Properties

Label 459.3.c.g.458.6
Level $459$
Weight $3$
Character 459.458
Analytic conductor $12.507$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(458,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.458"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 68 x^{18} + 1808 x^{16} + 24602 x^{14} + 187648 x^{12} + 817824 x^{10} + 1959913 x^{8} + \cdots + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 458.6
Root \(-2.71920i\) of defining polynomial
Character \(\chi\) \(=\) 459.458
Dual form 459.3.c.g.458.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.71920i q^{2} +1.04434 q^{4} +8.53267 q^{5} -9.34999i q^{7} -8.67225i q^{8} -14.6694i q^{10} -13.4508 q^{11} -8.93379 q^{13} -16.0745 q^{14} -10.7320 q^{16} +(-14.0862 - 9.51737i) q^{17} +30.4441 q^{19} +8.91099 q^{20} +23.1247i q^{22} -2.38425 q^{23} +47.8064 q^{25} +15.3590i q^{26} -9.76455i q^{28} -11.9481 q^{29} +56.3406i q^{31} -16.2385i q^{32} +(-16.3623 + 24.2170i) q^{34} -79.7803i q^{35} -37.7305i q^{37} -52.3396i q^{38} -73.9974i q^{40} +2.40034 q^{41} +74.9007 q^{43} -14.0472 q^{44} +4.09902i q^{46} +86.4381i q^{47} -38.4222 q^{49} -82.1889i q^{50} -9.32990 q^{52} +31.3667i q^{53} -114.771 q^{55} -81.0854 q^{56} +20.5413i q^{58} -56.8958i q^{59} +21.8369i q^{61} +96.8610 q^{62} -70.8453 q^{64} -76.2290 q^{65} +73.3810 q^{67} +(-14.7107 - 9.93935i) q^{68} -137.159 q^{70} +40.3162 q^{71} -71.4708i q^{73} -64.8665 q^{74} +31.7939 q^{76} +125.765i q^{77} +94.7951i q^{79} -91.5726 q^{80} -4.12668i q^{82} -78.0386i q^{83} +(-120.192 - 81.2085i) q^{85} -128.770i q^{86} +116.649i q^{88} +3.65743i q^{89} +83.5308i q^{91} -2.48997 q^{92} +148.605 q^{94} +259.769 q^{95} -58.7499i q^{97} +66.0556i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 36 q^{4} + 100 q^{13} + 228 q^{16} + 172 q^{19} + 272 q^{25} - 80 q^{34} + 124 q^{43} + 4 q^{49} - 888 q^{52} + 268 q^{55} - 1408 q^{64} + 80 q^{67} - 300 q^{70} - 252 q^{76} - 484 q^{85} + 172 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71920i 0.859602i −0.902924 0.429801i \(-0.858584\pi\)
0.902924 0.429801i \(-0.141416\pi\)
\(3\) 0 0
\(4\) 1.04434 0.261085
\(5\) 8.53267 1.70653 0.853267 0.521475i \(-0.174618\pi\)
0.853267 + 0.521475i \(0.174618\pi\)
\(6\) 0 0
\(7\) 9.34999i 1.33571i −0.744290 0.667856i \(-0.767212\pi\)
0.744290 0.667856i \(-0.232788\pi\)
\(8\) 8.67225i 1.08403i
\(9\) 0 0
\(10\) 14.6694i 1.46694i
\(11\) −13.4508 −1.22280 −0.611401 0.791321i \(-0.709394\pi\)
−0.611401 + 0.791321i \(0.709394\pi\)
\(12\) 0 0
\(13\) −8.93379 −0.687214 −0.343607 0.939113i \(-0.611649\pi\)
−0.343607 + 0.939113i \(0.611649\pi\)
\(14\) −16.0745 −1.14818
\(15\) 0 0
\(16\) −10.7320 −0.670750
\(17\) −14.0862 9.51737i −0.828597 0.559845i
\(18\) 0 0
\(19\) 30.4441 1.60232 0.801161 0.598450i \(-0.204216\pi\)
0.801161 + 0.598450i \(0.204216\pi\)
\(20\) 8.91099 0.445550
\(21\) 0 0
\(22\) 23.1247i 1.05112i
\(23\) −2.38425 −0.103663 −0.0518316 0.998656i \(-0.516506\pi\)
−0.0518316 + 0.998656i \(0.516506\pi\)
\(24\) 0 0
\(25\) 47.8064 1.91226
\(26\) 15.3590i 0.590731i
\(27\) 0 0
\(28\) 9.76455i 0.348734i
\(29\) −11.9481 −0.412005 −0.206002 0.978552i \(-0.566045\pi\)
−0.206002 + 0.978552i \(0.566045\pi\)
\(30\) 0 0
\(31\) 56.3406i 1.81744i 0.417407 + 0.908720i \(0.362939\pi\)
−0.417407 + 0.908720i \(0.637061\pi\)
\(32\) 16.2385i 0.507453i
\(33\) 0 0
\(34\) −16.3623 + 24.2170i −0.481244 + 0.712264i
\(35\) 79.7803i 2.27944i
\(36\) 0 0
\(37\) 37.7305i 1.01974i −0.860250 0.509872i \(-0.829693\pi\)
0.860250 0.509872i \(-0.170307\pi\)
\(38\) 52.3396i 1.37736i
\(39\) 0 0
\(40\) 73.9974i 1.84993i
\(41\) 2.40034 0.0585449 0.0292725 0.999571i \(-0.490681\pi\)
0.0292725 + 0.999571i \(0.490681\pi\)
\(42\) 0 0
\(43\) 74.9007 1.74188 0.870938 0.491393i \(-0.163512\pi\)
0.870938 + 0.491393i \(0.163512\pi\)
\(44\) −14.0472 −0.319255
\(45\) 0 0
\(46\) 4.09902i 0.0891090i
\(47\) 86.4381i 1.83911i 0.392963 + 0.919554i \(0.371450\pi\)
−0.392963 + 0.919554i \(0.628550\pi\)
\(48\) 0 0
\(49\) −38.4222 −0.784127
\(50\) 82.1889i 1.64378i
\(51\) 0 0
\(52\) −9.32990 −0.179421
\(53\) 31.3667i 0.591824i 0.955215 + 0.295912i \(0.0956235\pi\)
−0.955215 + 0.295912i \(0.904377\pi\)
\(54\) 0 0
\(55\) −114.771 −2.08675
\(56\) −81.0854 −1.44795
\(57\) 0 0
\(58\) 20.5413i 0.354160i
\(59\) 56.8958i 0.964336i −0.876079 0.482168i \(-0.839849\pi\)
0.876079 0.482168i \(-0.160151\pi\)
\(60\) 0 0
\(61\) 21.8369i 0.357982i 0.983851 + 0.178991i \(0.0572833\pi\)
−0.983851 + 0.178991i \(0.942717\pi\)
\(62\) 96.8610 1.56227
\(63\) 0 0
\(64\) −70.8453 −1.10696
\(65\) −76.2290 −1.17275
\(66\) 0 0
\(67\) 73.3810 1.09524 0.547620 0.836727i \(-0.315534\pi\)
0.547620 + 0.836727i \(0.315534\pi\)
