Properties

Label 459.3.b.d.188.5
Level $459$
Weight $3$
Character 459.188
Analytic conductor $12.507$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(188,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.188"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-20,0,0,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 34x^{10} + 395x^{8} + 1888x^{6} + 3523x^{4} + 1566x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 188.5
Root \(-0.736967i\) of defining polynomial
Character \(\chi\) \(=\) 459.188
Dual form 459.3.b.d.188.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.736967i q^{2} +3.45688 q^{4} -5.75031i q^{5} -8.26227 q^{7} -5.49547i q^{8} -4.23779 q^{10} -4.53034i q^{11} -22.6247 q^{13} +6.08902i q^{14} +9.77754 q^{16} +4.12311i q^{17} -27.4537 q^{19} -19.8781i q^{20} -3.33871 q^{22} +37.3340i q^{23} -8.06606 q^{25} +16.6737i q^{26} -28.5617 q^{28} -38.4420i q^{29} +34.1630 q^{31} -29.1876i q^{32} +3.03859 q^{34} +47.5106i q^{35} -0.534811 q^{37} +20.2325i q^{38} -31.6007 q^{40} +9.07193i q^{41} -18.1671 q^{43} -15.6608i q^{44} +27.5139 q^{46} -54.7848i q^{47} +19.2651 q^{49} +5.94441i q^{50} -78.2109 q^{52} -69.1129i q^{53} -26.0508 q^{55} +45.4051i q^{56} -28.3305 q^{58} +35.9578i q^{59} -4.75066 q^{61} -25.1770i q^{62} +17.5999 q^{64} +130.099i q^{65} +53.7119 q^{67} +14.2531i q^{68} +35.0137 q^{70} -84.5435i q^{71} -109.143 q^{73} +0.394138i q^{74} -94.9043 q^{76} +37.4309i q^{77} -112.916 q^{79} -56.2239i q^{80} +6.68571 q^{82} -162.036i q^{83} +23.7091 q^{85} +13.3886i q^{86} -24.8963 q^{88} -44.0055i q^{89} +186.932 q^{91} +129.059i q^{92} -40.3746 q^{94} +157.867i q^{95} -96.2125 q^{97} -14.1978i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{4} - 54 q^{7} - 12 q^{10} - 50 q^{13} + 108 q^{16} - 50 q^{19} - 106 q^{22} - 48 q^{25} + 382 q^{28} + 2 q^{31} - 244 q^{37} + 208 q^{40} - 78 q^{43} - 18 q^{46} + 470 q^{49} + 42 q^{52} + 290 q^{55}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.736967i − 0.368483i −0.982881 0.184242i \(-0.941017\pi\)
0.982881 0.184242i \(-0.0589829\pi\)
\(3\) 0 0
\(4\) 3.45688 0.864220
\(5\) − 5.75031i − 1.15006i −0.818132 0.575031i \(-0.804990\pi\)
0.818132 0.575031i \(-0.195010\pi\)
\(6\) 0 0
\(7\) −8.26227 −1.18032 −0.590162 0.807285i \(-0.700936\pi\)
−0.590162 + 0.807285i \(0.700936\pi\)
\(8\) − 5.49547i − 0.686934i
\(9\) 0 0
\(10\) −4.23779 −0.423779
\(11\) − 4.53034i − 0.411849i −0.978568 0.205924i \(-0.933980\pi\)
0.978568 0.205924i \(-0.0660201\pi\)
\(12\) 0 0
\(13\) −22.6247 −1.74036 −0.870181 0.492731i \(-0.835998\pi\)
−0.870181 + 0.492731i \(0.835998\pi\)
\(14\) 6.08902i 0.434930i
\(15\) 0 0
\(16\) 9.77754 0.611096
\(17\) 4.12311i 0.242536i
\(18\) 0 0
\(19\) −27.4537 −1.44493 −0.722467 0.691406i \(-0.756992\pi\)
−0.722467 + 0.691406i \(0.756992\pi\)
\(20\) − 19.8781i − 0.993907i
\(21\) 0 0
\(22\) −3.33871 −0.151759
\(23\) 37.3340i 1.62322i 0.584200 + 0.811610i \(0.301408\pi\)
−0.584200 + 0.811610i \(0.698592\pi\)
\(24\) 0 0
\(25\) −8.06606 −0.322642
\(26\) 16.6737i 0.641295i
\(27\) 0 0
\(28\) −28.5617 −1.02006
\(29\) − 38.4420i − 1.32559i −0.748802 0.662794i \(-0.769371\pi\)
0.748802 0.662794i \(-0.230629\pi\)
\(30\) 0 0
\(31\) 34.1630 1.10203 0.551017 0.834494i \(-0.314240\pi\)
0.551017 + 0.834494i \(0.314240\pi\)
\(32\) − 29.1876i − 0.912113i
\(33\) 0 0
\(34\) 3.03859 0.0893703
\(35\) 47.5106i 1.35745i
\(36\) 0 0
\(37\) −0.534811 −0.0144544 −0.00722718 0.999974i \(-0.502301\pi\)
−0.00722718 + 0.999974i \(0.502301\pi\)
\(38\) 20.2325i 0.532434i
\(39\) 0 0
\(40\) −31.6007 −0.790016
\(41\) 9.07193i 0.221267i 0.993861 + 0.110633i \(0.0352879\pi\)
−0.993861 + 0.110633i \(0.964712\pi\)
\(42\) 0 0
\(43\) −18.1671 −0.422492 −0.211246 0.977433i \(-0.567752\pi\)
−0.211246 + 0.977433i \(0.567752\pi\)
\(44\) − 15.6608i − 0.355928i
\(45\) 0 0
\(46\) 27.5139 0.598129
\(47\) − 54.7848i − 1.16563i −0.812604 0.582817i \(-0.801950\pi\)
0.812604 0.582817i \(-0.198050\pi\)
\(48\) 0 0
\(49\) 19.2651 0.393166
\(50\) 5.94441i 0.118888i
\(51\) 0 0
\(52\) −78.2109 −1.50406
\(53\) − 69.1129i − 1.30402i −0.758212 0.652008i \(-0.773927\pi\)
0.758212 0.652008i \(-0.226073\pi\)
\(54\) 0 0
\(55\) −26.0508 −0.473652
\(56\) 45.4051i 0.810805i
\(57\) 0 0
\(58\) −28.3305 −0.488457
\(59\) 35.9578i 0.609455i 0.952440 + 0.304727i \(0.0985654\pi\)
−0.952440 + 0.304727i \(0.901435\pi\)
\(60\) 0 0
\(61\) −4.75066 −0.0778796 −0.0389398 0.999242i \(-0.512398\pi\)
−0.0389398 + 0.999242i \(0.512398\pi\)
\(62\) − 25.1770i − 0.406081i
\(63\) 0 0
\(64\) 17.5999 0.274998
\(65\) 130.099i 2.00152i
\(66\) 0 0
\(67\) 53.7119 0.801670 0.400835 0.916150i \(-0.368720\pi\)
