Properties

Label 459.3.i.a.152.25
Level $459$
Weight $3$
Character 459.152
Analytic conductor $12.507$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(152,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.152"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.25
Character \(\chi\) \(=\) 459.152
Dual form 459.3.i.a.305.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.95399 - 1.12814i) q^{2} +(0.545389 - 0.944642i) q^{4} +(-0.723667 + 1.25343i) q^{5} +(9.69315 - 5.59634i) q^{7} +6.56401i q^{8} +3.26558i q^{10} +(-2.23569 - 3.87232i) q^{11} +(2.00404 - 3.47110i) q^{13} +(12.6269 - 21.8704i) q^{14} +(9.58666 + 16.6046i) q^{16} +(10.2467 + 13.5648i) q^{17} +10.9947 q^{19} +(0.789360 + 1.36721i) q^{20} +(-8.73702 - 5.04432i) q^{22} +(19.8891 - 34.4489i) q^{23} +(11.4526 + 19.8365i) q^{25} -9.04333i q^{26} -12.2087i q^{28} +(0.551179 + 0.954670i) q^{29} +(10.1684 + 5.87073i) q^{31} +(14.7261 + 8.50213i) q^{32} +(35.3250 + 14.9459i) q^{34} +16.1995i q^{35} -8.93275i q^{37} +(21.4835 - 12.4035i) q^{38} +(-8.22750 - 4.75015i) q^{40} +(-6.83609 + 11.8404i) q^{41} +(-39.5158 - 68.4434i) q^{43} -4.87727 q^{44} -89.7504i q^{46} +(46.1242 - 26.6298i) q^{47} +(38.1380 - 66.0570i) q^{49} +(44.7566 + 25.8402i) q^{50} +(-2.18596 - 3.78620i) q^{52} +72.6186i q^{53} +6.47156 q^{55} +(36.7344 + 63.6259i) q^{56} +(2.15400 + 1.24361i) q^{58} +(-36.9587 - 21.3381i) q^{59} +(-70.5042 + 40.7056i) q^{61} +26.4920 q^{62} -38.3270 q^{64} +(2.90051 + 5.02384i) q^{65} +(-32.0932 + 55.5871i) q^{67} +(18.4024 - 2.28137i) q^{68} +(18.2753 + 31.6538i) q^{70} -10.3563 q^{71} -56.3300i q^{73} +(-10.0774 - 17.4545i) q^{74} +(5.99637 - 10.3860i) q^{76} +(-43.3417 - 25.0233i) q^{77} +(-33.6356 + 19.4195i) q^{79} -27.7502 q^{80} +30.8482i q^{82} +(-110.509 + 63.8025i) q^{83} +(-24.4177 + 3.02711i) q^{85} +(-154.427 - 89.1585i) q^{86} +(25.4179 - 14.6751i) q^{88} +79.8410i q^{89} -44.8612i q^{91} +(-21.6946 - 37.5761i) q^{92} +(60.0842 - 104.069i) q^{94} +(-7.95647 + 13.7810i) q^{95} +(-140.476 + 81.1039i) q^{97} -172.100i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 62 q^{4} - 2 q^{13} - 106 q^{16} - 32 q^{19} - 132 q^{25} - 27 q^{34} + 102 q^{38} + 58 q^{43} + 312 q^{47} + 152 q^{49} + 90 q^{50} + 70 q^{52} + 92 q^{55} + 258 q^{59} - 16 q^{64} + 82 q^{67}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.95399 1.12814i 0.976996 0.564069i 0.0756340 0.997136i \(-0.475902\pi\)
0.901362 + 0.433067i \(0.142569\pi\)
\(3\) 0 0
\(4\) 0.545389 0.944642i 0.136347 0.236160i
\(5\) −0.723667 + 1.25343i −0.144733 + 0.250685i −0.929273 0.369393i \(-0.879566\pi\)
0.784540 + 0.620078i \(0.212899\pi\)
\(6\) 0 0
\(7\) 9.69315 5.59634i 1.38474 0.799477i 0.392019 0.919957i \(-0.371777\pi\)
0.992716 + 0.120480i \(0.0384433\pi\)
\(8\) 6.56401i 0.820501i
\(9\) 0 0
\(10\) 3.26558i 0.326558i
\(11\) −2.23569 3.87232i −0.203244 0.352029i 0.746328 0.665579i \(-0.231815\pi\)
−0.949572 + 0.313549i \(0.898482\pi\)
\(12\) 0 0
\(13\) 2.00404 3.47110i 0.154157 0.267008i −0.778595 0.627527i \(-0.784067\pi\)
0.932752 + 0.360519i \(0.117401\pi\)
\(14\) 12.6269 21.8704i 0.901920 1.56217i
\(15\) 0 0
\(16\) 9.58666 + 16.6046i 0.599166 + 1.03779i
\(17\) 10.2467 + 13.5648i 0.602748 + 0.797931i
\(18\) 0 0
\(19\) 10.9947 0.578667 0.289333 0.957228i \(-0.406566\pi\)
0.289333 + 0.957228i \(0.406566\pi\)
\(20\) 0.789360 + 1.36721i 0.0394680 + 0.0683605i
\(21\) 0 0
\(22\) −8.73702 5.04432i −0.397137 0.229287i
\(23\) 19.8891 34.4489i 0.864742 1.49778i −0.00256093 0.999997i \(-0.500815\pi\)
0.867303 0.497781i \(-0.165851\pi\)
\(24\) 0 0
\(25\) 11.4526 + 19.8365i 0.458105 + 0.793460i
\(26\) 9.04333i 0.347820i
\(27\) 0 0
\(28\) 12.2087i 0.436026i
\(29\) 0.551179 + 0.954670i 0.0190062 + 0.0329197i 0.875372 0.483450i \(-0.160616\pi\)
−0.856366 + 0.516370i \(0.827283\pi\)
\(30\) 0 0
\(31\) 10.1684 + 5.87073i 0.328013 + 0.189378i 0.654959 0.755665i \(-0.272686\pi\)
−0.326946 + 0.945043i \(0.606019\pi\)
\(32\) 14.7261 + 8.50213i 0.460191 + 0.265691i
\(33\) 0 0
\(34\) 35.3250 + 14.9459i 1.03897 + 0.439584i
\(35\) 16.1995i 0.462844i
\(36\) 0 0
\(37\) 8.93275i 0.241426i −0.992687 0.120713i \(-0.961482\pi\)
0.992687 0.120713i \(-0.0385180\pi\)
\(38\) 21.4835 12.4035i 0.565355 0.326408i
\(39\) 0 0
\(40\) −8.22750 4.75015i −0.205688 0.118754i
\(41\) −6.83609 + 11.8404i −0.166734 + 0.288791i −0.937270 0.348605i \(-0.886655\pi\)
0.770536 + 0.637397i \(0.219989\pi\)
\(42\) 0 0
\(43\) −39.5158 68.4434i −0.918972 1.59171i −0.800979 0.598692i \(-0.795687\pi\)
−0.117993 0.993014i \(-0.537646\pi\)
\(44\) −4.87727 −0.110847
\(45\) 0 0
\(46\) 89.7504i 1.95110i
\(47\) 46.1242 26.6298i 0.981366 0.566592i 0.0786839 0.996900i \(-0.474928\pi\)
0.902682 + 0.430308i \(0.141595\pi\)
\(48\) 0 0
\(49\) 38.1380 66.0570i 0.778327 1.34810i
\(50\) 44.7566 + 25.8402i 0.895132 + 0.516805i
\(51\) 0 0
\(52\) −2.18596 3.78620i −0.0420378 0.0728115i
\(53\) 72.6186i 1.37016i 0.728467 + 0.685081i \(0.240233\pi\)
−0.728467 + 0.685081i \(0.759767\pi\)
\(54\) 0 0
\(55\) 6.47156 0.117665
\(56\) 36.7344 + 63.6259i 0.655972 + 1.13618i
\(57\) 0 0
\(58\) 2.15400 + 1.24361i 0.0371379 + 0.0214416i
\(59\) −36.9587 21.3381i −0.626418 0.361663i 0.152945 0.988235i \(-0.451124\pi\)
−0.779364 + 0.626572i \(0.784457\pi\)
\(60\) 0 0
\(61\) −70.5042 + 40.7056i −1.15581 + 0.667305i −0.950295 0.311350i \(-0.899219\pi\)
−0.205511 + 0.978655i \(0.565886\pi\)
\(62\) 26.4920 0.427290
\(63\) 0 0
\(64\) −38.3270 −0.598859
\(65\) 2.90051 + 5.02384i 0.0446233 + 0.0772898i
\(66\) 0 0
\(67\) −32.0932 + 55.5871i −0.479003 + 0.829658i −0.999710 0.0240774i \(-0.992335\pi\)
0.520707 + 0.853736i \(0.325669\pi\)
\(68\) 18.4024 2.28137i 0.270623 0.0335496i
\(69\) 0 0
\(70\) 18.2753 + 31.6538i 0.261076 + 0.452197i
\(71\) −10.3563 −0.145863 −0.0729315 0.997337i \(-0.523235\pi\)
−0.0729315 + 0.997337i \(0.523235\pi\)