\(68\) −14.7107 9.93935i −0.216334 0.146167i
\(69\) 0 0
\(70\) −137.159 −1.95941
\(71\) 40.3162 0.567833 0.283917 0.958849i \(-0.408366\pi\)
0.283917 + 0.958849i \(0.408366\pi\)
\(72\) 0 0
\(73\) 71.4708i 0.979051i −0.871989 0.489526i \(-0.837170\pi\)
0.871989 0.489526i \(-0.162830\pi\)
\(74\) −64.8665 −0.876574
\(75\) 0 0
\(76\) 31.7939 0.418341
\(77\) 125.765i 1.63331i
\(78\) 0 0
\(79\) 94.7951i 1.19994i 0.800023 + 0.599969i \(0.204820\pi\)
−0.800023 + 0.599969i \(0.795180\pi\)
\(80\) −91.5726 −1.14466
\(81\) 0 0
\(82\) 4.12668i 0.0503253i
\(83\) 78.0386i 0.940224i −0.882607 0.470112i \(-0.844214\pi\)
0.882607 0.470112i \(-0.155786\pi\)
\(84\) 0 0
\(85\) −120.192 81.2085i −1.41403 0.955394i
\(86\) 128.770i 1.49732i
\(87\) 0 0
\(88\) 116.649i 1.32555i
\(89\) 3.65743i 0.0410947i 0.999789 + 0.0205474i \(0.00654089\pi\)
−0.999789 + 0.0205474i \(0.993459\pi\)
\(90\) 0 0
\(91\) 83.5308i 0.917921i
\(92\) −2.48997 −0.0270649
\(93\) 0 0
\(94\) 148.605 1.58090
\(95\) 259.769 2.73441
\(96\) 0 0
\(97\) 58.7499i 0.605669i −0.953043 0.302835i \(-0.902067\pi\)
0.953043 0.302835i \(-0.0979330\pi\)
\(98\) 66.0556i 0.674037i
\(99\) 0 0
\(100\) 49.9260 0.499260
\(101\) 40.3589i 0.399593i −0.979837 0.199796i \(-0.935972\pi\)
0.979837 0.199796i \(-0.0640281\pi\)
\(102\) 0 0
\(103\) 64.2929 0.624203 0.312101 0.950049i \(-0.398967\pi\)
0.312101 + 0.950049i \(0.398967\pi\)
\(104\) 77.4760i 0.744962i
\(105\) 0 0
\(106\) 53.9257 0.508733
\(107\) −17.3426 −0.162081 −0.0810404 0.996711i \(-0.525824\pi\)
−0.0810404 + 0.996711i \(0.525824\pi\)
\(108\) 0 0
\(109\) 25.0665i 0.229968i −0.993367 0.114984i \(-0.963318\pi\)
0.993367 0.114984i \(-0.0366817\pi\)
\(110\) 197.315i 1.79378i
\(111\) 0 0
\(112\) 100.344i 0.895929i
\(113\) −59.5562 −0.527046 −0.263523 0.964653i \(-0.584885\pi\)
−0.263523 + 0.964653i \(0.584885\pi\)
\(114\) 0 0
\(115\) −20.3440 −0.176905
\(116\) −12.4779 −0.107568
\(117\) 0 0
\(118\) −97.8155 −0.828945
\(119\) −88.9872 + 131.705i −0.747792 + 1.10677i
\(120\) 0 0
\(121\) 59.9245 0.495243
\(122\) 37.5421 0.307722
\(123\) 0 0
\(124\) 58.8387i 0.474505i
\(125\) 194.599 1.55679
\(126\) 0 0
\(127\) 147.382 1.16049 0.580245 0.814442i \(-0.302957\pi\)
0.580245 + 0.814442i \(0.302957\pi\)
\(128\) 56.8435i 0.444090i
\(129\) 0 0
\(130\) 131.053i 1.00810i
\(131\) 196.794 1.50224 0.751120 0.660165i \(-0.229514\pi\)
0.751120 + 0.660165i \(0.229514\pi\)
\(132\) 0 0
\(133\) 284.652i 2.14024i
\(134\) 126.157i 0.941470i
\(135\) 0 0
\(136\) −82.5369 + 122.159i −0.606889 + 0.898225i
\(137\) 40.6712i 0.296870i 0.988922 + 0.148435i \(0.0474235\pi\)
−0.988922 + 0.148435i \(0.952576\pi\)
\(138\) 0 0
\(139\) 61.6175i 0.443292i −0.975127 0.221646i \(-0.928857\pi\)
0.975127 0.221646i \(-0.0711429\pi\)
\(140\) 83.3176i 0.595126i
\(141\) 0 0
\(142\) 69.3117i 0.488111i
\(143\) 120.167 0.840327
\(144\) 0 0
\(145\) −101.949 −0.703100
\(146\) −122.873 −0.841594
\(147\) 0 0
\(148\) 39.4035i 0.266240i
\(149\) 194.025i 1.30218i 0.759000 + 0.651091i \(0.225688\pi\)
−0.759000 + 0.651091i \(0.774312\pi\)
\(150\) 0 0
\(151\) 115.633 0.765781 0.382890 0.923794i \(-0.374929\pi\)
0.382890 + 0.923794i \(0.374929\pi\)
\(152\) 264.019i 1.73697i
\(153\) 0 0
\(154\) 216.216 1.40400
\(155\) 480.736i 3.10152i
\(156\) 0 0
\(157\) −144.433 −0.919956 −0.459978 0.887930i \(-0.652143\pi\)
−0.459978 + 0.887930i \(0.652143\pi\)
\(158\) 162.972 1.03147
\(159\) 0 0
\(160\) 138.558i 0.865985i
\(161\) 22.2927i 0.138464i
\(162\) 0 0
\(163\) 2.30381i 0.0141338i −0.999975 0.00706689i \(-0.997751\pi\)
0.999975 0.00706689i \(-0.00224948\pi\)
\(164\) 2.50677 0.0152852
\(165\) 0 0
\(166\) −134.164 −0.808218
\(167\) −220.550 −1.32066 −0.660329 0.750977i \(-0.729583\pi\)
−0.660329 + 0.750977i \(0.729583\pi\)
\(168\) 0 0
\(169\) −89.1874 −0.527736
\(170\) −139.614 + 206.635i −0.821259 + 1.21550i
\(171\) 0 0
\(172\) 78.2217 0.454777
\(173\) 170.238 0.984033 0.492017 0.870586i \(-0.336260\pi\)
0.492017 + 0.870586i \(0.336260\pi\)
\(174\) 0 0
\(175\) 446.989i 2.55422i
\(176\) 144.354 0.820194
\(177\) 0 0
\(178\) 6.28787 0.0353251
\(179\) 275.548i 1.53938i 0.638420 + 0.769688i \(0.279588\pi\)
−0.638420 + 0.769688i \(0.720412\pi\)
\(180\) 0 0
\(181\) 27.8961i 0.154122i −0.997026 0.0770610i \(-0.975446\pi\)
0.997026 0.0770610i \(-0.0245536\pi\)
\(182\) 143.606 0.789046
\(183\) 0 0
\(184\) 20.6768i 0.112374i
\(185\) 321.942i 1.74023i
\(186\) 0 0
\(187\) 189.470 + 128.016i 1.01321 + 0.684579i
\(188\) 90.2706i 0.480163i
\(189\) 0 0
\(190\) 446.596i 2.35051i
\(191\) 115.048i 0.602348i 0.953569 + 0.301174i \(0.0973785\pi\)
−0.953569 + 0.301174i \(0.902622\pi\)
\(192\) 0 0
