\(534\) 0 0
\(535\) 382.161 661.923i 0.714320 1.23724i
\(536\) −680.514 392.895i −1.26962 0.733013i
\(537\) 0 0
\(538\) 234.633 135.466i 0.436121 0.251795i
\(539\) −428.854 −0.795648
\(540\) 0 0
\(541\) 279.116i 0.515927i −0.966155 0.257963i \(-0.916949\pi\)
0.966155 0.257963i \(-0.0830514\pi\)
\(542\) 360.933 208.385i 0.665928 0.384474i
\(543\) 0 0
\(544\) −305.791 + 388.063i −0.562117 + 0.713352i
\(545\) 962.811 + 555.879i 1.76663 + 1.01996i
\(546\) 0 0
\(547\) 44.0215 25.4158i 0.0804780 0.0464640i −0.459221 0.888322i \(-0.651871\pi\)
0.539699 + 0.841858i \(0.318538\pi\)
\(548\) 1165.50i 2.12683i
\(549\) 0 0
\(550\) 1913.54i 3.47917i
\(551\) 90.6625 + 157.032i 0.164542 + 0.284995i
\(552\) 0 0
\(553\) −46.5981 + 80.7102i −0.0842642 + 0.145950i
\(554\) −452.038 + 782.953i −0.815953 + 1.41327i
\(555\) 0 0
\(556\) 1044.27 602.910i 1.87819 1.08437i
\(557\) 245.097i 0.440031i −0.975496 0.220016i \(-0.929389\pi\)
0.975496 0.220016i \(-0.0706109\pi\)
\(558\) 0 0
\(559\) −28.6625 −0.0512745
\(560\) −12.7590 + 7.36641i −0.0227839 + 0.0131543i
\(561\) 0 0
\(562\) −745.733 + 1291.65i −1.32693 + 2.29830i
\(563\) 13.2728 + 7.66308i 0.0235752 + 0.0136112i 0.511741 0.859140i \(-0.329001\pi\)
−0.488166 + 0.872751i \(0.662334\pi\)
\(564\) 0 0
\(565\) −183.489 317.813i −0.324760 0.562501i
\(566\) 614.376 1.08547
\(567\) 0 0
\(568\) 6.37239i 0.0112190i
\(569\) −498.322 + 287.707i −0.875786 + 0.505635i −0.869267 0.494343i \(-0.835409\pi\)
−0.00651941 + 0.999979i \(0.502075\pi\)
\(570\) 0 0
\(571\) 436.016 + 251.734i 0.763601 + 0.440865i 0.830587 0.556889i \(-0.188005\pi\)
−0.0669862 + 0.997754i \(0.521338\pi\)
\(572\) −365.093 + 632.359i −0.638274 + 1.10552i
\(573\) 0 0
\(574\) −88.9834 154.124i −0.155023 0.268508i
\(575\) −1907.35 −3.31712
\(576\) 0 0
\(577\) 702.293 1.21715 0.608573 0.793498i \(-0.291742\pi\)
0.608573 + 0.793498i \(0.291742\pi\)
\(578\) −917.613 + 220.710i −1.58756 + 0.381851i
\(579\) 0 0
\(580\) −364.139 + 630.707i −0.627825 + 1.08743i
\(581\) −57.6025 + 99.7705i −0.0991437 + 0.171722i
\(582\) 0 0
\(583\) −29.9111 + 17.2692i −0.0513056 + 0.0296213i
\(584\) −322.196 −0.551705
\(585\) 0 0
\(586\) −1764.87 −3.01173
\(587\) −814.714 + 470.375i −1.38793 + 0.801321i −0.993082 0.117427i \(-0.962536\pi\)
−0.394846 + 0.918747i \(0.629202\pi\)
\(588\) 0 0
\(589\) −396.136 228.709i −0.672557 0.388301i
\(590\) 742.747 1286.48i 1.25889 2.18047i
\(591\) 0 0
\(592\) 12.5412 7.24066i 0.0211844 0.0122308i
\(593\) 313.881i 0.529311i 0.964343 + 0.264655i \(0.0852582\pi\)
−0.964343 + 0.264655i \(0.914742\pi\)