0.400835 + 0.916150i \(0.368720\pi\)
\(68\) 14.2531i 0.209604i
\(69\) 0 0
\(70\) 35.0137 0.500196
\(71\) − 84.5435i − 1.19075i −0.803447 0.595376i \(-0.797003\pi\)
0.803447 0.595376i \(-0.202997\pi\)
\(72\) 0 0
\(73\) −109.143 −1.49511 −0.747554 0.664201i \(-0.768772\pi\)
−0.747554 + 0.664201i \(0.768772\pi\)
\(74\) 0.394138i 0.00532619i
\(75\) 0 0
\(76\) −94.9043 −1.24874
\(77\) 37.4309i 0.486115i
\(78\) 0 0
\(79\) −112.916 −1.42931 −0.714657 0.699475i \(-0.753417\pi\)
−0.714657 + 0.699475i \(0.753417\pi\)
\(80\) − 56.2239i − 0.702799i
\(81\) 0 0
\(82\) 6.68571 0.0815330
\(83\) − 162.036i − 1.95224i −0.217230 0.976120i \(-0.569702\pi\)
0.217230 0.976120i \(-0.430298\pi\)
\(84\) 0 0
\(85\) 23.7091 0.278931
\(86\) 13.3886i 0.155681i
\(87\) 0 0
\(88\) −24.8963 −0.282913
\(89\) − 44.0055i − 0.494443i −0.968959 0.247222i \(-0.920482\pi\)
0.968959 0.247222i \(-0.0795176\pi\)
\(90\) 0 0
\(91\) 186.932 2.05419
\(92\) 129.059i 1.40282i
\(93\) 0 0
\(94\) −40.3746 −0.429517
\(95\) 157.867i 1.66176i
\(96\) 0 0
\(97\) −96.2125 −0.991882 −0.495941 0.868356i \(-0.665177\pi\)
−0.495941 + 0.868356i \(0.665177\pi\)
\(98\) − 14.1978i − 0.144875i
\(99\) 0 0
\(100\) −27.8834 −0.278834
\(101\) − 42.8093i − 0.423854i −0.977285 0.211927i \(-0.932026\pi\)
0.977285 0.211927i \(-0.0679739\pi\)
\(102\) 0 0
\(103\) 48.2637 0.468579 0.234290 0.972167i \(-0.424724\pi\)
0.234290 + 0.972167i \(0.424724\pi\)
\(104\) 124.333i 1.19551i
\(105\) 0 0
\(106\) −50.9339 −0.480508
\(107\) 137.538i 1.28540i 0.766117 + 0.642701i \(0.222186\pi\)
−0.766117 + 0.642701i \(0.777814\pi\)
\(108\) 0 0
\(109\) 197.392 1.81094 0.905469 0.424413i \(-0.139520\pi\)
0.905469 + 0.424413i \(0.139520\pi\)
\(110\) 19.1986i 0.174533i
\(111\) 0 0
\(112\) −80.7847 −0.721292
\(113\) 52.2099i 0.462034i 0.972950 + 0.231017i \(0.0742054\pi\)
−0.972950 + 0.231017i \(0.925795\pi\)
\(114\) 0 0
\(115\) 214.682 1.86680
\(116\) − 132.889i − 1.14560i
\(117\) 0 0
\(118\) 26.4997 0.224574
\(119\) − 34.0662i − 0.286271i
\(120\) 0 0
\(121\) 100.476 0.830380
\(122\) 3.50108i 0.0286973i
\(123\) 0 0
\(124\) 118.098 0.952399
\(125\) − 97.3754i − 0.779003i
\(126\) 0 0
\(127\) 140.810 1.10874 0.554369 0.832271i \(-0.312960\pi\)
0.554369 + 0.832271i \(0.312960\pi\)
\(128\) − 129.721i − 1.01344i
\(129\) 0 0
\(130\) 95.8787 0.737528
\(131\) − 0.900209i − 0.00687183i −0.999994 0.00343591i \(-0.998906\pi\)
0.999994 0.00343591i \(-0.00109369\pi\)
\(132\) 0 0
\(133\) 226.830 1.70549
\(134\) − 39.5839i − 0.295402i
\(135\) 0 0
\(136\) 22.6584 0.166606
\(137\) − 110.159i − 0.804079i −0.915622 0.402039i \(-0.868302\pi\)
0.915622 0.402039i \(-0.131698\pi\)
\(138\) 0 0
\(139\) 182.122 1.31023 0.655115 0.755529i \(-0.272620\pi\)
0.655115 + 0.755529i \(0.272620\pi\)
\(140\) 164.239i 1.17313i
\(141\) 0 0
\(142\) −62.3057 −0.438772
\(143\) 102.498i 0.716767i
\(144\) 0 0
\(145\) −221.054 −1.52451
\(146\) 80.4347i 0.550923i
\(147\) 0 0
\(148\) −1.84878 −0.0124917
\(149\) − 164.181i − 1.10189i −0.834543 0.550943i \(-0.814268\pi\)
0.834543 0.550943i \(-0.185732\pi\)
\(150\) 0 0
\(151\) 36.5332 0.241941 0.120971 0.992656i \(-0.461399\pi\)
0.120971 + 0.992656i \(0.461399\pi\)
\(152\) 150.871i 0.992574i
\(153\) 0 0
\(154\) 27.5853 0.179125
\(155\) − 196.448i − 1.26741i
\(156\) 0 0
\(157\) −91.2220 −0.581032 −0.290516 0.956870i \(-0.593827\pi\)
−0.290516 + 0.956870i \(0.593827\pi\)
\(158\) 83.2152i 0.526679i
\(159\) 0 0
\(160\) −167.838 −1.04899
\(161\) − 308.464i − 1.91593i
\(162\) 0 0
\(163\) −107.845 −0.661623 −0.330812 0.943697i \(-0.607322\pi\)
−0.330812 + 0.943697i \(0.607322\pi\)
\(164\) 31.3606i 0.191223i
\(165\) 0 0
\(166\) −119.415 −0.719368
\(167\) 203.473i 1.21840i 0.793017 + 0.609200i \(0.208509\pi\)
−0.793017 + 0.609200i \(0.791491\pi\)
\(168\) 0 0
\(169\) 342.878 2.02886
\(170\) − 17.4728i − 0.102781i
\(171\) 0 0
\(172\) −62.8016 −0.365126
\(173\) − 7.57072i − 0.0437614i −0.999761 0.0218807i \(-0.993035\pi\)
0.999761 0.0218807i \(-0.00696540\pi\)
\(174\) 0 0
\(175\) 66.6439 0.380822
\(176\) − 44.2956i − 0.251679i
\(177\) 0 0
\(178\) −32.4305 −0.182194
\(179\) − 331.700i − 1.85307i −0.376207 0.926536i \(-0.622772\pi\)
0.376207 0.926536i \(-0.377228\pi\)
\(180\) 0 0
\(181\) −93.5512 −0.516857 −0.258429 0.966030i \(-0.583205\pi\)
−0.258429 + 0.966030i \(0.583205\pi\)
\(182\) − 137.762i − 0.756936i
\(183\) 0 0
\(184\) 205.168 1.11504
\(185\) 3.07533i 0.0166234i
\(186\) 0 0
\(187\) 18.6791 0.0998881
\(188\) − 189.384i − 1.00736i
\(189\) 0 0
\(190\) 116.343 0.612332
\(191\) 130.458i 0.683024i 0.939877 + 0.341512i \(0.110939\pi\)
−0.939877 + 0.341512i \(0.889061\pi\)
\(192\) 0 0