\(193\) 260.938i 1.35201i 0.736896 + 0.676006i \(0.236291\pi\)
−0.736896 + 0.676006i \(0.763709\pi\)
\(194\) −101.003 −0.520635
\(195\) 0 0
\(196\) −40.1258 −0.204724
\(197\) −260.581 −1.32274 −0.661372 0.750058i \(-0.730026\pi\)
−0.661372 + 0.750058i \(0.730026\pi\)
\(198\) 0 0
\(199\) 154.073i 0.774234i 0.922031 + 0.387117i \(0.126529\pi\)
−0.922031 + 0.387117i \(0.873471\pi\)
\(200\) 414.589i 2.07294i
\(201\) 0 0
\(202\) −69.3851 −0.343491
\(203\) 111.715i 0.550320i
\(204\) 0 0
\(205\) 20.4813 0.0999089
\(206\) 110.533i 0.536566i
\(207\) 0 0
\(208\) 95.8774 0.460949
\(209\) −409.498 −1.95932
\(210\) 0 0
\(211\) 86.2840i 0.408929i 0.978874 + 0.204464i \(0.0655453\pi\)
−0.978874 + 0.204464i \(0.934455\pi\)
\(212\) 32.7574i 0.154516i
\(213\) 0 0
\(214\) 29.8155i 0.139325i
\(215\) 639.103 2.97257
\(216\) 0 0
\(217\) 526.784 2.42758
\(218\) −43.0944 −0.197681
\(219\) 0 0
\(220\) −119.860 −0.544819
\(221\) 125.843 + 85.0261i 0.569424 + 0.384734i
\(222\) 0 0
\(223\) −111.627 −0.500569 −0.250285 0.968172i \(-0.580524\pi\)
−0.250285 + 0.968172i \(0.580524\pi\)
\(224\) −151.830 −0.677811
\(225\) 0 0
\(226\) 102.389i 0.453050i
\(227\) 42.5230 0.187326 0.0936631 0.995604i \(-0.470142\pi\)
0.0936631 + 0.995604i \(0.470142\pi\)
\(228\) 0 0
\(229\) −183.725 −0.802293 −0.401147 0.916014i \(-0.631388\pi\)
−0.401147 + 0.916014i \(0.631388\pi\)
\(230\) 34.9755i 0.152068i
\(231\) 0 0
\(232\) 103.617i 0.446626i
\(233\) 232.499 0.997849 0.498924 0.866646i \(-0.333729\pi\)
0.498924 + 0.866646i \(0.333729\pi\)
\(234\) 0 0
\(235\) 737.547i 3.13850i
\(236\) 59.4185i 0.251773i
\(237\) 0 0
\(238\) 226.428 + 152.987i 0.951379 + 0.642803i
\(239\) 61.8517i 0.258794i 0.991593 + 0.129397i \(0.0413041\pi\)
−0.991593 + 0.129397i \(0.958696\pi\)
\(240\) 0 0
\(241\) 177.471i 0.736394i 0.929748 + 0.368197i \(0.120025\pi\)
−0.929748 + 0.368197i \(0.879975\pi\)
\(242\) 103.022i 0.425712i
\(243\) 0 0
\(244\) 22.8051i 0.0934636i
\(245\) −327.844 −1.33814
\(246\) 0 0
\(247\) −271.981 −1.10114
\(248\) 488.600 1.97016
\(249\) 0 0
\(250\) 334.556i 1.33822i
\(251\) 16.8764i 0.0672367i −0.999435 0.0336184i \(-0.989297\pi\)
0.999435 0.0336184i \(-0.0107031\pi\)
\(252\) 0 0
\(253\) 32.0701 0.126759
\(254\) 253.380i 0.997559i
\(255\) 0 0
\(256\) −185.655 −0.725217
\(257\) 321.160i 1.24965i −0.780764 0.624825i \(-0.785170\pi\)
0.780764 0.624825i \(-0.214830\pi\)
\(258\) 0 0
\(259\) −352.780 −1.36209
\(260\) −79.6089 −0.306188
\(261\) 0 0
\(262\) 338.328i 1.29133i
\(263\) 339.214i 1.28979i −0.764273 0.644893i \(-0.776902\pi\)
0.764273 0.644893i \(-0.223098\pi\)
\(264\) 0 0
\(265\) 267.641i 1.00997i
\(266\) −489.375 −1.83975
\(267\) 0 0
\(268\) 76.6346 0.285950
\(269\) 99.2887 0.369103 0.184551 0.982823i \(-0.440917\pi\)
0.184551 + 0.982823i \(0.440917\pi\)
\(270\) 0 0
\(271\) −87.2805 −0.322068 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(272\) 151.173 + 102.140i 0.555782 + 0.375516i
\(273\) 0 0
\(274\) 69.9220 0.255190
\(275\) −643.035 −2.33831
\(276\) 0 0
\(277\) 410.030i 1.48025i 0.672468 + 0.740126i \(0.265234\pi\)
−0.672468 + 0.740126i \(0.734766\pi\)
\(278\) −105.933 −0.381054
\(279\) 0 0
\(280\) −691.874 −2.47098
\(281\) 185.604i 0.660512i −0.943891 0.330256i \(-0.892865\pi\)
0.943891 0.330256i \(-0.107135\pi\)
\(282\) 0 0
\(283\) 17.2021i 0.0607850i −0.999538 0.0303925i \(-0.990324\pi\)
0.999538 0.0303925i \(-0.00967572\pi\)
\(284\) 42.1037 0.148253
\(285\) 0 0
\(286\) 206.591i 0.722347i
\(287\) 22.4432i 0.0781992i
\(288\) 0 0
\(289\) 107.840 + 268.126i 0.373147 + 0.927772i
\(290\) 175.272i 0.604386i
\(291\) 0 0
\(292\) 74.6397i 0.255615i
\(293\) 266.078i 0.908117i 0.890972 + 0.454058i \(0.150024\pi\)
−0.890972 + 0.454058i \(0.849976\pi\)
\(294\) 0 0
\(295\) 485.473i 1.64567i
\(296\) −327.209 −1.10543
\(297\) 0 0
\(298\) 333.569 1.11936
\(299\) 21.3004 0.0712388
\(300\) 0 0
\(301\) 700.320i 2.32665i
\(302\) 198.797i 0.658267i
\(303\) 0 0
\(304\) −326.726 −1.07476
\(305\) 186.327i 0.610908i
\(306\) 0 0
\(307\) −456.017 −1.48540 −0.742698 0.669626i \(-0.766454\pi\)
−0.742698 + 0.669626i \(0.766454\pi\)
\(308\) 131.341i 0.426432i
\(309\) 0 0
\(310\) 826.483 2.66607
\(311\) −203.172 −0.653285 −0.326642 0.945148i \(-0.605917\pi\)
−0.326642 + 0.945148i \(0.605917\pi\)
\(312\) 0 0
\(313\) 283.907i 0.907052i −0.891243 0.453526i \(-0.850166\pi\)
0.891243 0.453526i \(-0.149834\pi\)
\(314\) 248.310i 0.790796i
\(315\) 0 0
\(316\) 98.9981i 0.313285i
\(317\) 147.243 0.464487 0.232244 0.972658i \(-0.425393\pi\)
0.232244 + 0.972658i \(0.425393\pi\)
\(318\) 0 0
\(319\) 160.712 0.503800
\(320\) −604.499 −1.88906
\(321\) 0 0
\(322\) 38.3257 0.119024
\(323\) −428.840 289.748i −1.32768 0.897051i
\(324\) 0 0