\(594\) 0 0
\(595\) 140.891 + 20.3978i 0.236792 + 0.0342821i
\(596\) −52.8452 + 30.5102i −0.0886664 + 0.0511916i
\(597\) 0 0
\(598\) 1008.61 + 582.322i 1.68664 + 0.973782i
\(599\) −697.940 402.956i −1.16518 0.672714i −0.212637 0.977131i \(-0.568205\pi\)
−0.952539 + 0.304417i \(0.901538\pi\)
\(600\) 0 0
\(601\) −466.199 + 269.160i −0.775705 + 0.447853i −0.834906 0.550393i \(-0.814478\pi\)
0.0592011 + 0.998246i \(0.481145\pi\)
\(602\) −6.67279 −0.0110844
\(603\) 0 0
\(604\) 46.6522 0.0772387
\(605\) 199.879 + 346.201i 0.330379 + 0.572232i
\(606\) 0 0
\(607\) 450.953 + 260.358i 0.742921 + 0.428925i 0.823130 0.567853i \(-0.192226\pi\)
−0.0802096 + 0.996778i \(0.525559\pi\)
\(608\) 398.180 + 229.890i 0.654902 + 0.378108i
\(609\) 0 0
\(610\) 932.342 + 1614.86i 1.52843 + 2.64732i
\(611\) 601.779i 0.984909i
\(612\) 0 0
\(613\) 398.338 0.649817 0.324908 0.945745i \(-0.394667\pi\)
0.324908 + 0.945745i \(0.394667\pi\)
\(614\) −212.633 + 122.764i −0.346308 + 0.199941i
\(615\) 0 0
\(616\) −33.9832 + 58.8605i −0.0551675 + 0.0955528i
\(617\) −467.483 + 809.703i −0.757670 + 1.31232i 0.186366 + 0.982480i \(0.440329\pi\)
−0.944036 + 0.329843i \(0.893004\pi\)
\(618\) 0 0
\(619\) −946.839 + 546.658i −1.52963 + 0.883131i −0.530250 + 0.847841i \(0.677902\pi\)
−0.999377 + 0.0352896i \(0.988765\pi\)
\(620\) 1837.18i 2.96320i
\(621\) 0 0
\(622\) 1051.61i 1.69069i
\(623\) −48.6779 84.3126i −0.0781347 0.135333i
\(624\) 0 0
\(625\) −1034.93 + 1792.56i −1.65589 + 2.86809i
\(626\) 701.651 1215.30i 1.12085 1.94137i
\(627\) 0 0
\(628\) 8.01081 + 13.8751i 0.0127561 + 0.0220942i
\(629\) −138.486 20.0496i −0.220168 0.0318754i
\(630\) 0 0
\(631\) 127.975 0.202814 0.101407 0.994845i \(-0.467666\pi\)
0.101407 + 0.994845i \(0.467666\pi\)
\(632\) −461.659 799.617i −0.730474 1.26522i
\(633\) 0 0
\(634\) −1000.28 577.514i −1.57773 0.910905i
\(635\) −861.218 + 1491.67i −1.35625 + 2.34909i
\(636\) 0 0
\(637\) −297.113 514.614i −0.466425 0.807872i
\(638\) 332.832i 0.521680i
\(639\) 0 0
\(640\) 2065.77i 3.22777i
\(641\) −534.465 925.721i −0.833799 1.44418i −0.895004 0.446058i \(-0.852828\pi\)
0.0612048 0.998125i \(-0.480506\pi\)
\(642\) 0 0
\(643\) −113.768 65.6838i −0.176933 0.102152i 0.408918 0.912571i \(-0.365906\pi\)
−0.585851 + 0.810419i \(0.699239\pi\)
\(644\) 146.740 + 84.7205i 0.227857 + 0.131554i
\(645\) 0 0
\(646\) 325.628 + 815.692i 0.504068 + 1.26268i
\(647\) 437.023i 0.675461i −0.941243 0.337731i \(-0.890341\pi\)
0.941243 0.337731i \(-0.109659\pi\)
\(648\) 0 0
\(649\) 424.259i 0.653711i