\(72\) 0 0
\(73\) 56.3300i 0.771644i −0.922573 0.385822i \(-0.873918\pi\)
0.922573 0.385822i \(-0.126082\pi\)
\(74\) −10.0774 17.4545i −0.136181 0.235872i
\(75\) 0 0
\(76\) 5.99637 10.3860i 0.0788996 0.136658i
\(77\) −43.3417 25.0233i −0.562879 0.324978i
\(78\) 0 0
\(79\) −33.6356 + 19.4195i −0.425767 + 0.245817i −0.697542 0.716544i \(-0.745723\pi\)
0.271774 + 0.962361i \(0.412390\pi\)
\(80\) −27.7502 −0.346877
\(81\) 0 0
\(82\) 30.8482i 0.376197i
\(83\) −110.509 + 63.8025i −1.33143 + 0.768704i −0.985520 0.169561i \(-0.945765\pi\)
−0.345915 + 0.938266i \(0.612432\pi\)
\(84\) 0 0
\(85\) −24.4177 + 3.02711i −0.287268 + 0.0356130i
\(86\) −154.427 89.1585i −1.79566 1.03673i
\(87\) 0 0
\(88\) 25.4179 14.6751i 0.288840 0.166762i
\(89\) 79.8410i 0.897090i 0.893760 + 0.448545i \(0.148058\pi\)
−0.893760 + 0.448545i \(0.851942\pi\)
\(90\) 0 0
\(91\) 44.8612i 0.492980i
\(92\) −21.6946 37.5761i −0.235810 0.408436i
\(93\) 0 0
\(94\) 60.0842 104.069i 0.639194 1.10712i
\(95\) −7.95647 + 13.7810i −0.0837523 + 0.145063i
\(96\) 0 0
\(97\) −140.476 + 81.1039i −1.44821 + 0.836123i −0.998375 0.0569895i \(-0.981850\pi\)
−0.449833 + 0.893113i \(0.648517\pi\)
\(98\) 172.100i 1.75612i
\(99\) 0 0
\(100\) 24.9845 0.249845
\(101\) 89.7223 51.8012i 0.888340 0.512883i 0.0149408 0.999888i \(-0.495244\pi\)
0.873399 + 0.487005i \(0.161911\pi\)
\(102\) 0 0
\(103\) 41.1871 71.3381i 0.399874 0.692603i −0.593836 0.804586i \(-0.702387\pi\)
0.993710 + 0.111984i \(0.0357204\pi\)
\(104\) 22.7843 + 13.1545i 0.219080 + 0.126486i
\(105\) 0 0
\(106\) 81.9238 + 141.896i 0.772866 + 1.33864i
\(107\) −71.6149 −0.669298 −0.334649 0.942343i \(-0.608618\pi\)
−0.334649 + 0.942343i \(0.608618\pi\)
\(108\) 0 0
\(109\) 159.142i 1.46001i 0.683440 + 0.730007i \(0.260483\pi\)
−0.683440 + 0.730007i \(0.739517\pi\)
\(110\) 12.6454 7.30081i 0.114958 0.0663710i
\(111\) 0 0
\(112\) 185.850 + 107.300i 1.65937 + 0.958039i
\(113\) 9.13859 15.8285i 0.0808725 0.140075i −0.822752 0.568400i \(-0.807563\pi\)
0.903625 + 0.428325i \(0.140896\pi\)
\(114\) 0 0
\(115\) 28.7861 + 49.8590i 0.250314 + 0.433556i
\(116\) 1.20243 0.0103658
\(117\) 0 0
\(118\) −96.2893 −0.816011
\(119\) 175.236 + 74.1417i 1.47257 + 0.623040i
\(120\) 0 0
\(121\) 50.5034 87.4745i 0.417384 0.722930i
\(122\) −91.8431 + 159.077i −0.752812 + 1.30391i
\(123\) 0 0
\(124\) 11.0915 6.40366i 0.0894474 0.0516425i
\(125\) −69.3348 −0.554679
\(126\) 0 0
\(127\) −168.975 −1.33051 −0.665257 0.746614i \(-0.731678\pi\)
−0.665257 + 0.746614i \(0.731678\pi\)
\(128\) −133.795 + 77.2466i −1.04527 + 0.603489i
\(129\) 0 0
\(130\) 11.3352 + 6.54436i 0.0871935 + 0.0503412i
\(131\) 107.927 186.936i 0.823872 1.42699i −0.0789058 0.996882i \(-0.525143\pi\)
0.902778 0.430107i \(-0.141524\pi\)
\(132\) 0 0
\(133\) 106.573 61.5299i 0.801300 0.462631i
\(134\) 144.822i 1.08076i
\(135\) 0 0
\(136\) −89.0396 + 67.2596i −0.654703 + 0.494556i
\(137\) 40.7215 23.5105i 0.297237 0.171610i −0.343964 0.938983i \(-0.611770\pi\)
0.641201 + 0.767373i \(0.278436\pi\)
\(138\) 0 0
\(139\) −7.66224 4.42380i −0.0551240 0.0318259i 0.472185 0.881500i \(-0.343466\pi\)
−0.527309 + 0.849674i \(0.676799\pi\)
\(140\) 15.3028 + 8.83505i 0.109305 + 0.0631075i
\(141\) 0 0
\(142\) −20.2361 + 11.6833i −0.142508 + 0.0822768i
\(143\) −17.9216 −0.125326
\(144\) 0 0
\(145\) −1.59548 −0.0110033
\(146\) −63.5480 110.068i −0.435260 0.753893i
\(147\) 0 0
\(148\) −8.43825 4.87182i −0.0570152 0.0329177i
\(149\) 73.1705 + 42.2450i 0.491077 + 0.283523i 0.725021 0.688727i \(-0.241830\pi\)
−0.233944 + 0.972250i \(0.575163\pi\)
\(150\) 0 0
\(151\) −54.8670 95.0324i −0.363358 0.629354i 0.625154 0.780502i \(-0.285036\pi\)
−0.988511 + 0.151148i \(0.951703\pi\)
\(152\) 72.1691i 0.474796i
\(153\) 0 0
\(154\) −112.919 −0.733240
\(155\) −14.7171 + 8.49690i −0.0949488 + 0.0548187i
\(156\) 0 0
\(157\) −52.4868 + 90.9098i −0.334311 + 0.579043i −0.983352 0.181710i \(-0.941837\pi\)
0.649041 + 0.760753i \(0.275170\pi\)
\(158\) −43.8158 + 75.8912i −0.277315 + 0.480324i
\(159\) 0 0
\(160\) −21.3136 + 12.3054i −0.133210 + 0.0769088i
\(161\) 445.224i 2.76537i
\(162\) 0 0
\(163\) 143.888i 0.882746i −0.897324 0.441373i \(-0.854492\pi\)
0.897324 0.441373i \(-0.145508\pi\)
\(164\) 7.45665 + 12.9153i 0.0454674 + 0.0787518i
\(165\) 0 0
\(166\) −143.956 + 249.339i −0.867204 + 1.50204i
\(167\) −52.8753 + 91.5827i −0.316619 + 0.548400i −0.979780 0.200077i \(-0.935881\pi\)
0.663162 + 0.748476i \(0.269214\pi\)
\(168\) 0 0
\(169\) 76.4676 + 132.446i 0.452471 + 0.783703i
\(170\) −44.2971 + 33.4615i −0.260571 + 0.196832i
\(171\) 0 0
\(172\) −86.2060 −0.501197
\(173\) −81.3590 140.918i −0.470283 0.814555i 0.529139 0.848535i \(-0.322515\pi\)
−0.999422 + 0.0339804i \(0.989182\pi\)
\(174\) 0 0
\(175\) 222.024 + 128.185i 1.26871 + 0.732488i
\(176\) 42.8655 74.2452i 0.243554 0.421848i
\(177\) 0 0
\(178\) 90.0716 + 156.009i 0.506020 + 0.876453i
\(179\) 146.892i 0.820628i 0.911944 + 0.410314i \(0.134581\pi\)
−0.911944 + 0.410314i \(0.865419\pi\)
\(180\) 0 0
\(181\) 149.938i 0.828384i 0.910189 + 0.414192i \(0.135936\pi\)
−0.910189 + 0.414192i \(0.864064\pi\)
\(182\) −50.6096 87.6583i −0.278075 0.481639i
\(183\) 0 0
\(184\) 226.123 + 130.552i 1.22893 + 0.709521i
\(185\) 11.1966 + 6.46433i 0.0605219 + 0.0349423i
\(186\) 0 0
\(187\) 29.6189 70.0053i 0.158390 0.374360i
\(188\) 58.0945i 0.309013i
\(189\) 0 0
\(190\) 35.9040i 0.188968i
\(191\) 17.2042 9.93284i 0.0900743 0.0520044i −0.454286 0.890856i \(-0.650106\pi\)
0.544361 + 0.838851i \(0.316772\pi\)
\(192\) 0 0
\(193\) −245.445 141.708i −1.27174 0.734238i −0.296423 0.955057i \(-0.595794\pi\)
−0.975315 + 0.220818i \(0.929127\pi\)
\(194\) −182.993 + 316.953i −0.943262 + 1.63378i
\(195\) 0 0
\(196\) −41.6001 72.0536i −0.212246 0.367620i
\(197\) 289.203 1.46804 0.734019 0.679129i \(-0.237642\pi\)
0.734019 + 0.679129i \(0.237642\pi\)