\(325\) −427.092 −1.31413
\(326\) −3.96071 −0.0121494
\(327\) 0 0
\(328\) 20.8164i 0.0634645i
\(329\) 808.195 2.45652
\(330\) 0 0
\(331\) −129.981 −0.392693 −0.196347 0.980535i \(-0.562908\pi\)
−0.196347 + 0.980535i \(0.562908\pi\)
\(332\) 81.4987i 0.245478i
\(333\) 0 0
\(334\) 379.170i 1.13524i
\(335\) 626.136 1.86906
\(336\) 0 0
\(337\) 4.12634i 0.0122443i 0.999981 + 0.00612217i \(0.00194876\pi\)
−0.999981 + 0.00612217i \(0.998051\pi\)
\(338\) 153.331i 0.453643i
\(339\) 0 0
\(340\) −125.522 84.8092i −0.369181 0.249439i
\(341\) 757.827i 2.22237i
\(342\) 0 0
\(343\) 98.9020i 0.288344i
\(344\) 649.557i 1.88825i
\(345\) 0 0
\(346\) 292.673i 0.845877i
\(347\) −278.661 −0.803059 −0.401529 0.915846i \(-0.631521\pi\)
−0.401529 + 0.915846i \(0.631521\pi\)
\(348\) 0 0
\(349\) −556.044 −1.59325 −0.796625 0.604474i \(-0.793383\pi\)
−0.796625 + 0.604474i \(0.793383\pi\)
\(350\) −768.465 −2.19562
\(351\) 0 0
\(352\) 218.421i 0.620514i
\(353\) 147.427i 0.417639i 0.977954 + 0.208820i \(0.0669622\pi\)
−0.977954 + 0.208820i \(0.933038\pi\)
\(354\) 0 0
\(355\) 344.004 0.969026
\(356\) 3.81959i 0.0107292i
\(357\) 0 0
\(358\) 473.724 1.32325
\(359\) 705.032i 1.96388i −0.189198 0.981939i \(-0.560589\pi\)
0.189198 0.981939i \(-0.439411\pi\)
\(360\) 0 0
\(361\) 565.843 1.56743
\(362\) −47.9591 −0.132484
\(363\) 0 0
\(364\) 87.2344i 0.239655i
\(365\) 609.836i 1.67078i
\(366\) 0 0
\(367\) 425.527i 1.15947i 0.814804 + 0.579737i \(0.196845\pi\)
−0.814804 + 0.579737i \(0.803155\pi\)
\(368\) 25.5878 0.0695321
\(369\) 0 0
\(370\) −553.484 −1.49590
\(371\) 293.278 0.790506
\(372\) 0 0
\(373\) 215.808 0.578573 0.289287 0.957243i \(-0.406582\pi\)
0.289287 + 0.957243i \(0.406582\pi\)
\(374\) 220.086 325.738i 0.588466 0.870957i
\(375\) 0 0
\(376\) 749.612 1.99365
\(377\) 106.742 0.283136
\(378\) 0 0
\(379\) 620.035i 1.63598i −0.575235 0.817988i \(-0.695089\pi\)
0.575235 0.817988i \(-0.304911\pi\)
\(380\) 271.287 0.713913
\(381\) 0 0
\(382\) 197.792 0.517779
\(383\) 275.359i 0.718953i 0.933154 + 0.359477i \(0.117045\pi\)
−0.933154 + 0.359477i \(0.882955\pi\)
\(384\) 0 0
\(385\) 1073.11i 2.78730i
\(386\) 448.606 1.16219
\(387\) 0 0
\(388\) 61.3548i 0.158131i
\(389\) 40.5825i 0.104325i 0.998639 + 0.0521626i \(0.0166114\pi\)
−0.998639 + 0.0521626i \(0.983389\pi\)
\(390\) 0 0
\(391\) 33.5850 + 22.6918i 0.0858950 + 0.0580353i
\(392\) 333.207i 0.850018i
\(393\) 0 0
\(394\) 447.991i 1.13703i
\(395\) 808.855i 2.04773i
\(396\) 0 0
\(397\) 46.9811i 0.118340i −0.998248 0.0591701i \(-0.981155\pi\)
0.998248 0.0591701i \(-0.0188454\pi\)
\(398\) 264.882 0.665533
\(399\) 0 0
\(400\) −513.058 −1.28265
\(401\) −52.1419 −0.130030 −0.0650148 0.997884i \(-0.520709\pi\)
−0.0650148 + 0.997884i \(0.520709\pi\)
\(402\) 0 0
\(403\) 503.335i 1.24897i
\(404\) 42.1483i 0.104328i
\(405\) 0 0
\(406\) 192.061 0.473056
\(407\) 507.507i 1.24695i
\(408\) 0 0
\(409\) −440.299 −1.07653 −0.538263 0.842777i \(-0.680919\pi\)
−0.538263 + 0.842777i \(0.680919\pi\)
\(410\) 35.2116i 0.0858819i
\(411\) 0 0
\(412\) 67.1435 0.162970
\(413\) −531.975 −1.28808
\(414\) 0 0
\(415\) 665.877i 1.60452i
\(416\) 145.071i 0.348729i
\(417\) 0 0
\(418\) 704.010i 1.68424i
\(419\) −547.542 −1.30678 −0.653392 0.757020i \(-0.726654\pi\)
−0.653392 + 0.757020i \(0.726654\pi\)
\(420\) 0 0
\(421\) 481.528 1.14377 0.571886 0.820333i \(-0.306212\pi\)
0.571886 + 0.820333i \(0.306212\pi\)
\(422\) 148.340 0.351516
\(423\) 0 0
\(424\) 272.019 0.641555
\(425\) −673.408 454.991i −1.58449 1.07057i
\(426\) 0 0
\(427\) 204.175 0.478161
\(428\) −18.1116 −0.0423168
\(429\) 0 0
\(430\) 1098.75i 2.55523i
\(431\) −202.265 −0.469292 −0.234646 0.972081i \(-0.575393\pi\)
−0.234646 + 0.972081i \(0.575393\pi\)
\(432\) 0 0
\(433\) 564.913 1.30465 0.652324 0.757940i \(-0.273794\pi\)
0.652324 + 0.757940i \(0.273794\pi\)
\(434\) 905.649i 2.08675i
\(435\) 0 0
\(436\) 26.1779i 0.0600411i
\(437\) −72.5864 −0.166102
\(438\) 0 0
\(439\) 345.773i 0.787637i 0.919188 + 0.393818i \(0.128846\pi\)
−0.919188 + 0.393818i \(0.871154\pi\)
\(440\) 995.325i 2.26210i
\(441\) 0 0
\(442\) 146.177 216.349i 0.330718 0.489478i
\(443\) 398.946i 0.900556i 0.892888 + 0.450278i \(0.148675\pi\)
−0.892888 + 0.450278i \(0.851325\pi\)
\(444\) 0 0
\(445\) 31.2076i 0.0701295i
\(446\) 191.909i 0.430290i
\(447\) 0 0
\(448\) 662.402i 1.47858i
\(449\) 130.517 0.290684 0.145342 0.989381i \(-0.453572\pi\)
0.145342 + 0.989381i \(0.453572\pi\)
\(450\) 0 0
\(451\) −32.2866 −0.0715888
\(452\) −62.1969 −0.137604
\(453\) 0 0
\(454\) 73.1058i 0.161026i
\(455\) 712.740i 1.56646i
\(456\) 0 0
\(457\) −474.760 −1.03886 −0.519431 0.854512i \(-0.673856\pi\)
−0.519431 + 0.854512i \(0.673856\pi\)