\(193\) −41.5533 −0.215302 −0.107651 0.994189i \(-0.534333\pi\)
−0.107651 + 0.994189i \(0.534333\pi\)
\(194\) 70.9054i 0.365492i
\(195\) 0 0
\(196\) 66.5972 0.339782
\(197\) 37.7643i 0.191697i 0.995396 + 0.0958485i \(0.0305564\pi\)
−0.995396 + 0.0958485i \(0.969444\pi\)
\(198\) 0 0
\(199\) 301.860 1.51688 0.758442 0.651741i \(-0.225961\pi\)
0.758442 + 0.651741i \(0.225961\pi\)
\(200\) 44.3268i 0.221634i
\(201\) 0 0
\(202\) −31.5490 −0.156183
\(203\) 317.618i 1.56462i
\(204\) 0 0
\(205\) 52.1664 0.254470
\(206\) − 35.5687i − 0.172664i
\(207\) 0 0
\(208\) −221.214 −1.06353
\(209\) 124.375i 0.595094i
\(210\) 0 0
\(211\) 108.604 0.514711 0.257356 0.966317i \(-0.417149\pi\)
0.257356 + 0.966317i \(0.417149\pi\)
\(212\) − 238.915i − 1.12696i
\(213\) 0 0
\(214\) 101.361 0.473649
\(215\) 104.467i 0.485892i
\(216\) 0 0
\(217\) −282.264 −1.30076
\(218\) − 145.471i − 0.667300i
\(219\) 0 0
\(220\) −90.0547 −0.409339
\(221\) − 93.2841i − 0.422100i
\(222\) 0 0
\(223\) −29.2060 −0.130969 −0.0654843 0.997854i \(-0.520859\pi\)
−0.0654843 + 0.997854i \(0.520859\pi\)
\(224\) 241.156i 1.07659i
\(225\) 0 0
\(226\) 38.4769 0.170252
\(227\) 158.247i 0.697124i 0.937286 + 0.348562i \(0.113330\pi\)
−0.937286 + 0.348562i \(0.886670\pi\)
\(228\) 0 0
\(229\) −243.276 −1.06234 −0.531170 0.847266i \(-0.678247\pi\)
−0.531170 + 0.847266i \(0.678247\pi\)
\(230\) − 158.214i − 0.687886i
\(231\) 0 0
\(232\) −211.257 −0.910591
\(233\) 378.974i 1.62650i 0.581916 + 0.813249i \(0.302303\pi\)
−0.581916 + 0.813249i \(0.697697\pi\)
\(234\) 0 0
\(235\) −315.029 −1.34055
\(236\) 124.302i 0.526703i
\(237\) 0 0
\(238\) −25.1057 −0.105486
\(239\) 285.070i 1.19276i 0.802702 + 0.596381i \(0.203395\pi\)
−0.802702 + 0.596381i \(0.796605\pi\)
\(240\) 0 0
\(241\) −108.978 −0.452190 −0.226095 0.974105i \(-0.572596\pi\)
−0.226095 + 0.974105i \(0.572596\pi\)
\(242\) − 74.0475i − 0.305981i
\(243\) 0 0
\(244\) −16.4225 −0.0673051
\(245\) − 110.780i − 0.452165i
\(246\) 0 0
\(247\) 621.133 2.51471
\(248\) − 187.742i − 0.757024i
\(249\) 0 0
\(250\) −71.7624 −0.287050
\(251\) 214.535i 0.854721i 0.904081 + 0.427361i \(0.140557\pi\)
−0.904081 + 0.427361i \(0.859443\pi\)
\(252\) 0 0
\(253\) 169.136 0.668521
\(254\) − 103.772i − 0.408551i
\(255\) 0 0
\(256\) −25.2005 −0.0984393
\(257\) − 370.911i − 1.44324i −0.692292 0.721618i \(-0.743399\pi\)
0.692292 0.721618i \(-0.256601\pi\)
\(258\) 0 0
\(259\) 4.41876 0.0170608
\(260\) 449.737i 1.72976i
\(261\) 0 0
\(262\) −0.663424 −0.00253215
\(263\) 152.898i 0.581360i 0.956820 + 0.290680i \(0.0938815\pi\)
−0.956820 + 0.290680i \(0.906119\pi\)
\(264\) 0 0
\(265\) −397.420 −1.49970
\(266\) − 167.166i − 0.628445i
\(267\) 0 0
\(268\) 185.676 0.692819
\(269\) 130.516i 0.485191i 0.970127 + 0.242596i \(0.0779988\pi\)
−0.970127 + 0.242596i \(0.922001\pi\)
\(270\) 0 0
\(271\) −100.177 −0.369656 −0.184828 0.982771i \(-0.559173\pi\)
−0.184828 + 0.982771i \(0.559173\pi\)
\(272\) 40.3138i 0.148213i
\(273\) 0 0
\(274\) −81.1833 −0.296289
\(275\) 36.5420i 0.132880i
\(276\) 0 0
\(277\) −18.5107 −0.0668256 −0.0334128 0.999442i \(-0.510638\pi\)
−0.0334128 + 0.999442i \(0.510638\pi\)
\(278\) − 134.218i − 0.482798i
\(279\) 0 0
\(280\) 261.093 0.932476
\(281\) 313.029i 1.11398i 0.830518 + 0.556991i \(0.188044\pi\)
−0.830518 + 0.556991i \(0.811956\pi\)
\(282\) 0 0
\(283\) −261.138 −0.922751 −0.461375 0.887205i \(-0.652644\pi\)
−0.461375 + 0.887205i \(0.652644\pi\)
\(284\) − 292.257i − 1.02907i
\(285\) 0 0
\(286\) 75.5373 0.264117
\(287\) − 74.9547i − 0.261166i
\(288\) 0 0
\(289\) −17.0000 −0.0588235
\(290\) 162.909i 0.561755i
\(291\) 0 0
\(292\) −377.294 −1.29210
\(293\) 337.949i 1.15341i 0.816952 + 0.576705i \(0.195662\pi\)
−0.816952 + 0.576705i \(0.804338\pi\)
\(294\) 0 0
\(295\) 206.769 0.700911
\(296\) 2.93904i 0.00992919i
\(297\) 0 0
\(298\) −120.996 −0.406027
\(299\) − 844.672i − 2.82499i
\(300\) 0 0
\(301\) 150.102 0.498677
\(302\) − 26.9237i − 0.0891514i
\(303\) 0 0
\(304\) −268.430 −0.882994
\(305\) 27.3177i 0.0895664i
\(306\) 0 0
\(307\) 206.927 0.674030 0.337015 0.941499i \(-0.390583\pi\)
0.337015 + 0.941499i \(0.390583\pi\)
\(308\) 129.394i 0.420111i
\(309\) 0 0
\(310\) −144.776 −0.467018
\(311\) − 27.3306i − 0.0878798i −0.999034 0.0439399i \(-0.986009\pi\)
0.999034 0.0439399i \(-0.0139910\pi\)
\(312\) 0 0
\(313\) −247.988 −0.792294 −0.396147 0.918187i \(-0.629653\pi\)
−0.396147 + 0.918187i \(0.629653\pi\)
\(314\) 67.2275i 0.214100i
\(315\) 0 0
\(316\) −390.337 −1.23524
\(317\) − 187.835i − 0.592538i −0.955104 0.296269i \(-0.904257\pi\)
0.955104 0.296269i \(-0.0957426\pi\)
\(318\) 0 0
\(319\) −174.155 −0.545942
\(320\) − 101.205i − 0.316265i
\(321\) 0 0