\(198\) 0 0
\(199\) 211.138i 1.06100i −0.847686 0.530498i \(-0.822005\pi\)
0.847686 0.530498i \(-0.177995\pi\)
\(200\) −130.207 + 75.1750i −0.651035 + 0.375875i
\(201\) 0 0
\(202\) 116.878 202.438i 0.578603 1.00217i
\(203\) 10.6853 + 6.16917i 0.0526370 + 0.0303900i
\(204\) 0 0
\(205\) −9.89409 17.1371i −0.0482639 0.0835955i
\(206\) 185.859i 0.902227i
\(207\) 0 0
\(208\) 76.8482 0.369462
\(209\) −24.5806 42.5749i −0.117611 0.203708i
\(210\) 0 0
\(211\) −152.186 87.8649i −0.721263 0.416421i 0.0939545 0.995576i \(-0.470049\pi\)
−0.815217 + 0.579155i \(0.803382\pi\)
\(212\) 68.5985 + 39.6054i 0.323578 + 0.186818i
\(213\) 0 0
\(214\) −139.935 + 80.7915i −0.653901 + 0.377530i
\(215\) 114.385 0.532024
\(216\) 0 0
\(217\) 131.418 0.605615
\(218\) 179.534 + 310.961i 0.823548 + 1.42643i
\(219\) 0 0
\(220\) 3.52952 6.11331i 0.0160433 0.0277878i
\(221\) 67.6197 8.38293i 0.305972 0.0379318i
\(222\) 0 0
\(223\) −92.4137 160.065i −0.414411 0.717781i 0.580955 0.813936i \(-0.302679\pi\)
−0.995366 + 0.0961542i \(0.969346\pi\)
\(224\) 190.323 0.849657
\(225\) 0 0
\(226\) 41.2384i 0.182471i
\(227\) −122.286 211.806i −0.538706 0.933066i −0.998974 0.0452858i \(-0.985580\pi\)
0.460268 0.887780i \(-0.347753\pi\)
\(228\) 0 0
\(229\) −36.9808 + 64.0526i −0.161488 + 0.279706i −0.935403 0.353584i \(-0.884963\pi\)
0.773914 + 0.633290i \(0.218296\pi\)
\(230\) 112.496 + 64.9494i 0.489111 + 0.282389i
\(231\) 0 0
\(232\) −6.26646 + 3.61794i −0.0270106 + 0.0155946i
\(233\) −420.854 −1.80624 −0.903120 0.429388i \(-0.858729\pi\)
−0.903120 + 0.429388i \(0.858729\pi\)
\(234\) 0 0
\(235\) 77.0845i 0.328019i
\(236\) −40.3137 + 23.2751i −0.170821 + 0.0986235i
\(237\) 0 0
\(238\) 426.053 52.8185i 1.79014 0.221926i
\(239\) 218.231 + 125.996i 0.913100 + 0.527179i 0.881427 0.472320i \(-0.156583\pi\)
0.0316729 + 0.999498i \(0.489917\pi\)
\(240\) 0 0
\(241\) −101.407 + 58.5474i −0.420776 + 0.242935i −0.695409 0.718614i \(-0.744777\pi\)
0.274633 + 0.961549i \(0.411444\pi\)
\(242\) 227.899i 0.941732i
\(243\) 0 0
\(244\) 88.8016i 0.363941i
\(245\) 55.1984 + 95.6065i 0.225300 + 0.390231i
\(246\) 0 0
\(247\) 22.0338 38.1636i 0.0892055 0.154508i
\(248\) −38.5355 + 66.7455i −0.155385 + 0.269135i
\(249\) 0 0
\(250\) −135.480 + 78.2192i −0.541919 + 0.312877i
\(251\) 61.2200i 0.243905i 0.992536 + 0.121952i \(0.0389155\pi\)
−0.992536 + 0.121952i \(0.961085\pi\)
\(252\) 0 0
\(253\) −177.863 −0.703015
\(254\) −330.176 + 190.627i −1.29991 + 0.750502i
\(255\) 0 0
\(256\) −97.6357 + 169.110i −0.381389 + 0.660586i
\(257\) −72.9310 42.1067i −0.283778 0.163839i 0.351355 0.936242i \(-0.385721\pi\)
−0.635133 + 0.772403i \(0.719055\pi\)
\(258\) 0 0
\(259\) −49.9907 86.5864i −0.193014 0.334311i
\(260\) 6.32763 0.0243371
\(261\) 0 0
\(262\) 487.027i 1.85888i
\(263\) 53.7891 31.0552i 0.204521 0.118081i −0.394241 0.919007i \(-0.628993\pi\)
0.598763 + 0.800926i \(0.295659\pi\)
\(264\) 0 0
\(265\) −91.0221 52.5517i −0.343480 0.198308i
\(266\) 138.828 240.458i 0.521911 0.903977i
\(267\) 0 0
\(268\) 35.0066 + 60.6332i 0.130622 + 0.226243i
\(269\) 82.2459 0.305747 0.152873 0.988246i \(-0.451147\pi\)
0.152873 + 0.988246i \(0.451147\pi\)
\(270\) 0 0
\(271\) 531.432 1.96100 0.980501 0.196514i \(-0.0629621\pi\)
0.980501 + 0.196514i \(0.0629621\pi\)
\(272\) −127.006 + 300.184i −0.466936 + 1.10362i
\(273\) 0 0
\(274\) 53.0463 91.8788i 0.193600 0.335324i
\(275\) 51.2089 88.6964i 0.186214 0.322532i
\(276\) 0 0
\(277\) −14.6454 + 8.45551i −0.0528714 + 0.0305253i −0.526203 0.850359i \(-0.676385\pi\)
0.473331 + 0.880884i \(0.343051\pi\)
\(278\) −19.9626 −0.0718079
\(279\) 0 0
\(280\) −106.334 −0.379764
\(281\) 127.565 73.6499i 0.453969 0.262099i −0.255536 0.966800i \(-0.582252\pi\)
0.709505 + 0.704700i \(0.248919\pi\)
\(282\) 0 0
\(283\) −144.610 83.4908i −0.510990 0.295020i 0.222250 0.974990i \(-0.428660\pi\)
−0.733241 + 0.679969i \(0.761993\pi\)
\(284\) −5.64820 + 9.78297i −0.0198880 + 0.0344471i
\(285\) 0 0
\(286\) −35.0187 + 20.2181i −0.122443 + 0.0706925i
\(287\) 153.028i 0.533199i
\(288\) 0 0
\(289\) −79.0093 + 277.990i −0.273389 + 0.961904i
\(290\) −3.11755 + 1.79992i −0.0107502 + 0.00620662i
\(291\) 0 0
\(292\) −53.2116 30.7218i −0.182232 0.105212i
\(293\) −355.205 205.078i −1.21230 0.699923i −0.249043 0.968493i \(-0.580116\pi\)
−0.963260 + 0.268569i \(0.913449\pi\)
\(294\) 0 0
\(295\) 53.4915 30.8833i 0.181327 0.104689i
\(296\) 58.6346 0.198090
\(297\) 0 0
\(298\) 190.633 0.639707
\(299\) −79.7170 138.074i −0.266612 0.461786i
\(300\) 0 0
\(301\) −766.065 442.288i −2.54507 1.46939i
\(302\) −214.419 123.795i −0.709998 0.409917i
\(303\) 0 0
\(304\) 105.402 + 182.562i 0.346717 + 0.600532i
\(305\) 117.829i 0.386325i
\(306\) 0 0
\(307\) 392.680 1.27909 0.639544 0.768755i \(-0.279123\pi\)
0.639544 + 0.768755i \(0.279123\pi\)
\(308\) −47.2761 + 27.2949i −0.153494 + 0.0886198i
\(309\) 0 0
\(310\) −19.1714 + 33.2058i −0.0618431 + 0.107115i
\(311\) −165.116 + 285.990i −0.530921 + 0.919582i 0.468428 + 0.883502i \(0.344821\pi\)
−0.999349 + 0.0360804i \(0.988513\pi\)
\(312\) 0 0
\(313\) 403.046 232.699i 1.28769 0.743447i 0.309446 0.950917i \(-0.399856\pi\)
0.978241 + 0.207471i \(0.0665231\pi\)
\(314\) 236.849i 0.754297i
\(315\) 0 0
\(316\) 42.3648i 0.134066i
\(317\) −204.824 354.766i −0.646132 1.11913i −0.984039 0.177954i \(-0.943052\pi\)
0.337906 0.941180i \(-0.390281\pi\)
\(318\) 0 0
\(319\) 2.46453 4.26869i 0.00772579 0.0133815i
\(320\) 27.7360 48.0401i 0.0866749 0.150125i
\(321\) 0 0
\(322\) −502.274 869.964i −1.55986 2.70175i
\(323\) 112.659 + 149.141i 0.348790 + 0.461736i
\(324\) 0 0
\(325\) 91.8060 0.282480
\(326\) −162.325 281.155i −0.497929 0.862439i
\(327\) 0 0
\(328\) −77.7208 44.8721i −0.236954 0.136805i
\(329\) 298.059 516.254i 0.905955 1.56916i
\(330\) 0 0
\(331\) 291.899 + 505.583i 0.881869 + 1.52744i 0.849260 + 0.527974i \(0.177048\pi\)