\(650\) 2296.20 1325.71i 3.53262 2.03956i
\(651\) 0 0
\(652\) −515.392 297.562i −0.790479 0.456383i
\(653\) 86.3726 149.602i 0.132270 0.229099i −0.792281 0.610156i \(-0.791107\pi\)
0.924551 + 0.381057i \(0.124440\pi\)
\(654\) 0 0
\(655\) 562.653 + 974.543i 0.859012 + 1.48785i
\(656\) 109.155 0.166395
\(657\) 0 0
\(658\) 140.098i 0.212915i
\(659\) 184.210 106.353i 0.279529 0.161386i −0.353681 0.935366i \(-0.615070\pi\)
0.633210 + 0.773980i \(0.281737\pi\)
\(660\) 0 0
\(661\) 414.459 717.865i 0.627019 1.08603i −0.361128 0.932516i \(-0.617608\pi\)
0.988147 0.153512i \(-0.0490585\pi\)
\(662\) −165.450 95.5225i −0.249924 0.144294i
\(663\) 0 0
\(664\) −570.683 988.452i −0.859462 1.48863i
\(665\) 132.481i 0.199219i
\(666\) 0 0
\(667\) 331.754 0.497382
\(668\) 319.940 + 554.153i 0.478952 + 0.829570i
\(669\) 0 0
\(670\) 2434.79 + 1405.73i 3.63402 + 2.09810i
\(671\) 461.206 + 266.278i 0.687342 + 0.396837i
\(672\) 0 0
\(673\) 58.9517 34.0358i 0.0875954 0.0505733i −0.455562 0.890204i \(-0.650562\pi\)
0.543158 + 0.839631i \(0.317228\pi\)
\(674\) 241.383 0.358135
\(675\) 0 0
\(676\) 114.579 0.169495
\(677\) 170.933 + 296.065i 0.252486 + 0.437319i 0.964210 0.265141i \(-0.0854184\pi\)
−0.711723 + 0.702460i \(0.752085\pi\)
\(678\) 0 0
\(679\) 17.8448 30.9082i 0.0262811 0.0455201i
\(680\) −872.935 + 1107.79i −1.28373 + 1.62911i
\(681\) 0 0
\(682\) −419.808 727.129i −0.615554 1.06617i
\(683\) −224.819 −0.329165 −0.164582 0.986363i \(-0.552628\pi\)
−0.164582 + 0.986363i \(0.552628\pi\)
\(684\) 0 0
\(685\) 1667.27i 2.43397i
\(686\) −139.446 241.527i −0.203273 0.352080i
\(687\) 0 0
\(688\) 2.04636 3.54441i 0.00297437 0.00515175i
\(689\) −41.4452 23.9284i −0.0601527 0.0347292i
\(690\) 0 0
\(691\) 36.0581 20.8182i 0.0521825 0.0301276i −0.473682 0.880696i \(-0.657075\pi\)
0.525864 + 0.850568i \(0.323742\pi\)
\(692\) 1415.44 2.04543
\(693\) 0 0
\(694\) 1502.81i 2.16543i
\(695\) −1493.84 + 862.472i −2.14942 + 1.24097i
\(696\) 0 0
\(697\) −828.445 652.810i −1.18859 0.936599i
\(698\) 458.882 + 264.936i 0.657425 + 0.379564i
\(699\) 0 0
\(700\) 334.069 192.875i 0.477241 0.275535i
\(701\) 742.107i 1.05864i −0.848422 0.529320i \(-0.822447\pi\)
0.848422 0.529320i \(-0.177553\pi\)
\(702\) 0 0
\(703\) 130.219i 0.185233i
\(704\) 453.263 + 785.074i 0.643839 + 1.11516i
\(705\) 0 0
\(706\) 271.250 469.819i 0.384207 0.665465i
\(707\) 25.0325 43.3576i 0.0354067 0.0613262i
\(708\) 0 0
\(709\) −365.285 + 210.898i −0.515212 + 0.297458i −0.734974 0.678096i \(-0.762805\pi\)
0.219761 + 0.975554i \(0.429472\pi\)
\(710\) 22.7996i 0.0321121i