\(458\) 315.861i 0.689653i
\(459\) 0 0
\(460\) −21.2461 −0.0461871
\(461\) 805.445i 1.74717i −0.486673 0.873584i \(-0.661790\pi\)
0.486673 0.873584i \(-0.338210\pi\)
\(462\) 0 0
\(463\) −449.688 −0.971249 −0.485624 0.874168i \(-0.661408\pi\)
−0.485624 + 0.874168i \(0.661408\pi\)
\(464\) 128.227 0.276352
\(465\) 0 0
\(466\) 399.713i 0.857752i
\(467\) 46.7144i 0.100031i 0.998748 + 0.0500154i \(0.0159270\pi\)
−0.998748 + 0.0500154i \(0.984073\pi\)
\(468\) 0 0
\(469\) 686.112i 1.46292i
\(470\) 1267.99 2.69786
\(471\) 0 0
\(472\) −493.415 −1.04537
\(473\) −1007.48 −2.12997
\(474\) 0 0
\(475\) 1455.42 3.06405
\(476\) −92.9328 + 137.545i −0.195237 + 0.288960i
\(477\) 0 0
\(478\) 106.336 0.222460
\(479\) −36.8170 −0.0768621 −0.0384311 0.999261i \(-0.512236\pi\)
−0.0384311 + 0.999261i \(0.512236\pi\)
\(480\) 0 0
\(481\) 337.077i 0.700783i
\(482\) 305.109 0.633006
\(483\) 0 0
\(484\) 62.5814 0.129300
\(485\) 501.294i 1.03359i
\(486\) 0 0
\(487\) 227.007i 0.466133i 0.972461 + 0.233067i \(0.0748760\pi\)
−0.972461 + 0.233067i \(0.925124\pi\)
\(488\) 189.375 0.388064
\(489\) 0 0
\(490\) 563.631i 1.15027i
\(491\) 848.072i 1.72723i 0.504149 + 0.863617i \(0.331806\pi\)
−0.504149 + 0.863617i \(0.668194\pi\)
\(492\) 0 0
\(493\) 168.303 + 113.715i 0.341386 + 0.230659i
\(494\) 467.591i 0.946540i
\(495\) 0 0
\(496\) 604.648i 1.21905i
\(497\) 376.956i 0.758462i
\(498\) 0 0
\(499\) 63.7180i 0.127691i 0.997960 + 0.0638457i \(0.0203366\pi\)
−0.997960 + 0.0638457i \(0.979663\pi\)
\(500\) 203.228 0.406455
\(501\) 0 0
\(502\) −29.0140 −0.0577968
\(503\) 785.062 1.56076 0.780380 0.625306i \(-0.215026\pi\)
0.780380 + 0.625306i \(0.215026\pi\)
\(504\) 0 0
\(505\) 344.369i 0.681918i
\(506\) 55.1351i 0.108963i
\(507\) 0 0
\(508\) 153.917 0.302986
\(509\) 635.582i 1.24869i 0.781149 + 0.624344i \(0.214634\pi\)
−0.781149 + 0.624344i \(0.785366\pi\)
\(510\) 0 0
\(511\) −668.251 −1.30773
\(512\) 546.554i 1.06749i
\(513\) 0 0
\(514\) −552.140 −1.07420
\(515\) 548.590 1.06522
\(516\) 0 0
\(517\) 1162.66i 2.24886i
\(518\) 606.501i 1.17085i
\(519\) 0 0
\(520\) 661.077i 1.27130i
\(521\) 235.641 0.452286 0.226143 0.974094i \(-0.427388\pi\)
0.226143 + 0.974094i \(0.427388\pi\)
\(522\) 0 0
\(523\) −825.930 −1.57922 −0.789608 0.613612i \(-0.789716\pi\)
−0.789608 + 0.613612i \(0.789716\pi\)
\(524\) 205.519 0.392212
\(525\) 0 0
\(526\) −583.178 −1.10870
\(527\) 536.214 793.623i 1.01748 1.50593i
\(528\) 0 0
\(529\) −523.315 −0.989254
\(530\) 460.130 0.868169
\(531\) 0 0
\(532\) 297.273i 0.558784i
\(533\) −21.4442 −0.0402329
\(534\) 0 0
\(535\) −147.979 −0.276596
\(536\) 636.378i 1.18727i
\(537\) 0 0
\(538\) 170.697i 0.317282i
\(539\) 516.810 0.958832
\(540\) 0 0
\(541\) 0.859781i 0.00158924i 1.00000 0.000794622i \(0.000252936\pi\)
−1.00000 0.000794622i \(0.999747\pi\)
\(542\) 150.053i 0.276851i
\(543\) 0 0
\(544\) −154.548 + 228.738i −0.284095 + 0.420474i
\(545\) 213.884i 0.392448i
\(546\) 0 0
\(547\) 613.906i 1.12231i −0.827709 0.561157i \(-0.810356\pi\)
0.827709 0.561157i \(-0.189644\pi\)
\(548\) 42.4745i 0.0775081i
\(549\) 0 0
\(550\) 1105.51i 2.01001i
\(551\) −363.750 −0.660164
\(552\) 0 0
\(553\) 886.332 1.60277
\(554\) 704.925 1.27243
\(555\) 0 0
\(556\) 64.3496i 0.115737i
\(557\) 196.628i 0.353012i −0.984300 0.176506i \(-0.943521\pi\)
0.984300 0.176506i \(-0.0564794\pi\)
\(558\) 0 0
\(559\) −669.147 −1.19704
\(560\) 856.203i 1.52893i
\(561\) 0 0
\(562\) −319.091 −0.567777
\(563\) 730.838i 1.29811i 0.760740 + 0.649057i \(0.224836\pi\)
−0.760740 + 0.649057i \(0.775164\pi\)
\(564\) 0 0
\(565\) −508.173 −0.899422
\(566\) −29.5740 −0.0522509
\(567\) 0 0
\(568\) 349.632i 0.615549i
\(569\) 26.5371i 0.0466381i −0.999728 0.0233190i \(-0.992577\pi\)
0.999728 0.0233190i \(-0.00742335\pi\)
\(570\) 0 0
\(571\) 69.3373i 0.121431i −0.998155 0.0607157i \(-0.980662\pi\)
0.998155 0.0607157i \(-0.0193383\pi\)
\(572\) 125.495 0.219396
\(573\) 0 0
\(574\) −38.5844 −0.0672202
\(575\) −113.983 −0.198230
\(576\) 0 0
\(577\) −76.6280 −0.132804 −0.0664021 0.997793i \(-0.521152\pi\)
−0.0664021 + 0.997793i \(0.521152\pi\)
\(578\) 460.964 185.398i 0.797515 0.320758i
\(579\) 0 0
\(580\) −106.470 −0.183568
\(581\) −729.659 −1.25587
\(582\) 0 0
\(583\) 421.907i 0.723683i
\(584\) −619.812 −1.06132
\(585\) 0 0
\(586\) 457.443 0.780619
\(587\) 170.819i 0.291003i 0.989358 + 0.145501i \(0.0464795\pi\)
−0.989358 + 0.145501i \(0.953520\pi\)
\(588\) 0 0
\(589\) 1715.24i 2.91212i
\(590\) −834.627 −1.41462
\(591\) 0 0
\(592\) 404.924i 0.683994i
\(593\) 1102.03i 1.85839i 0.369588 + 0.929196i \(0.379499\pi\)
−0.369588 + 0.929196i \(0.620501\pi\)
\(594\) 0 0
\(595\) −759.298 + 1123.80i −1.27613 + 1.88874i
\(596\) 202.628i 0.339980i