0.0326088 + 0.999468i \(0.489618\pi\)
\(332\) 139.189i 0.419243i
\(333\) 0 0
\(334\) 238.603i 0.714379i
\(335\) −46.4496 80.4530i −0.138655 0.240158i
\(336\) 0 0
\(337\) 390.476 + 225.442i 1.15868 + 0.668966i 0.950988 0.309227i \(-0.100070\pi\)
0.207695 + 0.978194i \(0.433404\pi\)
\(338\) 298.834 + 172.532i 0.884125 + 0.510450i
\(339\) 0 0
\(340\) −10.4576 + 24.7170i −0.0307577 + 0.0726969i
\(341\) 52.5004i 0.153960i
\(342\) 0 0
\(343\) 305.293i 0.890066i
\(344\) 449.263 259.382i 1.30600 0.754017i
\(345\) 0 0
\(346\) −317.950 183.568i −0.918930 0.530544i
\(347\) −195.751 + 339.050i −0.564123 + 0.977090i 0.433008 + 0.901390i \(0.357452\pi\)
−0.997131 + 0.0756995i \(0.975881\pi\)
\(348\) 0 0
\(349\) −55.9660 96.9360i −0.160361 0.277754i 0.774637 0.632406i \(-0.217933\pi\)
−0.934998 + 0.354652i \(0.884599\pi\)
\(350\) 578.443 1.65270
\(351\) 0 0
\(352\) 76.0323i 0.216001i
\(353\) 342.065 197.491i 0.969021 0.559465i 0.0700835 0.997541i \(-0.477673\pi\)
0.898938 + 0.438076i \(0.144340\pi\)
\(354\) 0 0
\(355\) 7.49449 12.9808i 0.0211112 0.0365658i
\(356\) 75.4211 + 43.5444i 0.211857 + 0.122316i
\(357\) 0 0
\(358\) 165.715 + 287.026i 0.462891 + 0.801750i
\(359\) 389.704i 1.08553i 0.839885 + 0.542764i \(0.182622\pi\)
−0.839885 + 0.542764i \(0.817378\pi\)
\(360\) 0 0
\(361\) −240.117 −0.665145
\(362\) 169.150 + 292.977i 0.467266 + 0.809328i
\(363\) 0 0
\(364\) −42.3777 24.4668i −0.116422 0.0672164i
\(365\) 70.6055 + 40.7641i 0.193440 + 0.111683i
\(366\) 0 0
\(367\) 263.721 152.260i 0.718587 0.414876i −0.0956456 0.995415i \(-0.530492\pi\)
0.814232 + 0.580539i \(0.197158\pi\)
\(368\) 762.679 2.07250
\(369\) 0 0
\(370\) 29.1706 0.0788395
\(371\) 406.398 + 703.903i 1.09541 + 1.89731i
\(372\) 0 0
\(373\) 157.657 273.069i 0.422672 0.732089i −0.573528 0.819186i \(-0.694426\pi\)
0.996200 + 0.0870970i \(0.0277590\pi\)
\(374\) −21.1005 170.204i −0.0564184 0.455091i
\(375\) 0 0
\(376\) 174.798 + 302.760i 0.464889 + 0.805212i
\(377\) 4.41834 0.0117197
\(378\) 0 0
\(379\) 72.6723i 0.191747i 0.995394 + 0.0958737i \(0.0305645\pi\)
−0.995394 + 0.0958737i \(0.969435\pi\)
\(380\) 8.67875 + 15.0320i 0.0228388 + 0.0395580i
\(381\) 0 0
\(382\) 22.4112 38.8174i 0.0586681 0.101616i
\(383\) 332.076 + 191.724i 0.867039 + 0.500585i 0.866363 0.499414i \(-0.166451\pi\)
0.000676091 1.00000i \(0.499785\pi\)
\(384\) 0 0
\(385\) 62.7298 36.2171i 0.162935 0.0940703i
\(386\) −639.465 −1.65664
\(387\) 0 0
\(388\) 176.933i 0.456012i
\(389\) 36.0560 20.8169i 0.0926890 0.0535140i −0.452939 0.891541i \(-0.649624\pi\)
0.545628 + 0.838027i \(0.316291\pi\)
\(390\) 0 0
\(391\) 671.091 83.1963i 1.71635 0.212778i
\(392\) 433.599 + 250.338i 1.10612 + 0.638618i
\(393\) 0 0
\(394\) 565.101 326.261i 1.43427 0.828074i
\(395\) 56.2131i 0.142312i
\(396\) 0 0
\(397\) 222.169i 0.559618i −0.960056 0.279809i \(-0.909729\pi\)
0.960056 0.279809i \(-0.0902712\pi\)
\(398\) −238.193 412.562i −0.598475 1.03659i
\(399\) 0 0
\(400\) −219.585 + 380.332i −0.548961 + 0.950829i
\(401\) 126.387 218.909i 0.315179 0.545907i −0.664296 0.747469i \(-0.731269\pi\)
0.979476 + 0.201563i \(0.0646019\pi\)
\(402\) 0 0
\(403\) 40.7558 23.5304i 0.101131 0.0583880i
\(404\) 113.007i 0.279721i
\(405\) 0 0
\(406\) 27.8387 0.0685682
\(407\) −34.5905 + 19.9708i −0.0849889 + 0.0490684i
\(408\) 0 0
\(409\) −349.619 + 605.558i −0.854815 + 1.48058i 0.0220017 + 0.999758i \(0.492996\pi\)
−0.876817 + 0.480825i \(0.840337\pi\)
\(410\) −38.6659 22.3238i −0.0943072 0.0544483i
\(411\) 0 0
\(412\) −44.9259 77.8140i −0.109044 0.188869i
\(413\) −477.661 −1.15656
\(414\) 0 0
\(415\) 184.687i 0.445028i
\(416\) 59.0235 34.0772i 0.141883 0.0819164i
\(417\) 0 0
\(418\) −96.0607 55.4606i −0.229810 0.132681i
\(419\) 280.556 485.937i 0.669584 1.15975i −0.308436 0.951245i \(-0.599806\pi\)
0.978020 0.208509i \(-0.0668610\pi\)
\(420\) 0 0
\(421\) −371.879 644.113i −0.883323 1.52996i −0.847624 0.530597i \(-0.821968\pi\)
−0.0356985 0.999363i \(-0.511366\pi\)
\(422\) −396.495 −0.939561
\(423\) 0 0
\(424\) −476.669 −1.12422
\(425\) −151.727 + 358.612i −0.357005 + 0.843793i
\(426\) 0 0
\(427\) −455.605 + 789.131i −1.06699 + 1.84808i
\(428\) −39.0580 + 67.6504i −0.0912570 + 0.158062i
\(429\) 0 0
\(430\) 223.507 129.042i 0.519785 0.300098i
\(431\) −269.585 −0.625488 −0.312744 0.949838i \(-0.601248\pi\)
−0.312744 + 0.949838i \(0.601248\pi\)
\(432\) 0 0
\(433\) 337.140 0.778613 0.389307 0.921108i \(-0.372715\pi\)
0.389307 + 0.921108i \(0.372715\pi\)
\(434\) 256.791 148.258i 0.591683 0.341608i
\(435\) 0 0
\(436\) 150.332 + 86.7940i 0.344797 + 0.199069i
\(437\) 218.674 378.754i 0.500397 0.866714i
\(438\) 0 0
\(439\) 536.529 309.765i 1.22216 0.705615i 0.256783 0.966469i \(-0.417337\pi\)
0.965378 + 0.260854i \(0.0840041\pi\)
\(440\) 42.4794i 0.0965440i
\(441\) 0 0
\(442\) 122.671 92.6645i 0.277537 0.209648i
\(443\) −193.616 + 111.784i −0.437056 + 0.252334i −0.702348 0.711834i \(-0.747865\pi\)
0.265292 + 0.964168i \(0.414532\pi\)
\(444\) 0 0
\(445\) −100.075 57.7782i −0.224887 0.129839i
\(446\) −361.151 208.511i −0.809756 0.467513i
\(447\) 0 0
\(448\) −371.509 + 214.491i −0.829261 + 0.478774i
\(449\) −115.549 −0.257349 −0.128674 0.991687i \(-0.541072\pi\)
−0.128674 + 0.991687i \(0.541072\pi\)
\(450\) 0 0
\(451\) 61.1334 0.135551
\(452\) −9.96817 17.2654i −0.0220535 0.0381978i
\(453\) 0 0
\(454\) −477.892 275.911i −1.05263 0.607734i
\(455\) 56.2302 + 32.4645i 0.123583 + 0.0713506i
\(456\) 0 0
\(457\) −4.91125 8.50653i −0.0107467 0.0186138i 0.860602 0.509278i \(-0.170088\pi\)
−0.871349 + 0.490664i \(0.836754\pi\)
\(458\) 166.878i 0.364362i
\(459\) 0 0
\(460\) 62.7985 0.136518
\(461\) 308.892 178.339i 0.670049 0.386853i −0.126046 0.992024i \(-0.540229\pi\)
0.796095 + 0.605172i \(0.206896\pi\)
\(462\) 0 0
\(463\) −120.872 + 209.357i −0.261063 + 0.452175i −0.966525 0.256573i \(-0.917406\pi\)
0.705461 + 0.708748i \(0.250740\pi\)