\(322\) −227.328 −0.705987
\(323\) − 113.195i − 0.350448i
\(324\) 0 0
\(325\) 182.492 0.561514
\(326\) 79.4778i 0.243797i
\(327\) 0 0
\(328\) 49.8545 0.151996
\(329\) 452.647i 1.37583i
\(330\) 0 0
\(331\) −341.100 −1.03051 −0.515257 0.857036i \(-0.672303\pi\)
−0.515257 + 0.857036i \(0.672303\pi\)
\(332\) − 560.139i − 1.68717i
\(333\) 0 0
\(334\) 149.953 0.448960
\(335\) − 308.860i − 0.921970i
\(336\) 0 0
\(337\) −552.709 −1.64008 −0.820042 0.572303i \(-0.806050\pi\)
−0.820042 + 0.572303i \(0.806050\pi\)
\(338\) − 252.689i − 0.747602i
\(339\) 0 0
\(340\) 81.9596 0.241058
\(341\) − 154.770i − 0.453871i
\(342\) 0 0
\(343\) 245.678 0.716261
\(344\) 99.8370i 0.290224i
\(345\) 0 0
\(346\) −5.57937 −0.0161253
\(347\) − 233.876i − 0.673995i −0.941506 0.336997i \(-0.890589\pi\)
0.941506 0.336997i \(-0.109411\pi\)
\(348\) 0 0
\(349\) −200.132 −0.573444 −0.286722 0.958014i \(-0.592566\pi\)
−0.286722 + 0.958014i \(0.592566\pi\)
\(350\) − 49.1143i − 0.140327i
\(351\) 0 0
\(352\) −132.230 −0.375653
\(353\) 7.33355i 0.0207749i 0.999946 + 0.0103875i \(0.00330649\pi\)
−0.999946 + 0.0103875i \(0.996694\pi\)
\(354\) 0 0
\(355\) −486.151 −1.36944
\(356\) − 152.122i − 0.427308i
\(357\) 0 0
\(358\) −244.452 −0.682826
\(359\) − 492.659i − 1.37231i −0.727456 0.686154i \(-0.759298\pi\)
0.727456 0.686154i \(-0.240702\pi\)
\(360\) 0 0
\(361\) 392.707 1.08783
\(362\) 68.9441i 0.190453i
\(363\) 0 0
\(364\) 646.200 1.77527
\(365\) 627.606i 1.71947i
\(366\) 0 0
\(367\) 497.347 1.35517 0.677585 0.735445i \(-0.263027\pi\)
0.677585 + 0.735445i \(0.263027\pi\)
\(368\) 365.035i 0.991944i
\(369\) 0 0
\(370\) 2.26642 0.00612545
\(371\) 571.029i 1.53916i
\(372\) 0 0
\(373\) 243.368 0.652460 0.326230 0.945290i \(-0.394222\pi\)
0.326230 + 0.945290i \(0.394222\pi\)
\(374\) − 13.7658i − 0.0368071i
\(375\) 0 0
\(376\) −301.068 −0.800713
\(377\) 869.740i 2.30700i
\(378\) 0 0
\(379\) −71.9585 −0.189864 −0.0949321 0.995484i \(-0.530263\pi\)
−0.0949321 + 0.995484i \(0.530263\pi\)
\(380\) 545.729i 1.43613i
\(381\) 0 0
\(382\) 96.1429 0.251683
\(383\) − 199.114i − 0.519879i −0.965625 0.259940i \(-0.916297\pi\)
0.965625 0.259940i \(-0.0837027\pi\)
\(384\) 0 0
\(385\) 215.239 0.559063
\(386\) 30.6234i 0.0793352i
\(387\) 0 0
\(388\) −332.595 −0.857204
\(389\) − 340.779i − 0.876038i −0.898966 0.438019i \(-0.855680\pi\)
0.898966 0.438019i \(-0.144320\pi\)
\(390\) 0 0
\(391\) −153.932 −0.393689
\(392\) − 105.871i − 0.270079i
\(393\) 0 0
\(394\) 27.8310 0.0706371
\(395\) 649.301i 1.64380i
\(396\) 0 0
\(397\) 429.345 1.08147 0.540737 0.841192i \(-0.318146\pi\)
0.540737 + 0.841192i \(0.318146\pi\)
\(398\) − 222.461i − 0.558946i
\(399\) 0 0
\(400\) −78.8662 −0.197166
\(401\) − 719.715i − 1.79480i −0.441216 0.897401i \(-0.645453\pi\)
0.441216 0.897401i \(-0.354547\pi\)
\(402\) 0 0
\(403\) −772.929 −1.91794
\(404\) − 147.986i − 0.366303i
\(405\) 0 0
\(406\) 234.074 0.576537
\(407\) 2.42288i 0.00595301i
\(408\) 0 0
\(409\) 253.316 0.619355 0.309677 0.950842i \(-0.399779\pi\)
0.309677 + 0.950842i \(0.399779\pi\)
\(410\) − 38.4449i − 0.0937680i
\(411\) 0 0
\(412\) 166.842 0.404956
\(413\) − 297.093i − 0.719355i
\(414\) 0 0
\(415\) −931.757 −2.24520
\(416\) 660.361i 1.58741i
\(417\) 0 0
\(418\) 91.6600 0.219282
\(419\) 200.345i 0.478151i 0.971001 + 0.239076i \(0.0768444\pi\)
−0.971001 + 0.239076i \(0.923156\pi\)
\(420\) 0 0
\(421\) −50.3166 −0.119517 −0.0597584 0.998213i \(-0.519033\pi\)
−0.0597584 + 0.998213i \(0.519033\pi\)
\(422\) − 80.0376i − 0.189663i
\(423\) 0 0
\(424\) −379.808 −0.895773
\(425\) − 33.2572i − 0.0782522i
\(426\) 0 0
\(427\) 39.2512 0.0919232
\(428\) 475.452i 1.11087i
\(429\) 0 0
\(430\) 76.9885 0.179043
\(431\) − 424.583i − 0.985111i −0.870281 0.492556i \(-0.836063\pi\)
0.870281 0.492556i \(-0.163937\pi\)
\(432\) 0 0
\(433\) −799.376 −1.84613 −0.923067 0.384639i \(-0.874326\pi\)
−0.923067 + 0.384639i \(0.874326\pi\)
\(434\) 208.019i 0.479307i
\(435\) 0 0
\(436\) 682.361 1.56505
\(437\) − 1024.96i − 2.34544i
\(438\) 0 0
\(439\) −368.695 −0.839852 −0.419926 0.907558i \(-0.637944\pi\)
−0.419926 + 0.907558i \(0.637944\pi\)
\(440\) 143.162i 0.325367i
\(441\) 0 0
\(442\) −68.7473 −0.155537
\(443\) − 110.882i − 0.250298i −0.992138 0.125149i \(-0.960059\pi\)
0.992138 0.125149i \(-0.0399408\pi\)
\(444\) 0 0
\(445\) −253.045 −0.568640
\(446\) 21.5238i 0.0482597i
\(447\) 0 0
\(448\) −145.415 −0.324587
\(449\) 215.373i 0.479672i 0.970813 + 0.239836i \(0.0770937\pi\)
−0.970813 + 0.239836i \(0.922906\pi\)
\(450\) 0 0
\(451\) 41.0989 0.0911284
\(452\) 180.483i 0.399299i
\(453\) 0 0
\(454\) 116.623 0.256878
\(455\) − 1074.91i − 2.36245i
\(456\) 0 0