\(711\) 0 0
\(712\) 964.530 1.35468
\(713\) −724.774 + 418.449i −1.01651 + 0.586884i
\(714\) 0 0
\(715\) 522.270 904.599i 0.730448 1.26517i
\(716\) 517.592 + 298.832i 0.722894 + 0.417363i
\(717\) 0 0
\(718\) −446.774 773.836i −0.622249 1.07777i
\(719\) 805.388 1.12015 0.560075 0.828442i \(-0.310772\pi\)
0.560075 + 0.828442i \(0.310772\pi\)
\(720\) 0 0
\(721\) 122.714i 0.170200i
\(722\) −313.135 + 180.788i −0.433704 + 0.250399i
\(723\) 0 0
\(724\) −794.371 458.631i −1.09720 0.633468i
\(725\) 377.636 654.084i 0.520877 0.902185i
\(726\) 0 0
\(727\) −557.548 965.701i −0.766916 1.32834i −0.939228 0.343295i \(-0.888457\pi\)
0.172312 0.985042i \(-0.444876\pi\)
\(728\) −94.1749 −0.129361
\(729\) 0 0
\(730\) 1152.78 1.57915
\(731\) −36.7286 + 14.6622i −0.0502444 + 0.0200578i
\(732\) 0 0
\(733\) −283.568 + 491.155i −0.386860 + 0.670061i −0.992025 0.126039i \(-0.959774\pi\)
0.605166 + 0.796100i \(0.293107\pi\)
\(734\) −837.322 + 1450.28i −1.14077 + 1.97586i
\(735\) 0 0
\(736\) 728.515 420.608i 0.989830 0.571479i
\(737\) 802.955 1.08949
\(738\) 0 0
\(739\) 231.813 0.313684 0.156842 0.987624i \(-0.449869\pi\)
0.156842 + 0.987624i \(0.449869\pi\)
\(740\) −452.943 + 261.507i −0.612085 + 0.353388i
\(741\) 0 0
\(742\) −9.64869 5.57068i −0.0130036 0.00750765i
\(743\) −125.933 + 218.122i −0.169492 + 0.293569i −0.938241 0.345981i \(-0.887546\pi\)
0.768749 + 0.639550i \(0.220879\pi\)
\(744\) 0 0
\(745\) 75.5958 43.6452i 0.101471 0.0585842i
\(746\) 43.2725i 0.0580060i
\(747\) 0 0
\(748\) −144.355 + 997.080i −0.192987 + 1.33300i
\(749\) 60.9821 35.2080i 0.0814181 0.0470067i
\(750\) 0 0
\(751\) −453.273 261.697i −0.603559 0.348465i 0.166881 0.985977i \(-0.446630\pi\)
−0.770440 + 0.637512i \(0.779964\pi\)
\(752\) −74.4162 42.9642i −0.0989577 0.0571333i
\(753\) 0 0
\(754\) −399.390 + 230.588i −0.529695 + 0.305819i
\(755\) −66.7366 −0.0883929
\(756\) 0 0
\(757\) 329.893 0.435790 0.217895 0.975972i \(-0.430081\pi\)
0.217895 + 0.975972i \(0.430081\pi\)
\(758\) 315.441 + 546.359i 0.416149 + 0.720791i
\(759\) 0 0
\(760\) 1136.68 + 656.260i 1.49563 + 0.863500i
\(761\) −839.259 484.546i −1.10284 0.636723i −0.165872 0.986147i \(-0.553044\pi\)
−0.936965 + 0.349424i \(0.886377\pi\)
\(762\) 0 0
\(763\) 51.2124 + 88.7025i 0.0671198 + 0.116255i
\(764\) 179.555i 0.235019i
\(765\) 0 0
\(766\) −1935.44 −2.52668
\(767\) 509.100 293.929i 0.663755 0.383219i
\(768\) 0 0
\(769\) −154.348 + 267.338i −0.200712 + 0.347644i −0.948758 0.316003i \(-0.897659\pi\)
0.748046 + 0.663647i \(0.230992\pi\)
\(770\) 121.588 210.596i 0.157906 0.273501i