\(464\) −10.5679 + 18.3042i −0.0227757 + 0.0394487i
\(465\) 0 0
\(466\) −822.345 + 474.781i −1.76469 + 1.01884i
\(467\) 229.157i 0.490701i 0.969435 + 0.245350i \(0.0789030\pi\)
−0.969435 + 0.245350i \(0.921097\pi\)
\(468\) 0 0
\(469\) 718.418i 1.53181i
\(470\) 86.9619 + 150.622i 0.185025 + 0.320473i
\(471\) 0 0
\(472\) 140.063 242.597i 0.296745 0.513977i
\(473\) −176.690 + 306.036i −0.373552 + 0.647010i
\(474\) 0 0
\(475\) 125.918 + 218.096i 0.265090 + 0.459149i
\(476\) 165.609 125.099i 0.347919 0.262814i
\(477\) 0 0
\(478\) 568.562 1.18946
\(479\) 178.133 + 308.536i 0.371886 + 0.644125i 0.989856 0.142077i \(-0.0453780\pi\)
−0.617970 + 0.786202i \(0.712045\pi\)
\(480\) 0 0
\(481\) −31.0065 17.9016i −0.0644625 0.0372174i
\(482\) −132.099 + 228.802i −0.274065 + 0.474694i
\(483\) 0 0
\(484\) −55.0880 95.4152i −0.113818 0.197139i
\(485\) 234.769i 0.484059i
\(486\) 0 0
\(487\) 478.597i 0.982745i 0.870950 + 0.491373i \(0.163505\pi\)
−0.870950 + 0.491373i \(0.836495\pi\)
\(488\) −267.192 462.790i −0.547524 0.948340i
\(489\) 0 0
\(490\) 215.715 + 124.543i 0.440234 + 0.254169i
\(491\) −640.303 369.679i −1.30408 0.752910i −0.322978 0.946406i \(-0.604684\pi\)
−0.981101 + 0.193496i \(0.938017\pi\)
\(492\) 0 0
\(493\) −7.30216 + 17.2589i −0.0148117 + 0.0350079i
\(494\) 99.4284i 0.201272i
\(495\) 0 0
\(496\) 225.123i 0.453877i
\(497\) −100.385 + 57.9573i −0.201982 + 0.116614i
\(498\) 0 0
\(499\) 506.185 + 292.246i 1.01440 + 0.585663i 0.912476 0.409129i \(-0.134167\pi\)
0.101922 + 0.994792i \(0.467501\pi\)
\(500\) −37.8144 + 65.4965i −0.0756289 + 0.130993i
\(501\) 0 0
\(502\) 69.0646 + 119.623i 0.137579 + 0.238294i
\(503\) 234.299 0.465803 0.232901 0.972500i \(-0.425178\pi\)
0.232901 + 0.972500i \(0.425178\pi\)
\(504\) 0 0
\(505\) 149.947i 0.296925i
\(506\) −347.542 + 200.654i −0.686843 + 0.396549i
\(507\) 0 0
\(508\) −92.1573 + 159.621i −0.181412 + 0.314215i
\(509\) −585.148 337.835i −1.14960 0.663723i −0.200812 0.979630i \(-0.564358\pi\)
−0.948790 + 0.315907i \(0.897691\pi\)
\(510\) 0 0
\(511\) −315.242 546.015i −0.616912 1.06852i
\(512\) 177.387i 0.346459i
\(513\) 0 0
\(514\) −190.009 −0.369667
\(515\) 59.6114 + 103.250i 0.115750 + 0.200485i
\(516\) 0 0
\(517\) −206.239 119.072i −0.398914 0.230313i
\(518\) −195.363 112.793i −0.377148 0.217747i
\(519\) 0 0
\(520\) −32.9765 + 19.0390i −0.0634163 + 0.0366134i
\(521\) −492.195 −0.944712 −0.472356 0.881408i \(-0.656596\pi\)
−0.472356 + 0.881408i \(0.656596\pi\)
\(522\) 0 0
\(523\) 514.256 0.983280 0.491640 0.870799i \(-0.336398\pi\)
0.491640 + 0.870799i \(0.336398\pi\)
\(524\) −117.725 203.905i −0.224665 0.389132i
\(525\) 0 0
\(526\) 70.0690 121.363i 0.133211 0.230728i
\(527\) 24.5574 + 198.088i 0.0465984 + 0.375879i
\(528\) 0 0
\(529\) −526.650 912.185i −0.995558 1.72436i
\(530\) −237.142 −0.447438
\(531\) 0 0
\(532\) 134.231i 0.252314i
\(533\) 27.3996 + 47.4575i 0.0514063 + 0.0890384i
\(534\) 0 0
\(535\) 51.8253 89.7640i 0.0968697 0.167783i
\(536\) −364.874 210.660i −0.680735 0.393023i
\(537\) 0 0
\(538\) 160.708 92.7847i 0.298713 0.172462i
\(539\) −341.059 −0.632762
\(540\) 0 0
\(541\) 891.685i 1.64822i 0.566433 + 0.824108i \(0.308323\pi\)
−0.566433 + 0.824108i \(0.691677\pi\)
\(542\) 1038.41 599.528i 1.91589 1.10614i
\(543\) 0 0
\(544\) 35.5645 + 286.876i 0.0653760 + 0.527346i
\(545\) −199.472 115.165i −0.366004 0.211313i
\(546\) 0 0
\(547\) −884.620 + 510.735i −1.61722 + 0.933703i −0.629585 + 0.776931i \(0.716775\pi\)
−0.987635 + 0.156771i \(0.949891\pi\)
\(548\) 51.2896i 0.0935941i
\(549\) 0 0
\(550\) 231.083i 0.420150i
\(551\) 6.06003 + 10.4963i 0.0109982 + 0.0190495i
\(552\) 0 0
\(553\) −217.357 + 376.473i −0.393050 + 0.680783i
\(554\) −19.0780 + 33.0440i −0.0344367 + 0.0596462i
\(555\) 0 0
\(556\) −8.35780 + 4.82538i −0.0150320 + 0.00867874i
\(557\) 297.630i 0.534345i 0.963649 + 0.267173i \(0.0860894\pi\)
−0.963649 + 0.267173i \(0.913911\pi\)
\(558\) 0 0
\(559\) −316.765 −0.566664
\(560\) −268.986 + 155.299i −0.480333 + 0.277320i
\(561\) 0 0
\(562\) 166.174 287.823i 0.295684 0.512140i
\(563\) −613.907 354.440i −1.09042 0.629555i −0.156733 0.987641i \(-0.550096\pi\)
−0.933689 + 0.358086i \(0.883430\pi\)
\(564\) 0 0
\(565\) 13.2266 + 22.9091i 0.0234099 + 0.0405471i
\(566\) −376.756 −0.665647
\(567\) 0 0
\(568\) 67.9787i 0.119681i
\(569\) −183.634 + 106.021i −0.322731 + 0.186329i −0.652609 0.757695i \(-0.726326\pi\)
0.329878 + 0.944024i \(0.392992\pi\)
\(570\) 0 0
\(571\) 622.489 + 359.394i 1.09017 + 0.629411i 0.933622 0.358259i \(-0.116629\pi\)
0.156550 + 0.987670i \(0.449963\pi\)
\(572\) −9.77425 + 16.9295i −0.0170879 + 0.0295970i
\(573\) 0 0
\(574\) 172.637 + 299.016i 0.300761 + 0.520934i
\(575\) 911.127 1.58457
\(576\) 0 0
\(577\) 744.493 1.29028 0.645142 0.764063i \(-0.276798\pi\)
0.645142 + 0.764063i \(0.276798\pi\)
\(578\) 159.228 + 632.324i 0.275480 + 1.09399i
\(579\) 0 0
\(580\) −0.870157 + 1.50716i −0.00150027 + 0.00259854i
\(581\) −714.120 + 1236.89i −1.22912 + 2.12890i
\(582\) 0 0
\(583\) 281.203 162.352i 0.482337 0.278477i
\(584\) 369.750 0.633134
\(585\) 0 0
\(586\) −925.423 −1.57922
\(587\) −669.831 + 386.727i −1.14111 + 0.658819i −0.946705 0.322102i \(-0.895610\pi\)
−0.194403 + 0.980922i \(0.562277\pi\)
\(588\) 0 0
\(589\) 111.798 + 64.5467i 0.189810 + 0.109587i
\(590\) 69.6813 120.692i 0.118104 0.204562i
\(591\) 0 0
\(592\) 148.325 85.6352i 0.250548 0.144654i
\(593\) 74.9340i 0.126364i 0.998002 + 0.0631821i \(0.0201249\pi\)
−0.998002 + 0.0631821i \(0.979875\pi\)
\(594\) 0 0
\(595\) −219.744 + 165.992i −0.369318 + 0.278978i
\(596\) 79.8128 46.0799i 0.133914 0.0773153i
\(597\) 0 0
\(598\) −311.533 179.863i −0.520958 0.300775i
\(599\) 192.205 + 110.970i 0.320877 + 0.185259i 0.651783 0.758405i \(-0.274021\pi\)
−0.330906 + 0.943664i \(0.607354\pi\)
\(600\) 0 0
\(601\) −802.239 + 463.173i −1.33484 + 0.770671i −0.986037 0.166525i \(-0.946745\pi\)