\(457\) 459.587 1.00566 0.502830 0.864385i \(-0.332292\pi\)
0.502830 + 0.864385i \(0.332292\pi\)
\(458\) 179.286i 0.391454i
\(459\) 0 0
\(460\) 742.131 1.61333
\(461\) − 349.049i − 0.757157i −0.925569 0.378578i \(-0.876413\pi\)
0.925569 0.378578i \(-0.123587\pi\)
\(462\) 0 0
\(463\) 266.427 0.575437 0.287719 0.957715i \(-0.407103\pi\)
0.287719 + 0.957715i \(0.407103\pi\)
\(464\) − 375.869i − 0.810062i
\(465\) 0 0
\(466\) 279.291 0.599337
\(467\) 306.559i 0.656443i 0.944601 + 0.328221i \(0.106449\pi\)
−0.944601 + 0.328221i \(0.893551\pi\)
\(468\) 0 0
\(469\) −443.782 −0.946231
\(470\) 232.166i 0.493971i
\(471\) 0 0
\(472\) 197.605 0.418655
\(473\) 82.3033i 0.174003i
\(474\) 0 0
\(475\) 221.443 0.466196
\(476\) − 117.763i − 0.247401i
\(477\) 0 0
\(478\) 210.087 0.439513
\(479\) − 384.989i − 0.803734i −0.915698 0.401867i \(-0.868361\pi\)
0.915698 0.401867i \(-0.131639\pi\)
\(480\) 0 0
\(481\) 12.1000 0.0251558
\(482\) 80.3129i 0.166624i
\(483\) 0 0
\(484\) 347.334 0.717631
\(485\) 553.252i 1.14073i
\(486\) 0 0
\(487\) 584.764 1.20075 0.600374 0.799719i \(-0.295018\pi\)
0.600374 + 0.799719i \(0.295018\pi\)
\(488\) 26.1071i 0.0534982i
\(489\) 0 0
\(490\) −81.6415 −0.166615
\(491\) 217.884i 0.443755i 0.975075 + 0.221877i \(0.0712185\pi\)
−0.975075 + 0.221877i \(0.928782\pi\)
\(492\) 0 0
\(493\) 158.501 0.321502
\(494\) − 457.754i − 0.926628i
\(495\) 0 0
\(496\) 334.031 0.673449
\(497\) 698.521i 1.40547i
\(498\) 0 0
\(499\) −151.280 −0.303166 −0.151583 0.988445i \(-0.548437\pi\)
−0.151583 + 0.988445i \(0.548437\pi\)
\(500\) − 336.615i − 0.673230i
\(501\) 0 0
\(502\) 158.105 0.314951
\(503\) 8.00028i 0.0159051i 0.999968 + 0.00795257i \(0.00253141\pi\)
−0.999968 + 0.00795257i \(0.997469\pi\)
\(504\) 0 0
\(505\) −246.166 −0.487458
\(506\) − 124.647i − 0.246339i
\(507\) 0 0
\(508\) 486.762 0.958194
\(509\) − 97.1115i − 0.190789i −0.995440 0.0953944i \(-0.969589\pi\)
0.995440 0.0953944i \(-0.0304112\pi\)
\(510\) 0 0
\(511\) 901.769 1.76471
\(512\) − 500.312i − 0.977172i
\(513\) 0 0
\(514\) −273.349 −0.531808
\(515\) − 277.531i − 0.538895i
\(516\) 0 0
\(517\) −248.194 −0.480065
\(518\) − 3.25648i − 0.00628663i
\(519\) 0 0
\(520\) 714.956 1.37492
\(521\) 424.535i 0.814847i 0.913239 + 0.407424i \(0.133573\pi\)
−0.913239 + 0.407424i \(0.866427\pi\)
\(522\) 0 0
\(523\) 683.906 1.30766 0.653830 0.756641i \(-0.273161\pi\)
0.653830 + 0.756641i \(0.273161\pi\)
\(524\) − 3.11192i − 0.00593877i
\(525\) 0 0
\(526\) 112.680 0.214221
\(527\) 140.858i 0.267282i
\(528\) 0 0
\(529\) −864.831 −1.63484
\(530\) 292.885i 0.552614i
\(531\) 0 0
\(532\) 784.125 1.47392
\(533\) − 205.250i − 0.385084i
\(534\) 0 0
\(535\) 790.886 1.47829
\(536\) − 295.172i − 0.550694i
\(537\) 0 0
\(538\) 96.1863 0.178785
\(539\) − 87.2775i − 0.161925i
\(540\) 0 0
\(541\) 444.490 0.821608 0.410804 0.911724i \(-0.365248\pi\)
0.410804 + 0.911724i \(0.365248\pi\)
\(542\) 73.8270i 0.136212i
\(543\) 0 0
\(544\) 120.344 0.221220
\(545\) − 1135.07i − 2.08269i
\(546\) 0 0
\(547\) −771.036 −1.40957 −0.704786 0.709420i \(-0.748957\pi\)
−0.704786 + 0.709420i \(0.748957\pi\)
\(548\) − 380.806i − 0.694901i
\(549\) 0 0
\(550\) 26.9302 0.0489640
\(551\) 1055.38i 1.91538i
\(552\) 0 0
\(553\) 932.941 1.68706
\(554\) 13.6418i 0.0246241i
\(555\) 0 0
\(556\) 629.574 1.13233
\(557\) 781.224i 1.40256i 0.712888 + 0.701278i \(0.247387\pi\)
−0.712888 + 0.701278i \(0.752613\pi\)
\(558\) 0 0
\(559\) 411.026 0.735289
\(560\) 464.537i 0.829530i
\(561\) 0 0
\(562\) 230.692 0.410484
\(563\) − 746.517i − 1.32596i −0.748636 0.662981i \(-0.769291\pi\)
0.748636 0.662981i \(-0.230709\pi\)
\(564\) 0 0
\(565\) 300.223 0.531368
\(566\) 192.450i 0.340018i
\(567\) 0 0
\(568\) −464.606 −0.817969
\(569\) 796.201i 1.39930i 0.714487 + 0.699649i \(0.246660\pi\)
−0.714487 + 0.699649i \(0.753340\pi\)
\(570\) 0 0
\(571\) 556.430 0.974484 0.487242 0.873267i \(-0.338003\pi\)
0.487242 + 0.873267i \(0.338003\pi\)
\(572\) 354.322i 0.619444i
\(573\) 0 0
\(574\) −55.2391 −0.0962354
\(575\) − 301.138i − 0.523719i
\(576\) 0 0
\(577\) −864.828 −1.49883 −0.749417 0.662098i \(-0.769666\pi\)
−0.749417 + 0.662098i \(0.769666\pi\)
\(578\) 12.5284i 0.0216755i
\(579\) 0 0
\(580\) −764.156 −1.31751
\(581\) 1338.79i 2.30428i
\(582\) 0 0
\(583\) −313.105 −0.537058
\(584\) 599.792i 1.02704i
\(585\) 0 0
\(586\) 249.057 0.425013
\(587\) − 766.397i − 1.30562i −0.757523 0.652809i \(-0.773591\pi\)
0.757523 0.652809i \(-0.226409\pi\)
\(588\) 0 0
\(589\) −937.903 −1.59236
\(590\) − 152.382i − 0.258274i
\(591\) 0 0
\(592\) −5.22914 −0.00883301
\(593\) − 21.5288i − 0.0363049i −0.999835 0.0181525i \(-0.994222\pi\)
0.999835 0.0181525i \(-0.00577843\pi\)