\(597\) 0 0
\(598\) 36.6197i 0.0612370i
\(599\) 226.804i 0.378637i −0.981916 0.189319i \(-0.939372\pi\)
0.981916 0.189319i \(-0.0606279\pi\)
\(600\) 0 0
\(601\) 200.595i 0.333768i 0.985976 + 0.166884i \(0.0533706\pi\)
−0.985976 + 0.166884i \(0.946629\pi\)
\(602\) −1203.99 −1.99999
\(603\) 0 0
\(604\) 120.760 0.199934
\(605\) 511.315 0.845149
\(606\) 0 0
\(607\) 533.493i 0.878902i 0.898267 + 0.439451i \(0.144827\pi\)
−0.898267 + 0.439451i \(0.855173\pi\)
\(608\) 494.366i 0.813102i
\(609\) 0 0
\(610\) 320.334 0.525138
\(611\) 772.220i 1.26386i
\(612\) 0 0
\(613\) 599.964 0.978735 0.489367 0.872078i \(-0.337228\pi\)
0.489367 + 0.872078i \(0.337228\pi\)
\(614\) 783.985i 1.27685i
\(615\) 0 0
\(616\) 1090.66 1.77056
\(617\) −789.387 −1.27940 −0.639698 0.768627i \(-0.720940\pi\)
−0.639698 + 0.768627i \(0.720940\pi\)
\(618\) 0 0
\(619\) 263.810i 0.426187i 0.977032 + 0.213093i \(0.0683538\pi\)
−0.977032 + 0.213093i \(0.931646\pi\)
\(620\) 502.051i 0.809759i
\(621\) 0 0
\(622\) 349.293i 0.561565i
\(623\) 34.1969 0.0548907
\(624\) 0 0
\(625\) 465.291 0.744466
\(626\) −488.094 −0.779703
\(627\) 0 0
\(628\) −150.837 −0.240186
\(629\) −359.095 + 531.478i −0.570899 + 0.844958i
\(630\) 0 0
\(631\) 847.348 1.34287 0.671433 0.741065i \(-0.265679\pi\)
0.671433 + 0.741065i \(0.265679\pi\)
\(632\) 822.086 1.30077
\(633\) 0 0
\(634\) 253.140i 0.399274i
\(635\) 1257.56 1.98041
\(636\) 0 0
\(637\) 343.256 0.538863
\(638\) 276.297i 0.433067i
\(639\) 0 0
\(640\) 485.027i 0.757855i
\(641\) −496.117 −0.773973 −0.386987 0.922085i \(-0.626484\pi\)
−0.386987 + 0.922085i \(0.626484\pi\)
\(642\) 0 0
\(643\) 675.075i 1.04988i −0.851138 0.524942i \(-0.824087\pi\)
0.851138 0.524942i \(-0.175913\pi\)
\(644\) 23.2812i 0.0361509i
\(645\) 0 0
\(646\) −498.135 + 737.264i −0.771107 + 1.14128i
\(647\) 8.13757i 0.0125774i −0.999980 0.00628869i \(-0.997998\pi\)
0.999980 0.00628869i \(-0.00200177\pi\)
\(648\) 0 0
\(649\) 765.295i 1.17919i
\(650\) 734.258i 1.12963i
\(651\) 0 0
\(652\) 2.40595i 0.00369011i
\(653\) 1169.10 1.79035 0.895177 0.445710i \(-0.147049\pi\)
0.895177 + 0.445710i \(0.147049\pi\)
\(654\) 0 0
\(655\) 1679.17 2.56362
\(656\) −25.7605 −0.0392690
\(657\) 0 0
\(658\) 1389.45i 2.11163i
\(659\) 68.6538i 0.104179i −0.998642 0.0520893i \(-0.983412\pi\)
0.998642 0.0520893i \(-0.0165881\pi\)
\(660\) 0 0
\(661\) −232.907 −0.352356 −0.176178 0.984358i \(-0.556373\pi\)
−0.176178 + 0.984358i \(0.556373\pi\)
\(662\) 223.465i 0.337560i
\(663\) 0 0
\(664\) −676.770 −1.01923
\(665\) 2428.84i 3.65239i
\(666\) 0 0
\(667\) 28.4874 0.0427097
\(668\) −230.329 −0.344803
\(669\) 0 0
\(670\) 1076.46i 1.60665i
\(671\) 293.724i 0.437741i
\(672\) 0 0
\(673\) 179.762i 0.267106i 0.991042 + 0.133553i \(0.0426386\pi\)
−0.991042 + 0.133553i \(0.957361\pi\)
\(674\) 7.09402 0.0105253
\(675\) 0 0
\(676\) −93.1419 −0.137784
\(677\) −322.648 −0.476584 −0.238292 0.971194i \(-0.576588\pi\)
−0.238292 + 0.971194i \(0.576588\pi\)
\(678\) 0 0
\(679\) −549.311 −0.809000
\(680\) −704.260 + 1042.34i −1.03568 + 1.53285i
\(681\) 0 0
\(682\) −1302.86 −1.91035
\(683\) 1289.59 1.88813 0.944066 0.329755i \(-0.106966\pi\)
0.944066 + 0.329755i \(0.106966\pi\)
\(684\) 0 0
\(685\) 347.033i 0.506618i
\(686\) −170.033 −0.247861
\(687\) 0 0
\(688\) −803.834 −1.16836
\(689\) 280.223i 0.406710i
\(690\) 0 0
\(691\) 723.167i 1.04655i −0.852164 0.523276i \(-0.824710\pi\)
0.852164 0.523276i \(-0.175290\pi\)
\(692\) 177.786 0.256916
\(693\) 0 0
\(694\) 479.076i 0.690311i
\(695\) 525.762i 0.756492i
\(696\) 0 0
\(697\) −33.8116 22.8449i −0.0485102 0.0327761i
\(698\) 955.953i 1.36956i
\(699\) 0 0
\(700\) 466.808i 0.666868i
\(701\) 296.143i 0.422458i −0.977437 0.211229i \(-0.932253\pi\)
0.977437 0.211229i \(-0.0677466\pi\)
\(702\) 0 0
\(703\) 1148.67i 1.63396i
\(704\) 952.927 1.35359
\(705\) 0 0
\(706\) 253.457 0.359004
\(707\) −377.355 −0.533741
\(708\) 0 0
\(709\) 1213.51i 1.71158i −0.517324 0.855790i \(-0.673072\pi\)
0.517324 0.855790i \(-0.326928\pi\)
\(710\) 591.414i 0.832977i
\(711\) 0 0
\(712\) 31.7181 0.0445479
\(713\) 134.330i 0.188402i
\(714\) 0 0
\(715\) 1025.34 1.43405
\(716\) 287.766i 0.401907i
\(717\) 0 0
\(718\) −1212.09 −1.68815
\(719\) −769.633 −1.07042 −0.535211 0.844719i \(-0.679768\pi\)
−0.535211 + 0.844719i \(0.679768\pi\)
\(720\) 0 0
\(721\) 601.138i 0.833755i
\(722\) 972.800i 1.34737i
\(723\) 0 0
\(724\) 29.1330i 0.0402389i
\(725\) −571.197 −0.787858
\(726\) 0 0
\(727\) 251.418 0.345829 0.172915 0.984937i \(-0.444682\pi\)
0.172915 + 0.984937i \(0.444682\pi\)
\(728\) 724.400 0.995054
\(729\) 0 0
\(730\) −1048.43 −1.43621
\(731\) −1055.06 712.857i −1.44331 0.975181i
\(732\) 0 0