−0.348804 + 0.937196i \(0.613412\pi\)
\(602\) −1995.85 −3.31536
\(603\) 0 0
\(604\) −119.695 −0.198171
\(605\) 73.0953 + 126.605i 0.120819 + 0.209264i
\(606\) 0 0
\(607\) −795.808 459.460i −1.31105 0.756936i −0.328781 0.944406i \(-0.606638\pi\)
−0.982270 + 0.187470i \(0.939971\pi\)
\(608\) 161.909 + 93.4781i 0.266297 + 0.153747i
\(609\) 0 0
\(610\) −132.928 230.237i −0.217914 0.377438i
\(611\) 213.469i 0.349376i
\(612\) 0 0
\(613\) −27.9652 −0.0456202 −0.0228101 0.999740i \(-0.507261\pi\)
−0.0228101 + 0.999740i \(0.507261\pi\)
\(614\) 767.293 442.997i 1.24966 0.721494i
\(615\) 0 0
\(616\) 164.253 284.495i 0.266645 0.461842i
\(617\) −443.301 + 767.820i −0.718478 + 1.24444i 0.243125 + 0.969995i \(0.421828\pi\)
−0.961603 + 0.274445i \(0.911506\pi\)
\(618\) 0 0
\(619\) 523.815 302.425i 0.846228 0.488570i −0.0131486 0.999914i \(-0.504185\pi\)
0.859376 + 0.511344i \(0.170852\pi\)
\(620\) 18.5365i 0.0298975i
\(621\) 0 0
\(622\) 745.096i 1.19790i
\(623\) 446.817 + 773.910i 0.717203 + 1.24223i
\(624\) 0 0
\(625\) −236.140 + 409.007i −0.377824 + 0.654411i
\(626\) 525.032 909.383i 0.838710 1.45269i
\(627\) 0 0
\(628\) 57.2514 + 99.1624i 0.0911647 + 0.157902i
\(629\) 121.171 91.5314i 0.192641 0.145519i
\(630\) 0 0
\(631\) −487.278 −0.772231 −0.386115 0.922450i \(-0.626183\pi\)
−0.386115 + 0.922450i \(0.626183\pi\)
\(632\) −127.470 220.784i −0.201693 0.349342i
\(633\) 0 0
\(634\) −800.449 462.139i −1.26254 0.728926i
\(635\) 122.282 211.798i 0.192570 0.333541i
\(636\) 0 0
\(637\) −152.860 264.762i −0.239969 0.415639i
\(638\) 11.1213i 0.0174315i
\(639\) 0 0
\(640\) 223.603i 0.349380i
\(641\) −67.1633 116.330i −0.104779 0.181482i 0.808869 0.587989i \(-0.200080\pi\)
−0.913648 + 0.406507i \(0.866747\pi\)
\(642\) 0 0
\(643\) 62.6386 + 36.1644i 0.0974162 + 0.0562433i 0.547917 0.836533i \(-0.315421\pi\)
−0.450500 + 0.892776i \(0.648754\pi\)
\(644\) −420.577 242.820i −0.653070 0.377050i
\(645\) 0 0
\(646\) 388.387 + 164.325i 0.601218 + 0.254373i
\(647\) 709.660i 1.09685i −0.836201 0.548423i \(-0.815228\pi\)
0.836201 0.548423i \(-0.184772\pi\)
\(648\) 0 0
\(649\) 190.821i 0.294023i
\(650\) 179.388 103.570i 0.275982 0.159338i
\(651\) 0 0
\(652\) −135.922 78.4747i −0.208470 0.120360i
\(653\) −325.713 + 564.151i −0.498794 + 0.863937i −0.999999 0.00139158i \(-0.999557\pi\)
0.501205 + 0.865329i \(0.332890\pi\)
\(654\) 0 0
\(655\) 156.207 + 270.558i 0.238484 + 0.413066i
\(656\) −262.141 −0.399605
\(657\) 0 0
\(658\) 1345.01i 2.04408i
\(659\) −808.335 + 466.693i −1.22661 + 0.708183i −0.966319 0.257348i \(-0.917151\pi\)
−0.260290 + 0.965531i \(0.583818\pi\)
\(660\) 0 0
\(661\) 203.907 353.177i 0.308482 0.534307i −0.669548 0.742769i \(-0.733512\pi\)
0.978031 + 0.208461i \(0.0668456\pi\)
\(662\) 1140.74 + 658.604i 1.72317 + 0.994870i
\(663\) 0 0
\(664\) −418.800 725.382i −0.630722 1.09244i
\(665\) 178.109i 0.267832i
\(666\) 0 0
\(667\) 43.8498 0.0657418
\(668\) 57.6752 + 99.8964i 0.0863402 + 0.149546i
\(669\) 0 0
\(670\) −181.524 104.803i −0.270932 0.156422i
\(671\) 315.250 + 182.010i 0.469822 + 0.271252i
\(672\) 0 0
\(673\) 613.622 354.275i 0.911771 0.526411i 0.0307704 0.999526i \(-0.490204\pi\)
0.881001 + 0.473115i \(0.156871\pi\)
\(674\) 1017.32 1.50937
\(675\) 0 0
\(676\) 166.818 0.246773
\(677\) 80.2456 + 138.990i 0.118531 + 0.205302i 0.919186 0.393824i \(-0.128848\pi\)
−0.800655 + 0.599126i \(0.795515\pi\)
\(678\) 0 0
\(679\) −907.771 + 1572.30i −1.33692 + 2.31562i
\(680\) −19.8700 160.278i −0.0292205 0.235703i
\(681\) 0 0
\(682\) −59.2277 102.585i −0.0868442 0.150419i
\(683\) 247.116 0.361809 0.180905 0.983501i \(-0.442097\pi\)
0.180905 + 0.983501i \(0.442097\pi\)
\(684\) 0 0
\(685\) 68.0552i 0.0993506i
\(686\) −344.412 596.539i −0.502058 0.869590i
\(687\) 0 0
\(688\) 757.649 1312.29i 1.10123 1.90739i
\(689\) 252.066 + 145.531i 0.365844 + 0.211220i
\(690\) 0 0
\(691\) −251.002 + 144.916i −0.363245 + 0.209719i −0.670503 0.741907i \(-0.733922\pi\)
0.307258 + 0.951626i \(0.400588\pi\)
\(692\) −177.489 −0.256487
\(693\) 0 0
\(694\) 883.335i 1.27282i
\(695\) 11.0898 6.40271i 0.0159566 0.00921253i
\(696\) 0 0
\(697\) −230.661 + 28.5955i −0.330934 + 0.0410265i
\(698\) −218.714 126.275i −0.313344 0.180909i
\(699\) 0 0
\(700\) 242.179 139.822i 0.345969 0.199746i
\(701\) 1016.86i 1.45059i 0.688438 + 0.725296i \(0.258297\pi\)
−0.688438 + 0.725296i \(0.741703\pi\)
\(702\) 0 0
\(703\) 98.2126i 0.139705i
\(704\) 85.6871 + 148.414i 0.121715 + 0.210816i
\(705\) 0 0
\(706\) 445.594 771.792i 0.631153 1.09319i
\(707\) 579.794 1004.23i 0.820077 1.42042i
\(708\) 0 0
\(709\) 228.924 132.169i 0.322883 0.186417i −0.329794 0.944053i \(-0.606979\pi\)
0.652677 + 0.757636i \(0.273646\pi\)
\(710\) 33.8193i 0.0476328i
\(711\) 0 0
\(712\) −524.077 −0.736063
\(713\) 404.480 233.527i 0.567293 0.327527i
\(714\) 0 0
\(715\) 12.9693 22.4634i 0.0181388 0.0314174i
\(716\) 138.761 + 80.1135i 0.193800 + 0.111890i
\(717\) 0 0
\(718\) 439.640 + 761.479i 0.612312 + 1.06056i
\(719\) 577.307 0.802931 0.401465 0.915874i \(-0.368501\pi\)
0.401465 + 0.915874i \(0.368501\pi\)
\(720\) 0 0
\(721\) 921.987i 1.27876i
\(722\) −469.187 + 270.885i −0.649844 + 0.375187i
\(723\) 0 0
\(724\) 141.637 + 81.7743i 0.195632 + 0.112948i
\(725\) −12.6249 + 21.8669i −0.0174136 + 0.0301613i
\(726\) 0 0
\(727\) 72.8716 + 126.217i 0.100236 + 0.173614i 0.911782 0.410675i \(-0.134707\pi\)
−0.811546 + 0.584289i \(0.801374\pi\)
\(728\) 294.469 0.404490
\(729\) 0 0
\(730\) 183.950 0.251987
\(731\) 523.515 1237.35i 0.716163 1.69268i
\(732\) 0 0
\(733\) −231.832 + 401.544i −0.316278 + 0.547809i −0.979708 0.200429i \(-0.935766\pi\)
0.663431 + 0.748238i \(0.269100\pi\)
\(734\) 343.540 595.028i 0.468037 0.810665i
\(735\) 0 0
\(736\) 585.777 338.199i 0.795893 0.459509i
\(737\) 287.002 0.389419
\(738\) 0 0