\(594\) 0 0
\(595\) −195.891 −0.329229
\(596\) − 567.555i − 0.952273i
\(597\) 0 0
\(598\) −622.495 −1.04096
\(599\) 121.869i 0.203454i 0.994812 + 0.101727i \(0.0324369\pi\)
−0.994812 + 0.101727i \(0.967563\pi\)
\(600\) 0 0
\(601\) −30.5002 −0.0507491 −0.0253746 0.999678i \(-0.508078\pi\)
−0.0253746 + 0.999678i \(0.508078\pi\)
\(602\) − 110.620i − 0.183754i
\(603\) 0 0
\(604\) 126.291 0.209091
\(605\) − 577.768i − 0.954989i
\(606\) 0 0
\(607\) 0.0533785 8.79383e−5 0 4.39691e−5 1.00000i \(-0.499986\pi\)
4.39691e−5 1.00000i \(0.499986\pi\)
\(608\) 801.309i 1.31794i
\(609\) 0 0
\(610\) 20.1323 0.0330037
\(611\) 1239.49i 2.02863i
\(612\) 0 0
\(613\) −1089.81 −1.77782 −0.888912 0.458078i \(-0.848538\pi\)
−0.888912 + 0.458078i \(0.848538\pi\)
\(614\) − 152.499i − 0.248369i
\(615\) 0 0
\(616\) 205.700 0.333929
\(617\) 778.150i 1.26118i 0.776115 + 0.630592i \(0.217188\pi\)
−0.776115 + 0.630592i \(0.782812\pi\)
\(618\) 0 0
\(619\) 937.604 1.51471 0.757354 0.653004i \(-0.226492\pi\)
0.757354 + 0.653004i \(0.226492\pi\)
\(620\) − 679.097i − 1.09532i
\(621\) 0 0
\(622\) −20.1417 −0.0323822
\(623\) 363.585i 0.583604i
\(624\) 0 0
\(625\) −761.590 −1.21854
\(626\) 182.759i 0.291947i
\(627\) 0 0
\(628\) −315.343 −0.502139
\(629\) − 2.20508i − 0.00350570i
\(630\) 0 0
\(631\) 856.821 1.35788 0.678939 0.734195i \(-0.262440\pi\)
0.678939 + 0.734195i \(0.262440\pi\)
\(632\) 620.526i 0.981845i
\(633\) 0 0
\(634\) −138.428 −0.218340
\(635\) − 809.700i − 1.27512i
\(636\) 0 0
\(637\) −435.868 −0.684251
\(638\) 128.347i 0.201170i
\(639\) 0 0
\(640\) −745.936 −1.16552
\(641\) − 1042.26i − 1.62599i −0.582268 0.812997i \(-0.697835\pi\)
0.582268 0.812997i \(-0.302165\pi\)
\(642\) 0 0
\(643\) −14.0719 −0.0218848 −0.0109424 0.999940i \(-0.503483\pi\)
−0.0109424 + 0.999940i \(0.503483\pi\)
\(644\) − 1066.32i − 1.65578i
\(645\) 0 0
\(646\) −83.4207 −0.129134
\(647\) 626.827i 0.968821i 0.874841 + 0.484411i \(0.160966\pi\)
−0.874841 + 0.484411i \(0.839034\pi\)
\(648\) 0 0
\(649\) 162.901 0.251003
\(650\) − 134.491i − 0.206909i
\(651\) 0 0
\(652\) −372.806 −0.571788
\(653\) 208.665i 0.319549i 0.987154 + 0.159774i \(0.0510767\pi\)
−0.987154 + 0.159774i \(0.948923\pi\)
\(654\) 0 0
\(655\) −5.17648 −0.00790303
\(656\) 88.7012i 0.135215i
\(657\) 0 0
\(658\) 333.585 0.506969
\(659\) − 760.139i − 1.15347i −0.816930 0.576737i \(-0.804326\pi\)
0.816930 0.576737i \(-0.195674\pi\)
\(660\) 0 0
\(661\) 221.854 0.335634 0.167817 0.985818i \(-0.446328\pi\)
0.167817 + 0.985818i \(0.446328\pi\)
\(662\) 251.379i 0.379727i
\(663\) 0 0
\(664\) −890.464 −1.34106
\(665\) − 1304.34i − 1.96142i
\(666\) 0 0
\(667\) 1435.20 2.15172
\(668\) 703.381i 1.05297i
\(669\) 0 0
\(670\) −227.619 −0.339730
\(671\) 21.5221i 0.0320746i
\(672\) 0 0
\(673\) −55.1837 −0.0819965 −0.0409983 0.999159i \(-0.513054\pi\)
−0.0409983 + 0.999159i \(0.513054\pi\)
\(674\) 407.328i 0.604344i
\(675\) 0 0
\(676\) 1185.29 1.75338
\(677\) − 714.307i − 1.05511i −0.849522 0.527553i \(-0.823109\pi\)
0.849522 0.527553i \(-0.176891\pi\)
\(678\) 0 0
\(679\) 794.934 1.17074
\(680\) − 130.293i − 0.191607i
\(681\) 0 0
\(682\) −114.060 −0.167244
\(683\) 1102.08i 1.61359i 0.590835 + 0.806793i \(0.298799\pi\)
−0.590835 + 0.806793i \(0.701201\pi\)
\(684\) 0 0
\(685\) −633.447 −0.924740
\(686\) − 181.056i − 0.263930i
\(687\) 0 0
\(688\) −177.630 −0.258183
\(689\) 1563.66i 2.26946i
\(690\) 0 0
\(691\) −8.42852 −0.0121976 −0.00609879 0.999981i \(-0.501941\pi\)
−0.00609879 + 0.999981i \(0.501941\pi\)
\(692\) − 26.1711i − 0.0378195i
\(693\) 0 0
\(694\) −172.359 −0.248356
\(695\) − 1047.26i − 1.50684i
\(696\) 0 0
\(697\) −37.4045 −0.0536650
\(698\) 147.491i 0.211305i
\(699\) 0 0
\(700\) 230.380 0.329114
\(701\) − 823.596i − 1.17489i −0.809265 0.587444i \(-0.800134\pi\)
0.809265 0.587444i \(-0.199866\pi\)
\(702\) 0 0
\(703\) 14.6826 0.0208856
\(704\) − 79.7334i − 0.113258i
\(705\) 0 0
\(706\) 5.40458 0.00765522
\(707\) 353.702i 0.500285i
\(708\) 0 0
\(709\) −598.044 −0.843504 −0.421752 0.906711i \(-0.638585\pi\)
−0.421752 + 0.906711i \(0.638585\pi\)
\(710\) 358.277i 0.504615i
\(711\) 0 0
\(712\) −241.831 −0.339650
\(713\) 1275.44i 1.78884i
\(714\) 0 0
\(715\) 589.393 0.824326
\(716\) − 1146.65i − 1.60146i
\(717\) 0 0
\(718\) −363.073 −0.505673
\(719\) 1087.21i 1.51211i 0.654508 + 0.756055i \(0.272876\pi\)
−0.654508 + 0.756055i \(0.727124\pi\)
\(720\) 0 0
\(721\) −398.768 −0.553076
\(722\) − 289.412i − 0.400848i
\(723\) 0 0
\(724\) −323.395 −0.446679
\(725\) 310.075i 0.427690i
\(726\) 0 0
\(727\) 483.010 0.664388 0.332194 0.943211i \(-0.392211\pi\)
0.332194 + 0.943211i \(0.392211\pi\)
\(728\) − 1027.28i − 1.41109i