\(771\) 0 0
\(772\) 2038.75 1177.07i 2.64087 1.52471i
\(773\) 1477.85i 1.91183i −0.293640 0.955916i \(-0.594867\pi\)
0.293640 0.955916i \(-0.405133\pi\)
\(774\) 0 0
\(775\) 1905.28i 2.45843i
\(776\) 176.793 + 306.215i 0.227827 + 0.394607i
\(777\) 0 0
\(778\) 1048.03 1815.24i 1.34708 2.33321i
\(779\) −490.773 + 850.044i −0.630004 + 1.09120i
\(780\) 0 0
\(781\) −3.25580 5.63920i −0.00416875 0.00722049i
\(782\) 1590.34 + 230.245i 2.03368 + 0.294431i
\(783\) 0 0
\(784\) 84.8498 0.108227
\(785\) −11.4596 19.8486i −0.0145982 0.0252848i
\(786\) 0 0
\(787\) 752.691 + 434.566i 0.956405 + 0.552181i 0.895065 0.445936i \(-0.147129\pi\)
0.0613402 + 0.998117i \(0.480463\pi\)
\(788\) 242.721 420.405i 0.308021 0.533509i
\(789\) 0 0
\(790\) 1651.76 + 2860.93i 2.09084 + 3.62143i
\(791\) 33.8093i 0.0427425i
\(792\) 0 0
\(793\) 737.915i 0.930536i
\(794\) 135.282 + 234.315i 0.170380 + 0.295107i
\(795\) 0 0
\(796\) −1037.62 599.070i −1.30354 0.752601i
\(797\) 54.9556 + 31.7287i 0.0689531 + 0.0398101i 0.534080 0.845434i \(-0.320658\pi\)
−0.465127 + 0.885244i \(0.653991\pi\)
\(798\) 0 0
\(799\) 307.840 + 771.132i 0.385281 + 0.965122i
\(800\) 1915.11i 2.39389i
\(801\) 0 0
\(802\) 859.735i 1.07199i
\(803\) 285.125 164.617i 0.355075 0.205003i
\(804\) 0 0
\(805\) −209.914 121.194i −0.260763 0.150551i
\(806\) 581.691 1007.52i 0.721701 1.25002i
\(807\) 0 0
\(808\) 248.004 + 429.555i 0.306935 + 0.531628i
\(809\) −1330.12 −1.64415 −0.822076 0.569378i \(-0.807184\pi\)
−0.822076 + 0.569378i \(0.807184\pi\)
\(810\) 0 0
\(811\) 295.474i 0.364333i −0.983268 0.182166i \(-0.941689\pi\)
0.983268 0.182166i \(-0.0583109\pi\)
\(812\) −58.1062 + 33.5476i −0.0715594 + 0.0413148i
\(813\) 0 0
\(814\) −119.512 + 207.001i −0.146820 + 0.254300i
\(815\) 737.276 + 425.666i 0.904633 + 0.522290i
\(816\) 0 0
\(817\) 18.4013 + 31.8720i 0.0225230 + 0.0390110i
\(818\) 1714.38i 2.09582i
\(819\) 0 0
\(820\) −3942.30 −4.80768
\(821\) −428.265 741.776i −0.521638 0.903504i −0.999683 0.0251683i \(-0.991988\pi\)
0.478045 0.878335i \(-0.341345\pi\)
\(822\) 0 0
\(823\) −29.1469 16.8280i −0.0354155 0.0204471i 0.482188 0.876068i \(-0.339842\pi\)
−0.517603 + 0.855621i \(0.673176\pi\)
\(824\) 1052.88 + 607.882i 1.27777 + 0.737720i
\(825\) 0 0
\(826\) 118.521 68.4284i 0.143488 0.0828431i
\(827\) 948.705 1.14716 0.573582 0.819148i \(-0.305553\pi\)
0.573582 + 0.819148i \(0.305553\pi\)
\(828\) 0 0
\(829\) 804.088 0.969949 0.484974 0.874528i \(-0.338829\pi\)
0.484974 + 0.874528i \(0.338829\pi\)
\(830\) 2041.83 + 3536.56i 2.46004 + 4.26092i