\(739\) −386.300 −0.522733 −0.261367 0.965240i \(-0.584173\pi\)
−0.261367 + 0.965240i \(0.584173\pi\)
\(740\) 12.2130 7.05115i 0.0165040 0.00952858i
\(741\) 0 0
\(742\) 1588.20 + 916.947i 2.14043 + 1.23578i
\(743\) −565.286 + 979.104i −0.760815 + 1.31777i 0.181616 + 0.983370i \(0.441867\pi\)
−0.942431 + 0.334401i \(0.891466\pi\)
\(744\) 0 0
\(745\) −105.902 + 61.1426i −0.142150 + 0.0820706i
\(746\) 711.433i 0.953664i
\(747\) 0 0
\(748\) −49.9761 66.1594i −0.0668129 0.0884484i
\(749\) −694.174 + 400.781i −0.926800 + 0.535088i
\(750\) 0 0
\(751\) 240.217 + 138.690i 0.319863 + 0.184673i 0.651332 0.758793i \(-0.274211\pi\)
−0.331468 + 0.943466i \(0.607544\pi\)
\(752\) 884.354 + 510.582i 1.17600 + 0.678966i
\(753\) 0 0
\(754\) 8.63340 4.98450i 0.0114501 0.00661074i
\(755\) 158.822 0.210360
\(756\) 0 0
\(757\) −353.193 −0.466569 −0.233284 0.972409i \(-0.574947\pi\)
−0.233284 + 0.972409i \(0.574947\pi\)
\(758\) 81.9843 + 142.001i 0.108159 + 0.187336i
\(759\) 0 0
\(760\) −90.4587 52.2263i −0.119025 0.0687189i
\(761\) 991.541 + 572.466i 1.30294 + 0.752256i 0.980908 0.194472i \(-0.0622992\pi\)
0.322037 + 0.946727i \(0.395633\pi\)
\(762\) 0 0
\(763\) 890.610 + 1542.58i 1.16725 + 2.02173i
\(764\) 21.6690i 0.0283626i
\(765\) 0 0
\(766\) 865.165 1.12946
\(767\) −148.133 + 85.5248i −0.193133 + 0.111506i
\(768\) 0 0
\(769\) 450.918 781.014i 0.586370 1.01562i −0.408333 0.912833i \(-0.633890\pi\)
0.994703 0.102789i \(-0.0327768\pi\)
\(770\) 81.7157 141.536i 0.106124 0.183813i
\(771\) 0 0
\(772\) −267.727 + 154.572i −0.346796 + 0.200223i
\(773\) 737.598i 0.954202i −0.878849 0.477101i \(-0.841688\pi\)
0.878849 0.477101i \(-0.158312\pi\)
\(774\) 0 0
\(775\) 268.941i 0.347020i
\(776\) −532.367 922.086i −0.686040 1.18826i
\(777\) 0 0
\(778\) 46.9688 81.3523i 0.0603712 0.104566i
\(779\) −75.1605 + 130.182i −0.0964833 + 0.167114i
\(780\) 0 0
\(781\) 23.1534 + 40.1028i 0.0296458 + 0.0513481i
\(782\) 1217.45 919.648i 1.55684 1.17602i
\(783\) 0 0
\(784\) 1462.47 1.86539
\(785\) −75.9659 131.577i −0.0967718 0.167614i
\(786\) 0 0
\(787\) −409.850 236.627i −0.520775 0.300670i 0.216476 0.976288i \(-0.430544\pi\)
−0.737252 + 0.675618i \(0.763877\pi\)
\(788\) 157.728 273.194i 0.200163 0.346692i
\(789\) 0 0
\(790\) −63.4161 109.840i −0.0802735 0.139038i
\(791\) 204.571i 0.258623i
\(792\) 0 0
\(793\) 326.303i 0.411479i
\(794\) −250.637 434.115i −0.315663 0.546745i
\(795\) 0 0
\(796\) −199.450 115.152i −0.250565 0.144664i
\(797\) 159.795 + 92.2578i 0.200496 + 0.115756i 0.596887 0.802325i \(-0.296404\pi\)
−0.396391 + 0.918082i \(0.629737\pi\)
\(798\) 0 0
\(799\) 833.851 + 352.799i 1.04362 + 0.441550i
\(800\) 389.486i 0.486858i
\(801\) 0 0
\(802\) 570.328i 0.711132i
\(803\) −218.128 + 125.936i −0.271641 + 0.156832i
\(804\) 0 0
\(805\) 558.056 + 322.194i 0.693237 + 0.400241i
\(806\) 53.0910 91.9563i 0.0658697 0.114090i
\(807\) 0 0
\(808\) 340.023 + 588.938i 0.420821 + 0.728884i
\(809\) 609.972 0.753982 0.376991 0.926217i \(-0.376959\pi\)
0.376991 + 0.926217i \(0.376959\pi\)
\(810\) 0 0
\(811\) 862.103i 1.06301i −0.847054 0.531506i \(-0.821626\pi\)
0.847054 0.531506i \(-0.178374\pi\)
\(812\) 11.6553 6.72920i 0.0143538 0.00828719i
\(813\) 0 0
\(814\) −45.0597 + 78.0456i −0.0553559 + 0.0958792i
\(815\) 180.353 + 104.127i 0.221292 + 0.127763i
\(816\) 0 0
\(817\) −434.463 752.512i −0.531779 0.921068i
\(818\) 1577.67i 1.92870i
\(819\) 0 0
\(820\) −21.5845 −0.0263226
\(821\) −777.577 1346.80i −0.947110 1.64044i −0.751471 0.659766i \(-0.770655\pi\)
−0.195639 0.980676i \(-0.562678\pi\)
\(822\) 0 0
\(823\) −511.055 295.058i −0.620966 0.358515i 0.156279 0.987713i \(-0.450050\pi\)
−0.777245 + 0.629198i \(0.783383\pi\)
\(824\) 468.264 + 270.352i 0.568281 + 0.328097i
\(825\) 0 0
\(826\) −933.346 + 538.867i −1.12996 + 0.652382i
\(827\) 1114.88 1.34810 0.674048 0.738687i \(-0.264554\pi\)
0.674048 + 0.738687i \(0.264554\pi\)
\(828\) 0 0
\(829\) −588.636 −0.710055 −0.355028 0.934856i \(-0.615529\pi\)
−0.355028 + 0.934856i \(0.615529\pi\)
\(830\) −208.352 360.876i −0.251027 0.434791i
\(831\) 0 0
\(832\) −76.8088 + 133.037i −0.0923183 + 0.159900i
\(833\) 1286.84 159.532i 1.54483 0.191515i
\(834\) 0 0
\(835\) −76.5282 132.551i −0.0916505 0.158743i
\(836\) −53.6240 −0.0641435
\(837\) 0 0
\(838\) 1266.02i 1.51077i
\(839\) 589.367 + 1020.81i 0.702463 + 1.21670i 0.967599 + 0.252491i \(0.0812497\pi\)
−0.265136 + 0.964211i \(0.585417\pi\)
\(840\) 0 0
\(841\) 419.892 727.275i 0.499278 0.864774i
\(842\) −1453.30 839.061i −1.72601 0.996510i
\(843\) 0 0
\(844\) −166.002 + 95.8411i −0.196684 + 0.113556i
\(845\) −221.348 −0.261951
\(846\) 0 0
\(847\) 1130.54i 1.33475i
\(848\) −1205.80 + 696.170i −1.42194 + 0.820955i
\(849\) 0 0
\(850\) 108.090 + 871.894i 0.127165 + 1.02576i
\(851\) −307.723 177.664i −0.361602 0.208771i
\(852\) 0 0
\(853\) 155.292 89.6579i 0.182054 0.105109i −0.406203 0.913783i \(-0.633148\pi\)
0.588257 + 0.808674i \(0.299814\pi\)
\(854\) 2055.94i 2.40742i
\(855\) 0 0
\(856\) 470.081i 0.549159i
\(857\) −575.734 997.200i −0.671801 1.16359i −0.977393 0.211431i \(-0.932188\pi\)
0.305592 0.952163i \(-0.401146\pi\)
\(858\) 0 0
\(859\) 331.359 573.930i 0.385749 0.668138i −0.606123 0.795371i \(-0.707276\pi\)
0.991873 + 0.127233i \(0.0406096\pi\)
\(860\) 62.3844 108.053i 0.0725400 0.125643i
\(861\) 0 0
\(862\) −526.767 + 304.129i −0.611099 + 0.352818i
\(863\) 791.536i 0.917191i −0.888645 0.458595i \(-0.848353\pi\)
0.888645 0.458595i \(-0.151647\pi\)
\(864\) 0 0
\(865\) 235.507 0.272263
\(866\) 658.768 380.340i 0.760702 0.439191i
\(867\) 0 0
\(868\) 71.6742 124.143i 0.0825739 0.143022i
\(869\) 150.397 + 86.8320i 0.173069 + 0.0999217i
\(870\) 0 0
\(871\) 128.632 + 222.798i 0.147683 + 0.255795i
\(872\) −1044.61 −1.19794
\(873\) 0 0
\(874\) 986.776i 1.12903i
\(875\) −672.072 + 388.021i −0.768083 + 0.443453i
\(876\) 0 0
\(877\) 591.963 + 341.770i 0.674986 + 0.389704i 0.797963 0.602706i \(-0.205911\pi\)