\(733\) 588.784 0.803253 0.401626 0.915804i \(-0.368445\pi\)
0.401626 + 0.915804i \(0.368445\pi\)
\(734\) 731.568 0.996686
\(735\) 0 0
\(736\) 38.7166i 0.0526041i
\(737\) −987.035 −1.33926
\(738\) 0 0
\(739\) 522.425 0.706935 0.353467 0.935447i \(-0.385003\pi\)
0.353467 + 0.935447i \(0.385003\pi\)
\(740\) 336.217i 0.454347i
\(741\) 0 0
\(742\) 504.204i 0.679521i
\(743\) −359.980 −0.484495 −0.242248 0.970214i \(-0.577885\pi\)
−0.242248 + 0.970214i \(0.577885\pi\)
\(744\) 0 0
\(745\) 1655.55i 2.22222i
\(746\) 371.018i 0.497343i
\(747\) 0 0
\(748\) 197.871 + 133.692i 0.264534 + 0.178733i
\(749\) 162.153i 0.216493i
\(750\) 0 0
\(751\) 337.419i 0.449293i 0.974440 + 0.224647i \(0.0721228\pi\)
−0.974440 + 0.224647i \(0.927877\pi\)
\(752\) 927.654i 1.23358i
\(753\) 0 0
\(754\) 183.511i 0.243384i
\(755\) 986.657 1.30683
\(756\) 0 0
\(757\) −613.931 −0.811005 −0.405503 0.914094i \(-0.632904\pi\)
−0.405503 + 0.914094i \(0.632904\pi\)
\(758\) −1065.97 −1.40629
\(759\) 0 0
\(760\) 2252.78i 2.96419i
\(761\) 1355.73i 1.78151i −0.454487 0.890754i \(-0.650177\pi\)
0.454487 0.890754i \(-0.349823\pi\)
\(762\) 0 0
\(763\) −234.372 −0.307171
\(764\) 120.149i 0.157264i
\(765\) 0 0
\(766\) 473.398 0.618013
\(767\) 508.295i 0.662706i
\(768\) 0 0
\(769\) −3.26282 −0.00424295 −0.00212147 0.999998i \(-0.500675\pi\)
−0.00212147 + 0.999998i \(0.500675\pi\)
\(770\) 1844.90 2.39597
\(771\) 0 0
\(772\) 272.508i 0.352990i
\(773\) 1253.84i 1.62204i 0.585018 + 0.811020i \(0.301087\pi\)
−0.585018 + 0.811020i \(0.698913\pi\)
\(774\) 0 0
\(775\) 2693.44i 3.47541i
\(776\) −509.494 −0.656564
\(777\) 0 0
\(778\) 69.7697 0.0896782
\(779\) 73.0763 0.0938078
\(780\) 0 0
\(781\) −542.285 −0.694347
\(782\) 39.0118 57.7394i 0.0498873 0.0738355i
\(783\) 0 0
\(784\) 412.347 0.525953
\(785\) −1232.40 −1.56994
\(786\) 0 0
\(787\) 989.567i 1.25739i −0.777651 0.628696i \(-0.783589\pi\)
0.777651 0.628696i \(-0.216411\pi\)
\(788\) −272.134 −0.345348
\(789\) 0 0
\(790\) 1390.59 1.76024
\(791\) 556.850i 0.703982i
\(792\) 0 0
\(793\) 195.086i 0.246010i
\(794\) −80.7700 −0.101725
\(795\) 0 0
\(796\) 160.904i 0.202141i
\(797\) 977.351i 1.22629i −0.789971 0.613144i \(-0.789905\pi\)
0.789971 0.613144i \(-0.210095\pi\)
\(798\) 0 0
\(799\) 822.663 1217.58i 1.02962 1.52388i
\(800\) 776.303i 0.970379i
\(801\) 0 0
\(802\) 89.6425i 0.111774i
\(803\) 961.340i 1.19719i
\(804\) 0 0
\(805\) 190.216i 0.236294i
\(806\) −865.336 −1.07362
\(807\) 0 0
\(808\) −350.002 −0.433171
\(809\) 1.39391 0.00172301 0.000861503 1.00000i \(-0.499726\pi\)
0.000861503 1.00000i \(0.499726\pi\)
\(810\) 0 0
\(811\) 750.546i 0.925457i −0.886500 0.462729i \(-0.846870\pi\)
0.886500 0.462729i \(-0.153130\pi\)
\(812\) 116.668i 0.143680i
\(813\) 0 0
\(814\) 872.507 1.07188
\(815\) 19.6576i 0.0241198i
\(816\) 0 0
\(817\) 2280.28 2.79105
\(818\) 756.964i 0.925384i
\(819\) 0 0
\(820\) 21.3894 0.0260847
\(821\) 218.234 0.265815 0.132907 0.991128i \(-0.457569\pi\)
0.132907 + 0.991128i \(0.457569\pi\)
\(822\) 0 0
\(823\) 602.891i 0.732553i −0.930506 0.366276i \(-0.880633\pi\)
0.930506 0.366276i \(-0.119367\pi\)
\(824\) 557.564i 0.676655i
\(825\) 0 0
\(826\) 914.574i 1.10723i
\(827\) −290.111 −0.350799 −0.175399 0.984497i \(-0.556122\pi\)
−0.175399 + 0.984497i \(0.556122\pi\)
\(828\) 0 0
\(829\) −103.693 −0.125082 −0.0625409 0.998042i \(-0.519920\pi\)
−0.0625409 + 0.998042i \(0.519920\pi\)
\(830\) −1144.78 −1.37925
\(831\) 0 0
\(832\) 632.917 0.760717
\(833\) 541.221 + 365.678i 0.649726 + 0.438990i
\(834\) 0 0
\(835\) −1881.88 −2.25375
\(836\) −427.654 −0.511548
\(837\) 0 0
\(838\) 941.337i 1.12331i
\(839\) −692.406 −0.825275 −0.412638 0.910895i \(-0.635392\pi\)
−0.412638 + 0.910895i \(0.635392\pi\)
\(840\) 0 0
\(841\) −698.242 −0.830252
\(842\) 827.845i 0.983189i
\(843\) 0 0
\(844\) 90.1097i 0.106765i
\(845\) −761.007 −0.900599
\(846\) 0 0
\(847\) 560.293i 0.661503i
\(848\) 336.627i 0.396966i
\(849\) 0 0
\(850\) −782.222 + 1157.73i −0.920261 + 1.36203i
\(851\) 89.9592i 0.105710i
\(852\) 0 0
\(853\) 1424.87i 1.67042i −0.549929 0.835211i \(-0.685345\pi\)
0.549929 0.835211i \(-0.314655\pi\)
\(854\) 351.018i 0.411028i
\(855\) 0 0
\(856\) 150.400i 0.175700i
\(857\) −618.934 −0.722211 −0.361105 0.932525i \(-0.617601\pi\)
−0.361105 + 0.932525i \(0.617601\pi\)
\(858\) 0 0
\(859\) −1111.61 −1.29407 −0.647035 0.762460i \(-0.723991\pi\)
−0.647035 + 0.762460i \(0.723991\pi\)
\(860\) 667.439 0.776092
\(861\) 0 0
\(862\) 347.735i 0.403405i
\(863\) 35.3248i 0.0409326i −0.999791 0.0204663i \(-0.993485\pi\)
0.999791 0.0204663i \(-0.00651508\pi\)
\(864\) 0 0
\(865\) 1452.58 1.67929
\(866\) 971.200i 1.12148i
\(867\) 0 0
\(868\) 550.141 0.633803
\(869\) 1275.07i 1.46729i