\(831\) 0 0
\(832\) −628.046 + 1087.81i −0.754863 + 1.30746i
\(833\) −643.976 507.449i −0.773081 0.609183i
\(834\) 0 0
\(835\) −457.679 792.723i −0.548118 0.949369i
\(836\) 937.559 1.12148
\(837\) 0 0
\(838\) 1490.67i 1.77885i
\(839\) 127.234 + 220.375i 0.151649 + 0.262664i 0.931834 0.362885i \(-0.118208\pi\)
−0.780185 + 0.625549i \(0.784875\pi\)
\(840\) 0 0
\(841\) 354.816 614.559i 0.421898 0.730748i
\(842\) 1387.95 + 801.332i 1.64839 + 0.951701i
\(843\) 0 0
\(844\) −914.357 + 527.904i −1.08336 + 0.625479i
\(845\) −163.907 −0.193972
\(846\) 0 0
\(847\) 36.8292i 0.0434819i
\(848\) 5.91799 3.41675i 0.00697876 0.00402919i
\(849\) 0 0
\(850\) 2264.23 2873.42i 2.66380 3.38049i
\(851\) 206.330 + 119.125i 0.242456 + 0.139982i
\(852\) 0 0
\(853\) 151.777 87.6286i 0.177933 0.102730i −0.408388 0.912808i \(-0.633909\pi\)
0.586321 + 0.810079i \(0.300576\pi\)
\(854\) 171.791i 0.201160i
\(855\) 0 0
\(856\) 697.631i 0.814989i
\(857\) 421.152 + 729.456i 0.491425 + 0.851174i 0.999951 0.00987289i \(-0.00314269\pi\)
−0.508526 + 0.861047i \(0.669809\pi\)
\(858\) 0 0
\(859\) −127.044 + 220.047i −0.147898 + 0.256166i −0.930450 0.366418i \(-0.880584\pi\)
0.782553 + 0.622584i \(0.213917\pi\)
\(860\) −73.9074 + 128.011i −0.0859388 + 0.148850i
\(861\) 0 0
\(862\) −1335.71 + 771.173i −1.54955 + 0.894632i
\(863\) 78.9314i 0.0914617i 0.998954 + 0.0457308i \(0.0145617\pi\)
−0.998954 + 0.0457308i \(0.985438\pi\)
\(864\) 0 0
\(865\) −2024.80 −2.34081
\(866\) 122.412 70.6746i 0.141353 0.0816103i
\(867\) 0 0
\(868\) 84.6287 146.581i 0.0974985 0.168872i
\(869\) 817.085 + 471.744i 0.940259 + 0.542859i
\(870\) 0 0
\(871\) 556.292 + 963.526i 0.638682 + 1.10623i
\(872\) −1014.75 −1.16370
\(873\) 0 0
\(874\) 1495.40i 1.71099i
\(875\) −296.585 + 171.233i −0.338954 + 0.195695i
\(876\) 0 0
\(877\) 655.371 + 378.379i 0.747288 + 0.431447i 0.824713 0.565551i \(-0.191337\pi\)
−0.0774253 + 0.996998i \(0.524670\pi\)
\(878\) −1032.17 + 1787.78i −1.17560 + 2.03619i
\(879\) 0 0
\(880\) 74.5753 + 129.168i 0.0847446 + 0.146782i
\(881\) −762.067 −0.865002 −0.432501 0.901633i \(-0.642369\pi\)
−0.432501 + 0.901633i \(0.642369\pi\)
\(882\) 0 0
\(883\) 464.583 0.526142 0.263071 0.964776i \(-0.415265\pi\)
0.263071 + 0.964776i \(0.415265\pi\)
\(884\) −1296.48 + 517.561i −1.46661 + 0.585477i
\(885\) 0 0
\(886\) −123.865 + 214.541i −0.139803 + 0.242145i
\(887\) 561.347 972.282i 0.632860 1.09615i −0.354104 0.935206i \(-0.615214\pi\)
0.986964 0.160940i \(-0.0514526\pi\)
\(888\) 0 0
\(889\) −137.426 + 79.3429i −0.154585 + 0.0892496i
\(890\) −3450.97 −3.87749