\(729\) 0 0
\(730\) 462.524 0.633595
\(731\) − 74.9051i − 0.102469i
\(732\) 0 0
\(733\) −1382.66 −1.88631 −0.943153 0.332359i \(-0.892156\pi\)
−0.943153 + 0.332359i \(0.892156\pi\)
\(734\) − 366.528i − 0.499357i
\(735\) 0 0
\(736\) 1089.69 1.48056
\(737\) − 243.333i − 0.330167i
\(738\) 0 0
\(739\) 203.552 0.275443 0.137721 0.990471i \(-0.456022\pi\)
0.137721 + 0.990471i \(0.456022\pi\)
\(740\) 10.6310i 0.0143663i
\(741\) 0 0
\(742\) 420.829 0.567155
\(743\) − 49.0580i − 0.0660269i −0.999455 0.0330135i \(-0.989490\pi\)
0.999455 0.0330135i \(-0.0105104\pi\)
\(744\) 0 0
\(745\) −944.092 −1.26724
\(746\) − 179.354i − 0.240421i
\(747\) 0 0
\(748\) 64.5713 0.0863253
\(749\) − 1136.38i − 1.51719i
\(750\) 0 0
\(751\) 280.297 0.373231 0.186616 0.982433i \(-0.440248\pi\)
0.186616 + 0.982433i \(0.440248\pi\)
\(752\) − 535.661i − 0.712315i
\(753\) 0 0
\(754\) 640.969 0.850092
\(755\) − 210.077i − 0.278248i
\(756\) 0 0
\(757\) −1036.08 −1.36867 −0.684333 0.729170i \(-0.739906\pi\)
−0.684333 + 0.729170i \(0.739906\pi\)
\(758\) 53.0310i 0.0699618i
\(759\) 0 0
\(760\) 867.556 1.14152
\(761\) − 41.5943i − 0.0546575i −0.999627 0.0273287i \(-0.991300\pi\)
0.999627 0.0273287i \(-0.00870009\pi\)
\(762\) 0 0
\(763\) −1630.91 −2.13749
\(764\) 450.977i 0.590283i
\(765\) 0 0
\(766\) −146.740 −0.191567
\(767\) − 813.536i − 1.06067i
\(768\) 0 0
\(769\) −482.877 −0.627928 −0.313964 0.949435i \(-0.601657\pi\)
−0.313964 + 0.949435i \(0.601657\pi\)
\(770\) − 158.624i − 0.206005i
\(771\) 0 0
\(772\) −143.645 −0.186068
\(773\) − 1448.02i − 1.87324i −0.350341 0.936622i \(-0.613934\pi\)
0.350341 0.936622i \(-0.386066\pi\)
\(774\) 0 0
\(775\) −275.561 −0.355562
\(776\) 528.733i 0.681357i
\(777\) 0 0
\(778\) −251.143 −0.322805
\(779\) − 249.058i − 0.319715i
\(780\) 0 0
\(781\) −383.010 −0.490410
\(782\) 113.443i 0.145068i
\(783\) 0 0
\(784\) 188.366 0.240262
\(785\) 524.555i 0.668222i
\(786\) 0 0
\(787\) 423.469 0.538080 0.269040 0.963129i \(-0.413294\pi\)
0.269040 + 0.963129i \(0.413294\pi\)
\(788\) 130.547i 0.165668i
\(789\) 0 0
\(790\) 478.513 0.605713
\(791\) − 431.372i − 0.545351i
\(792\) 0 0
\(793\) 107.482 0.135539
\(794\) − 316.413i − 0.398505i
\(795\) 0 0
\(796\) 1043.49 1.31092
\(797\) 952.166i 1.19469i 0.801985 + 0.597344i \(0.203777\pi\)
−0.801985 + 0.597344i \(0.796223\pi\)
\(798\) 0 0
\(799\) 225.883 0.282708
\(800\) 235.429i 0.294286i
\(801\) 0 0
\(802\) −530.406 −0.661354
\(803\) 494.455i 0.615759i
\(804\) 0 0
\(805\) −1773.76 −2.20343
\(806\) 569.623i 0.706728i
\(807\) 0 0
\(808\) −235.257 −0.291160
\(809\) − 522.791i − 0.646219i −0.946362 0.323110i \(-0.895272\pi\)
0.946362 0.323110i \(-0.104728\pi\)
\(810\) 0 0
\(811\) −1074.27 −1.32462 −0.662310 0.749230i \(-0.730424\pi\)
−0.662310 + 0.749230i \(0.730424\pi\)
\(812\) 1097.97i 1.35218i
\(813\) 0 0
\(814\) 1.78558 0.00219359
\(815\) 620.140i 0.760908i
\(816\) 0 0
\(817\) 498.756 0.610472
\(818\) − 186.685i − 0.228222i
\(819\) 0 0
\(820\) 180.333 0.219918
\(821\) − 475.241i − 0.578856i −0.957200 0.289428i \(-0.906535\pi\)
0.957200 0.289428i \(-0.0934651\pi\)
\(822\) 0 0
\(823\) −121.758 −0.147944 −0.0739721 0.997260i \(-0.523568\pi\)
−0.0739721 + 0.997260i \(0.523568\pi\)
\(824\) − 265.232i − 0.321883i
\(825\) 0 0
\(826\) −218.948 −0.265070
\(827\) − 339.395i − 0.410393i −0.978721 0.205197i \(-0.934217\pi\)
0.978721 0.205197i \(-0.0657834\pi\)
\(828\) 0 0
\(829\) −351.251 −0.423704 −0.211852 0.977302i \(-0.567949\pi\)
−0.211852 + 0.977302i \(0.567949\pi\)
\(830\) 686.674i 0.827318i
\(831\) 0 0
\(832\) −398.192 −0.478597
\(833\) 79.4321i 0.0953567i
\(834\) 0 0
\(835\) 1170.03 1.40123
\(836\) 429.948i 0.514292i
\(837\) 0 0
\(838\) 147.648 0.176191
\(839\) 1008.84i 1.20243i 0.799087 + 0.601215i \(0.205317\pi\)
−0.799087 + 0.601215i \(0.794683\pi\)
\(840\) 0 0
\(841\) −636.789 −0.757181
\(842\) 37.0816i 0.0440399i
\(843\) 0 0
\(844\) 375.431 0.444824
\(845\) − 1971.65i − 2.33332i
\(846\) 0 0
\(847\) −830.160 −0.980118
\(848\) − 675.754i − 0.796880i
\(849\) 0 0
\(850\) −24.5094 −0.0288346
\(851\) − 19.9667i − 0.0234626i
\(852\) 0 0
\(853\) 1032.31 1.21021 0.605107 0.796144i \(-0.293130\pi\)
0.605107 + 0.796144i \(0.293130\pi\)
\(854\) − 28.9268i − 0.0338722i
\(855\) 0 0
\(856\) 755.836 0.882986
\(857\) − 1107.61i − 1.29243i −0.763155 0.646216i \(-0.776351\pi\)
0.763155 0.646216i \(-0.223649\pi\)
\(858\) 0 0
\(859\) −438.057 −0.509961 −0.254981 0.966946i \(-0.582069\pi\)
−0.254981 + 0.966946i \(0.582069\pi\)
\(860\) 361.129i 0.419917i
\(861\) 0 0
\(862\) −312.903 −0.362997
\(863\) − 1513.43i − 1.75369i −0.480775 0.876844i \(-0.659645\pi\)
0.480775 0.876844i \(-0.340355\pi\)