\(870\) 0 0
\(871\) −655.571 −0.752664
\(872\) −217.383 −0.249292
\(873\) 0 0
\(874\) 124.791i 0.142781i
\(875\) 1819.50i 2.07943i
\(876\) 0 0
\(877\) 467.872i 0.533492i −0.963767 0.266746i \(-0.914052\pi\)
0.963767 0.266746i \(-0.0859485\pi\)
\(878\) 594.454 0.677054
\(879\) 0 0
\(880\) 1231.73 1.39969
\(881\) 644.199 0.731213 0.365607 0.930770i \(-0.380862\pi\)
0.365607 + 0.930770i \(0.380862\pi\)
\(882\) 0 0
\(883\) 24.2582 0.0274725 0.0137363 0.999906i \(-0.495627\pi\)
0.0137363 + 0.999906i \(0.495627\pi\)
\(884\) 131.422 + 88.7960i 0.148668 + 0.100448i
\(885\) 0 0
\(886\) 685.870 0.774120
\(887\) −371.912 −0.419292 −0.209646 0.977777i \(-0.567231\pi\)
−0.209646 + 0.977777i \(0.567231\pi\)
\(888\) 0 0
\(889\) 1378.02i 1.55008i
\(890\) 53.6523 0.0602834
\(891\) 0 0
\(892\) −116.576 −0.130691
\(893\) 2631.53i 2.94684i
\(894\) 0 0
\(895\) 2351.16i 2.62700i
\(896\) 531.486 0.593177
\(897\) 0 0
\(898\) 224.386i 0.249873i
\(899\) 673.165i 0.748793i
\(900\) 0 0
\(901\) 298.528 441.836i 0.331330 0.490384i
\(902\) 55.5072i 0.0615379i
\(903\) 0 0
\(904\) 516.486i 0.571334i
\(905\) 238.028i 0.263014i
\(906\) 0 0
\(907\) 469.749i 0.517915i 0.965889 + 0.258958i \(0.0833790\pi\)
−0.965889 + 0.258958i \(0.916621\pi\)
\(908\) 44.4084 0.0489080
\(909\) 0 0
\(910\) 1225.35 1.34653
\(911\) 485.815 0.533276 0.266638 0.963797i \(-0.414087\pi\)
0.266638 + 0.963797i \(0.414087\pi\)
\(912\) 0 0
\(913\) 1049.68i 1.14971i
\(914\) 816.209i 0.893008i
\(915\) 0 0
\(916\) −191.871 −0.209466
\(917\) 1840.02i 2.00656i
\(918\) 0 0
\(919\) 357.345 0.388842 0.194421 0.980918i \(-0.437717\pi\)
0.194421 + 0.980918i \(0.437717\pi\)
\(920\) 176.428i 0.191770i
\(921\) 0 0
\(922\) −1384.72 −1.50187
\(923\) −360.176 −0.390223
\(924\) 0 0
\(925\) 1803.76i 1.95001i
\(926\) 773.106i 0.834887i
\(927\) 0 0
\(928\) 194.020i 0.209073i
\(929\) −683.118 −0.735326 −0.367663 0.929959i \(-0.619842\pi\)
−0.367663 + 0.929959i \(0.619842\pi\)
\(930\) 0 0
\(931\) −1169.73 −1.25642
\(932\) 242.807 0.260523
\(933\) 0 0
\(934\) 80.3115 0.0859866
\(935\) 1616.69 + 1092.32i 1.72908 + 1.16826i
\(936\) 0 0
\(937\) −360.068 −0.384277 −0.192139 0.981368i \(-0.561542\pi\)
−0.192139 + 0.981368i \(0.561542\pi\)
\(938\) −1179.57 −1.25753
\(939\) 0 0
\(940\) 770.249i 0.819414i
\(941\) −1461.35 −1.55297 −0.776487 0.630133i \(-0.783000\pi\)
−0.776487 + 0.630133i \(0.783000\pi\)
\(942\) 0 0
\(943\) −5.72302 −0.00606895
\(944\) 610.606i 0.646829i
\(945\) 0 0
\(946\) 1732.06i 1.83093i
\(947\) −1700.73 −1.79591 −0.897955 0.440088i \(-0.854947\pi\)
−0.897955 + 0.440088i \(0.854947\pi\)
\(948\) 0 0
\(949\) 638.505i 0.672818i
\(950\) 2502.17i 2.63386i
\(951\) 0 0
\(952\) 1142.18 + 771.719i 1.19977 + 0.810629i
\(953\) 1768.98i 1.85622i −0.372309 0.928109i \(-0.621434\pi\)
0.372309 0.928109i \(-0.378566\pi\)
\(954\) 0 0
\(955\) 981.670i 1.02793i
\(956\) 64.5941i 0.0675671i
\(957\) 0 0
\(958\) 63.2959i 0.0660708i
\(959\) 380.275 0.396533
\(960\) 0 0
\(961\) −2213.27 −2.30309
\(962\) 579.504 0.602395
\(963\) 0 0
\(964\) 185.340i 0.192261i
\(965\) 2226.50i 2.30725i
\(966\) 0 0
\(967\) 58.4012 0.0603942 0.0301971 0.999544i \(-0.490387\pi\)
0.0301971 + 0.999544i \(0.490387\pi\)
\(968\) 519.680i 0.536859i
\(969\) 0 0
\(970\) −861.826 −0.888480
\(971\) 150.697i 0.155197i −0.996985 0.0775987i \(-0.975275\pi\)
0.996985 0.0775987i \(-0.0247253\pi\)
\(972\) 0 0
\(973\) −576.123 −0.592110
\(974\) 390.271 0.400689
\(975\) 0 0
\(976\) 234.354i 0.240117i
\(977\) 2.82108i 0.00288749i 0.999999 + 0.00144375i \(0.000459559\pi\)
−0.999999 + 0.00144375i \(0.999540\pi\)
\(978\) 0 0
\(979\) 49.1954i 0.0502507i
\(980\) −342.380 −0.349367
\(981\) 0 0
\(982\) 1458.01 1.48473
\(983\) 1899.35 1.93219 0.966097 0.258178i \(-0.0831222\pi\)
0.966097 + 0.258178i \(0.0831222\pi\)
\(984\) 0 0
\(985\) −2223.45 −2.25731
\(986\) 195.499 289.348i 0.198275 0.293456i
\(987\) 0 0
\(988\) −284.040 −0.287490
\(989\) −178.582 −0.180568
\(990\) 0 0
\(991\) 1208.58i 1.21956i −0.792571 0.609780i \(-0.791258\pi\)
0.792571 0.609780i \(-0.208742\pi\)
\(992\) 914.886 0.922264
\(993\) 0 0
\(994\) −648.063 −0.651975
\(995\) 1314.65i 1.32126i
\(996\) 0 0
\(997\) 1326.19i 1.33018i 0.746765 + 0.665089i \(0.231606\pi\)
−0.746765 + 0.665089i \(0.768394\pi\)
\(998\) 109.544 0.109764
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.c.g.458.6 yes 20
3.2 odd 2 inner 459.3.c.g.458.15 yes 20
17.16 even 2 inner 459.3.c.g.458.5 20
51.50 odd 2 inner 459.3.c.g.458.16 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.3.c.g.458.5 20 17.16 even 2 inner
459.3.c.g.458.6 yes 20 1.1 even 1 trivial
459.3.c.g.458.15 yes 20 3.2 odd 2 inner
459.3.c.g.458.16 yes 20 51.50 odd 2 inner