−0.122977 + 0.992410i \(0.539244\pi\)
\(878\) 698.915 1210.56i 0.796031 1.37877i
\(879\) 0 0
\(880\) 62.0407 + 107.458i 0.0705008 + 0.122111i
\(881\) 972.438 1.10379 0.551895 0.833914i \(-0.313905\pi\)
0.551895 + 0.833914i \(0.313905\pi\)
\(882\) 0 0
\(883\) −257.671 −0.291814 −0.145907 0.989298i \(-0.546610\pi\)
−0.145907 + 0.989298i \(0.546610\pi\)
\(884\) 28.9602 68.4484i 0.0327604 0.0774303i
\(885\) 0 0
\(886\) −252.216 + 436.851i −0.284668 + 0.493059i
\(887\) 525.785 910.687i 0.592768 1.02670i −0.401090 0.916039i \(-0.631368\pi\)
0.993858 0.110665i \(-0.0352982\pi\)
\(888\) 0 0
\(889\) −1637.90 + 945.644i −1.84241 + 1.06372i
\(890\) −260.727 −0.292952
\(891\) 0 0
\(892\) −201.606 −0.226015
\(893\) 507.120 292.786i 0.567884 0.327868i
\(894\) 0 0
\(895\) −184.119 106.301i −0.205719 0.118772i
\(896\) −864.597 + 1497.53i −0.964952 + 1.67135i
\(897\) 0 0
\(898\) −225.783 + 130.356i −0.251428 + 0.145162i
\(899\) 12.9433i 0.0143974i
\(900\) 0 0
\(901\) −985.059 + 744.103i −1.09330 + 0.825863i
\(902\) 119.454 68.9668i 0.132432 0.0764599i
\(903\) 0 0
\(904\) 103.898 + 59.9858i 0.114932 + 0.0663559i
\(905\) −187.936 108.505i −0.207664 0.119895i
\(906\) 0 0
\(907\) 1220.24 704.504i 1.34535 0.776741i 0.357767 0.933811i \(-0.383538\pi\)
0.987587 + 0.157070i \(0.0502048\pi\)
\(908\) −266.774 −0.293804
\(909\) 0 0
\(910\) 146.498 0.160987
\(911\) 686.223 + 1188.57i 0.753263 + 1.30469i 0.946233 + 0.323486i \(0.104855\pi\)
−0.192970 + 0.981205i \(0.561812\pi\)
\(912\) 0 0
\(913\) 494.127 + 285.284i 0.541213 + 0.312469i
\(914\) −19.1931 11.0811i −0.0209990 0.0121238i
\(915\) 0 0
\(916\) 40.3378 + 69.8672i 0.0440369 + 0.0762742i
\(917\) 2415.99i 2.63467i
\(918\) 0 0
\(919\) 849.649 0.924537 0.462268 0.886740i \(-0.347036\pi\)
0.462268 + 0.886740i \(0.347036\pi\)
\(920\) −327.275 + 188.952i −0.355733 + 0.205383i
\(921\) 0 0
\(922\) 402.382 696.946i 0.436423 0.755907i
\(923\) −20.7544 + 35.9477i −0.0224858 + 0.0389466i
\(924\) 0 0
\(925\) 177.195 102.303i 0.191562 0.110598i
\(926\) 545.442i 0.589031i
\(927\) 0 0
\(928\) 18.7448i 0.0201991i
\(929\) 272.517 + 472.013i 0.293344 + 0.508087i 0.974598 0.223960i \(-0.0718985\pi\)
−0.681254 + 0.732047i \(0.738565\pi\)
\(930\) 0 0
\(931\) 419.315 726.275i 0.450392 0.780102i
\(932\) −229.529 + 397.556i −0.246276 + 0.426562i
\(933\) 0 0
\(934\) 258.521 + 447.771i 0.276789 + 0.479412i
\(935\) 66.3123 + 87.7857i 0.0709223 + 0.0938884i
\(936\) 0 0
\(937\) 1418.88 1.51428 0.757140 0.653253i \(-0.226596\pi\)
0.757140 + 0.653253i \(0.226596\pi\)
\(938\) 810.475 + 1403.78i 0.864046 + 1.49657i
\(939\) 0 0
\(940\) 72.8172 + 42.0410i 0.0774651 + 0.0447245i
\(941\) −255.539 + 442.607i −0.271561 + 0.470358i −0.969262 0.246032i \(-0.920873\pi\)
0.697701 + 0.716389i \(0.254207\pi\)
\(942\) 0 0
\(943\) 271.927 + 470.991i 0.288363 + 0.499460i
\(944\) 818.244i 0.866784i
\(945\) 0 0
\(946\) 797.322i 0.842835i
\(947\) −48.4833 83.9755i −0.0511967 0.0886753i 0.839291 0.543682i \(-0.182970\pi\)
−0.890488 + 0.455007i \(0.849637\pi\)
\(948\) 0 0
\(949\) −195.527 112.888i −0.206035 0.118954i
\(950\) 492.084 + 284.105i 0.517983 + 0.299058i
\(951\) 0 0
\(952\) −486.667 + 1150.25i −0.511205 + 1.20825i
\(953\) 759.400i 0.796852i 0.917200 + 0.398426i \(0.130443\pi\)
−0.917200 + 0.398426i \(0.869557\pi\)
\(954\) 0 0
\(955\) 28.7523i 0.0301071i
\(956\) 238.042 137.433i 0.248997 0.143759i
\(957\) 0 0
\(958\) 696.142 + 401.918i 0.726661 + 0.419538i
\(959\) 263.146 455.782i 0.274396 0.475268i
\(960\) 0 0
\(961\) −411.569 712.858i −0.428272 0.741788i
\(962\) −80.7818 −0.0839728
\(963\) 0 0
\(964\) 127.725i 0.132494i
\(965\) 355.241 205.099i 0.368126 0.212538i
\(966\) 0 0
\(967\) 523.075 905.993i 0.540926 0.936911i −0.457925 0.888991i \(-0.651407\pi\)
0.998851 0.0479203i \(-0.0152593\pi\)
\(968\) 574.183 + 331.505i 0.593164 + 0.342464i
\(969\) 0 0
\(970\) −264.852 458.736i −0.273043 0.472924i
\(971\) 29.9038i 0.0307969i −0.999881 0.0153985i \(-0.995098\pi\)
0.999881 0.0153985i \(-0.00490168\pi\)
\(972\) 0 0
\(973\) −99.0283 −0.101776
\(974\) 539.923 + 935.174i 0.554336 + 0.960138i
\(975\) 0 0
\(976\) −1351.80 780.462i −1.38504 0.799653i
\(977\) 54.6776 + 31.5681i 0.0559648 + 0.0323113i 0.527721 0.849418i \(-0.323047\pi\)
−0.471757 + 0.881729i \(0.656380\pi\)
\(978\) 0 0
\(979\) 309.170 178.499i 0.315802 0.182328i
\(980\) 120.419 0.122876
\(981\) 0 0
\(982\) −1668.20 −1.69877
\(983\) −327.329 566.950i −0.332990 0.576755i 0.650107 0.759843i \(-0.274724\pi\)
−0.983097 + 0.183088i \(0.941391\pi\)
\(984\) 0 0
\(985\) −209.287 + 362.495i −0.212474 + 0.368016i
\(986\) 5.20205 + 41.9616i 0.00527591 + 0.0425574i
\(987\) 0 0
\(988\) −24.0339 41.6280i −0.0243258 0.0421336i
\(989\) −3143.73 −3.17870
\(990\) 0 0
\(991\) 173.917i 0.175496i −0.996143 0.0877481i \(-0.972033\pi\)
0.996143 0.0877481i \(-0.0279671\pi\)
\(992\) 99.8274 + 172.906i 0.100632 + 0.174301i
\(993\) 0 0
\(994\) −130.768 + 226.496i −0.131557 + 0.227863i
\(995\) 264.646 + 152.794i 0.265976 + 0.153561i
\(996\) 0 0
\(997\) 7.95246 4.59136i 0.00797639 0.00460517i −0.496007 0.868319i \(-0.665201\pi\)
0.503983 + 0.863714i \(0.331867\pi\)
\(998\) 1318.77 1.32142
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.i.a.152.25 68
3.2 odd 2 153.3.i.a.50.10 yes 68
9.2 odd 6 inner 459.3.i.a.305.26 68
9.7 even 3 153.3.i.a.101.9 yes 68
17.16 even 2 inner 459.3.i.a.152.26 68
51.50 odd 2 153.3.i.a.50.9 68
153.16 even 6 153.3.i.a.101.10 yes 68
153.101 odd 6 inner 459.3.i.a.305.25 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.9 68 51.50 odd 2
153.3.i.a.50.10 yes 68 3.2 odd 2
153.3.i.a.101.9 yes 68 9.7 even 3
153.3.i.a.101.10 yes 68 153.16 even 6
459.3.i.a.152.25 68 1.1 even 1 trivial
459.3.i.a.152.26 68 17.16 even 2 inner
459.3.i.a.305.25 68 153.101 odd 6 inner
459.3.i.a.305.26 68 9.2 odd 6 inner