\(864\) 0 0
\(865\) −43.5340 −0.0503283
\(866\) 589.113i 0.680270i
\(867\) 0 0
\(868\) −975.754 −1.12414
\(869\) 511.547i 0.588662i
\(870\) 0 0
\(871\) −1215.22 −1.39520
\(872\) − 1084.76i − 1.24399i
\(873\) 0 0
\(874\) −755.360 −0.864257
\(875\) 804.542i 0.919477i
\(876\) 0 0
\(877\) 1343.35 1.53175 0.765876 0.642988i \(-0.222306\pi\)
0.765876 + 0.642988i \(0.222306\pi\)
\(878\) 271.716i 0.309471i
\(879\) 0 0
\(880\) −254.713 −0.289447
\(881\) 1307.71i 1.48434i 0.670211 + 0.742171i \(0.266204\pi\)
−0.670211 + 0.742171i \(0.733796\pi\)
\(882\) 0 0
\(883\) −13.3044 −0.0150673 −0.00753364 0.999972i \(-0.502398\pi\)
−0.00753364 + 0.999972i \(0.502398\pi\)
\(884\) − 322.472i − 0.364787i
\(885\) 0 0
\(886\) −81.7162 −0.0922305
\(887\) − 240.899i − 0.271588i −0.990737 0.135794i \(-0.956641\pi\)
0.990737 0.135794i \(-0.0433585\pi\)
\(888\) 0 0
\(889\) −1163.41 −1.30867
\(890\) 186.486i 0.209534i
\(891\) 0 0
\(892\) −100.962 −0.113186
\(893\) 1504.05i 1.68426i
\(894\) 0 0
\(895\) −1907.38 −2.13115
\(896\) 1071.79i 1.19619i
\(897\) 0 0
\(898\) 158.722 0.176751
\(899\) − 1313.30i − 1.46084i
\(900\) 0 0
\(901\) 284.960 0.316270
\(902\) − 30.2885i − 0.0335793i
\(903\) 0 0
\(904\) 286.918 0.317387
\(905\) 537.948i 0.594418i
\(906\) 0 0
\(907\) 891.448 0.982853 0.491426 0.870919i \(-0.336476\pi\)
0.491426 + 0.870919i \(0.336476\pi\)
\(908\) 547.041i 0.602468i
\(909\) 0 0
\(910\) −792.176 −0.870523
\(911\) 150.667i 0.165387i 0.996575 + 0.0826933i \(0.0263522\pi\)
−0.996575 + 0.0826933i \(0.973648\pi\)
\(912\) 0 0
\(913\) −734.078 −0.804028
\(914\) − 338.700i − 0.370569i
\(915\) 0 0
\(916\) −840.975 −0.918095
\(917\) 7.43777i 0.00811099i
\(918\) 0 0
\(919\) −746.572 −0.812374 −0.406187 0.913790i \(-0.633142\pi\)
−0.406187 + 0.913790i \(0.633142\pi\)
\(920\) − 1179.78i − 1.28237i
\(921\) 0 0
\(922\) −257.238 −0.279000
\(923\) 1912.77i 2.07234i
\(924\) 0 0
\(925\) 4.31382 0.00466359
\(926\) − 196.348i − 0.212039i
\(927\) 0 0
\(928\) −1122.03 −1.20908
\(929\) 1353.32i 1.45675i 0.685179 + 0.728375i \(0.259724\pi\)
−0.685179 + 0.728375i \(0.740276\pi\)
\(930\) 0 0
\(931\) −528.900 −0.568098
\(932\) 1310.07i 1.40565i
\(933\) 0 0
\(934\) 225.924 0.241888
\(935\) − 107.410i − 0.114877i
\(936\) 0 0
\(937\) 1037.51 1.10727 0.553635 0.832760i \(-0.313240\pi\)
0.553635 + 0.832760i \(0.313240\pi\)
\(938\) 327.053i 0.348670i
\(939\) 0 0
\(940\) −1089.02 −1.15853
\(941\) − 434.238i − 0.461465i −0.973017 0.230732i \(-0.925888\pi\)
0.973017 0.230732i \(-0.0741122\pi\)
\(942\) 0 0
\(943\) −338.692 −0.359164
\(944\) 351.579i 0.372436i
\(945\) 0 0
\(946\) 60.6548 0.0641171
\(947\) − 943.690i − 0.996505i −0.867032 0.498253i \(-0.833975\pi\)
0.867032 0.498253i \(-0.166025\pi\)
\(948\) 0 0
\(949\) 2469.33 2.60203
\(950\) − 163.196i − 0.171786i
\(951\) 0 0
\(952\) −187.210 −0.196649
\(953\) − 1654.02i − 1.73559i −0.496922 0.867795i \(-0.665537\pi\)
0.496922 0.867795i \(-0.334463\pi\)
\(954\) 0 0
\(955\) 750.172 0.785520
\(956\) 985.453i 1.03081i
\(957\) 0 0
\(958\) −283.724 −0.296163
\(959\) 910.162i 0.949074i
\(960\) 0 0
\(961\) 206.113 0.214478
\(962\) − 8.91726i − 0.00926950i
\(963\) 0 0
\(964\) −376.723 −0.390791
\(965\) 238.944i 0.247611i
\(966\) 0 0
\(967\) 1854.64 1.91793 0.958965 0.283525i \(-0.0915040\pi\)
0.958965 + 0.283525i \(0.0915040\pi\)
\(968\) − 552.163i − 0.570416i
\(969\) 0 0
\(970\) 407.728 0.420338
\(971\) 231.019i 0.237918i 0.992899 + 0.118959i \(0.0379558\pi\)
−0.992899 + 0.118959i \(0.962044\pi\)
\(972\) 0 0
\(973\) −1504.74 −1.54650
\(974\) − 430.952i − 0.442456i
\(975\) 0 0
\(976\) −46.4498 −0.0475920
\(977\) 1391.81i 1.42458i 0.701887 + 0.712289i \(0.252341\pi\)
−0.701887 + 0.712289i \(0.747659\pi\)
\(978\) 0 0
\(979\) −199.360 −0.203636
\(980\) − 382.955i − 0.390770i
\(981\) 0 0
\(982\) 160.573 0.163516
\(983\) − 307.299i − 0.312613i −0.987709 0.156307i \(-0.950041\pi\)
0.987709 0.156307i \(-0.0499588\pi\)
\(984\) 0 0
\(985\) 217.156 0.220463
\(986\) − 116.810i − 0.118468i
\(987\) 0 0
\(988\) 2147.18 2.17326
\(989\) − 678.253i − 0.685797i
\(990\) 0 0
\(991\) −935.751 −0.944249 −0.472125 0.881532i \(-0.656513\pi\)
−0.472125 + 0.881532i \(0.656513\pi\)
\(992\) − 997.137i − 1.00518i
\(993\) 0 0
\(994\) 514.787 0.517894
\(995\) − 1735.79i − 1.74451i
\(996\) 0 0
\(997\) 1046.91 1.05006 0.525030 0.851084i \(-0.324054\pi\)
0.525030 + 0.851084i \(0.324054\pi\)
\(998\) 111.488i 0.111712i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.b.d.188.5 12
3.2 odd 2 inner 459.3.b.d.188.8 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.3.b.d.188.5 12 1.1 even 1 trivial
459.3.b.d.188.8 yes 12 3.2 odd 2 inner