\(891\) 0 0
\(892\) −929.124 −1.04162
\(893\) 669.166 386.343i 0.749346 0.432635i
\(894\) 0 0
\(895\) −740.423 427.483i −0.827288 0.477635i
\(896\) −95.1584 + 164.819i −0.106204 + 0.183950i
\(897\) 0 0
\(898\) 582.488 336.300i 0.648651 0.374499i
\(899\) 331.395i 0.368626i
\(900\) 0 0
\(901\) −65.3493 9.46110i −0.0725298 0.0105007i
\(902\) −1560.30 + 900.840i −1.72982 + 0.998714i
\(903\) 0 0
\(904\) 290.082 + 167.479i 0.320887 + 0.185264i
\(905\) 1136.36 + 656.077i 1.25565 + 0.724947i
\(906\) 0 0
\(907\) 473.660 273.468i 0.522227 0.301508i −0.215618 0.976478i \(-0.569177\pi\)
0.737845 + 0.674970i \(0.235843\pi\)
\(908\) 1030.47 1.13488
\(909\) 0 0
\(910\) 336.946 0.370271
\(911\) 331.911 + 574.887i 0.364337 + 0.631051i 0.988670 0.150108i \(-0.0479622\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(912\) 0 0
\(913\) 1010.04 + 583.150i 1.10629 + 0.638718i
\(914\) 375.338 + 216.701i 0.410654 + 0.237091i
\(915\) 0 0
\(916\) −462.038 800.274i −0.504409 0.873661i
\(917\) 103.673i 0.113057i
\(918\) 0 0
\(919\) 560.444 0.609841 0.304920 0.952378i \(-0.401370\pi\)
0.304920 + 0.952378i \(0.401370\pi\)
\(920\) 2079.67 1200.70i 2.26051 1.30511i
\(921\) 0 0
\(922\) 54.5887 94.5503i 0.0592068 0.102549i
\(923\) 4.51127 7.81375i 0.00488762 0.00846560i
\(924\) 0 0
\(925\) 469.732 271.200i 0.507818 0.293189i
\(926\) 1407.67i 1.52016i
\(927\) 0 0
\(928\) 333.105i 0.358949i
\(929\) −340.702 590.113i −0.366741 0.635213i 0.622313 0.782768i \(-0.286193\pi\)
−0.989054 + 0.147555i \(0.952860\pi\)
\(930\) 0 0
\(931\) −381.493 + 660.766i −0.409767 + 0.709738i
\(932\) 761.782 1319.45i 0.817363 1.41571i
\(933\) 0 0
\(934\) 246.694 + 427.287i 0.264126 + 0.457480i
\(935\) 206.501 1426.34i 0.220857 1.52549i
\(936\) 0 0
\(937\) −748.388 −0.798707 −0.399353 0.916797i \(-0.630765\pi\)
−0.399353 + 0.916797i \(0.630765\pi\)
\(938\) 129.508 + 224.315i 0.138068 + 0.239141i
\(939\) 0 0
\(940\) 2687.65 + 1551.71i 2.85920 + 1.65076i
\(941\) 286.717 496.608i 0.304693 0.527745i −0.672500 0.740098i \(-0.734779\pi\)
0.977193 + 0.212353i \(0.0681126\pi\)
\(942\) 0 0
\(943\) 897.923 + 1555.25i 0.952198 + 1.64926i
\(944\) 83.9406i 0.0889201i
\(945\) 0 0
\(946\) 67.5532i 0.0714093i
\(947\) 381.495 + 660.768i 0.402846 + 0.697749i 0.994068 0.108760i \(-0.0346879\pi\)
−0.591223 + 0.806508i \(0.701355\pi\)
\(948\) 0 0
\(949\) 395.073 + 228.096i 0.416305 + 0.240354i
\(950\) −2948.33 1702.22i −3.10350 1.79181i
\(951\) 0 0
\(952\) −120.678 + 48.1751i −0.126762 + 0.0506041i
\(953\) 672.823i 0.706005i 0.935622 + 0.353002i \(0.114839\pi\)
−0.935622 + 0.353002i \(0.885161\pi\)
\(954\) 0 0
\(955\) 256.855i 0.268959i
\(956\) 3.46898 2.00282i 0.00362864 0.00209500i
\(957\) 0 0
\(958\) 25.2770 + 14.5937i 0.0263851 + 0.0152335i
\(959\) 76.8018 133.025i 0.0800853 0.138712i
\(960\) 0 0
\(961\) −62.5048 108.261i −0.0650414 0.112655i
\(962\) −331.194 −0.344277
\(963\) 0 0
\(964\) 1232.70i 1.27873i
\(965\) −2916.46 + 1683.82i −3.02224 + 1.74489i
\(966\) 0 0
\(967\) 429.853 744.528i 0.444523 0.769936i −0.553496 0.832852i \(-0.686707\pi\)
0.998019 + 0.0629160i \(0.0200400\pi\)
\(968\) −315.992 182.438i −0.326438 0.188469i
\(969\) 0 0
\(970\) −632.545 1095.60i −0.652108 1.12949i
\(971\) 238.263i 0.245379i −0.992445 0.122689i \(-0.960848\pi\)
0.992445 0.122689i \(-0.0391519\pi\)
\(972\) 0 0
\(973\) −158.917 −0.163327
\(974\) −922.700 1598.16i −0.947330 1.64082i
\(975\) 0 0
\(976\) −91.2508 52.6837i −0.0934946 0.0539792i
\(977\) 1257.67 + 726.115i 1.28727 + 0.743208i 0.978167 0.207819i \(-0.0666364\pi\)
0.309107 + 0.951027i \(0.399970\pi\)
\(978\) 0 0
\(979\) −853.554 + 492.800i −0.871864 + 0.503371i
\(980\) −3064.47 −3.12701
\(981\) 0 0
\(982\) 1583.68 1.61271
\(983\) −422.965 732.597i −0.430280 0.745266i 0.566618 0.823981i \(-0.308252\pi\)
−0.996897 + 0.0787148i \(0.974918\pi\)
\(984\) 0 0
\(985\) −347.216 + 601.395i −0.352503 + 0.610553i
\(986\) −393.829 + 499.787i −0.399421 + 0.506884i
\(987\) 0 0
\(988\) 649.547 + 1125.05i 0.657436 + 1.13871i
\(989\) 67.3345 0.0680834
\(990\) 0 0
\(991\) 1269.61i 1.28114i −0.767899 0.640571i \(-0.778698\pi\)
0.767899 0.640571i \(-0.221302\pi\)
\(992\) −420.152 727.725i −0.423541 0.733594i
\(993\) 0 0
\(994\) 1.05025 1.81909i 0.00105659 0.00183007i
\(995\) 1484.33 + 856.979i 1.49179 + 0.861285i
\(996\) 0 0
\(997\) 1371.59 791.888i 1.37572 0.794271i 0.384078 0.923301i \(-0.374520\pi\)
0.991641 + 0.129030i \(0.0411862\pi\)
\(998\) −2091.60 −2.09579
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.i.a.152.31 68
3.2 odd 2 153.3.i.a.50.3 68
9.2 odd 6 inner 459.3.i.a.305.32 68
9.7 even 3 153.3.i.a.101.4 yes 68
17.16 even 2 inner 459.3.i.a.152.32 68
51.50 odd 2 153.3.i.a.50.4 yes 68
153.16 even 6 153.3.i.a.101.3 yes 68
153.101 odd 6 inner 459.3.i.a.305.31 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.3 68 3.2 odd 2
153.3.i.a.50.4 yes 68 51.50 odd 2
153.3.i.a.101.3 yes 68 153.16 even 6
153.3.i.a.101.4 yes 68 9.7 even 3
459.3.i.a.152.31 68 1.1 even 1 trivial
459.3.i.a.152.32 68 17.16 even 2 inner
459.3.i.a.305.31 68 153.101 odd 6 inner
459.3.i.a.305.32 68 9.2 odd 6 inner