Properties

Label 459.3.b.d.188.2
Level $459$
Weight $3$
Character 459.188
Analytic conductor $12.507$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(188,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.188"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-20,0,0,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 34x^{10} + 395x^{8} + 1888x^{6} + 3523x^{4} + 1566x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 188.2
Root \(-3.15039i\) of defining polynomial
Character \(\chi\) \(=\) 459.188
Dual form 459.3.b.d.188.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.15039i q^{2} -5.92497 q^{4} +0.888739i q^{5} -10.5667 q^{7} +6.06443i q^{8} +2.79988 q^{10} +9.89652i q^{11} +12.5343 q^{13} +33.2892i q^{14} -4.59457 q^{16} +4.12311i q^{17} -10.5006 q^{19} -5.26576i q^{20} +31.1779 q^{22} +18.6257i q^{23} +24.2101 q^{25} -39.4881i q^{26} +62.6073 q^{28} +29.4407i q^{29} +48.9768 q^{31} +38.7324i q^{32} +12.9894 q^{34} -9.39102i q^{35} -10.0653 q^{37} +33.0812i q^{38} -5.38969 q^{40} +20.6721i q^{41} -61.9861 q^{43} -58.6366i q^{44} +58.6781 q^{46} +2.82082i q^{47} +62.6547 q^{49} -76.2715i q^{50} -74.2656 q^{52} +59.1829i q^{53} -8.79543 q^{55} -64.0809i q^{56} +92.7498 q^{58} +38.6083i q^{59} +14.2459 q^{61} -154.296i q^{62} +103.644 q^{64} +11.1397i q^{65} -126.421 q^{67} -24.4293i q^{68} -29.5854 q^{70} -25.5335i q^{71} +16.3979 q^{73} +31.7096i q^{74} +62.2161 q^{76} -104.573i q^{77} -57.9343 q^{79} -4.08338i q^{80} +65.1253 q^{82} -123.734i q^{83} -3.66437 q^{85} +195.280i q^{86} -60.0167 q^{88} +101.810i q^{89} -132.446 q^{91} -110.357i q^{92} +8.88668 q^{94} -9.33233i q^{95} -58.6859 q^{97} -197.387i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{4} - 54 q^{7} - 12 q^{10} - 50 q^{13} + 108 q^{16} - 50 q^{19} - 106 q^{22} - 48 q^{25} + 382 q^{28} + 2 q^{31} - 244 q^{37} + 208 q^{40} - 78 q^{43} - 18 q^{46} + 470 q^{49} + 42 q^{52} + 290 q^{55}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.15039i − 1.57520i −0.616189 0.787598i \(-0.711324\pi\)
0.616189 0.787598i \(-0.288676\pi\)
\(3\) 0 0
\(4\) −5.92497 −1.48124
\(5\) 0.888739i 0.177748i 0.996043 + 0.0888739i \(0.0283268\pi\)
−0.996043 + 0.0888739i \(0.971673\pi\)
\(6\) 0 0
\(7\) −10.5667 −1.50953 −0.754763 0.655998i \(-0.772248\pi\)
−0.754763 + 0.655998i \(0.772248\pi\)
\(8\) 6.06443i 0.758053i
\(9\) 0 0
\(10\) 2.79988 0.279988
\(11\) 9.89652i 0.899684i 0.893108 + 0.449842i \(0.148520\pi\)
−0.893108 + 0.449842i \(0.851480\pi\)
\(12\) 0 0
\(13\) 12.5343 0.964179 0.482090 0.876122i \(-0.339878\pi\)
0.482090 + 0.876122i \(0.339878\pi\)
\(14\) 33.2892i 2.37780i
\(15\) 0 0
\(16\) −4.59457 −0.287161
\(17\) 4.12311i 0.242536i
\(18\) 0 0
\(19\) −10.5006 −0.552666 −0.276333 0.961062i \(-0.589119\pi\)
−0.276333 + 0.961062i \(0.589119\pi\)
\(20\) − 5.26576i − 0.263288i
\(21\) 0 0
\(22\) 31.1779 1.41718
\(23\) 18.6257i 0.809811i 0.914359 + 0.404906i \(0.132696\pi\)
−0.914359 + 0.404906i \(0.867304\pi\)
\(24\) 0 0
\(25\) 24.2101 0.968406
\(26\) − 39.4881i − 1.51877i
\(27\) 0 0
\(28\) 62.6073 2.23598
\(29\) 29.4407i 1.01520i 0.861594 + 0.507599i \(0.169467\pi\)
−0.861594 + 0.507599i \(0.830533\pi\)
\(30\) 0 0
\(31\) 48.9768 1.57990 0.789948 0.613174i \(-0.210108\pi\)
0.789948 + 0.613174i \(0.210108\pi\)
\(32\) 38.7324i 1.21039i
\(33\) 0 0
\(34\) 12.9894 0.382041
\(35\) − 9.39102i − 0.268315i
\(36\) 0 0
\(37\) −10.0653 −0.272035 −0.136017 0.990706i \(-0.543430\pi\)
−0.136017 + 0.990706i \(0.543430\pi\)
\(38\) 33.0812i 0.870557i
\(39\) 0 0
\(40\) −5.38969 −0.134742
\(41\) 20.6721i 0.504198i 0.967701 + 0.252099i \(0.0811209\pi\)
−0.967701 + 0.252099i \(0.918879\pi\)
\(42\) 0 0
\(43\) −61.9861 −1.44154 −0.720768 0.693176i \(-0.756211\pi\)
−0.720768 + 0.693176i \(0.756211\pi\)
\(44\) − 58.6366i − 1.33265i
\(45\) 0 0
\(46\) 58.6781 1.27561
\(47\) 2.82082i 0.0600174i 0.999550 + 0.0300087i \(0.00955350\pi\)
−0.999550 + 0.0300087i \(0.990447\pi\)
\(48\) 0 0
\(49\) 62.6547 1.27867
\(50\) − 76.2715i − 1.52543i
\(51\) 0 0
\(52\) −74.2656 −1.42818
\(53\) 59.1829i 1.11666i 0.829620 + 0.558329i \(0.188557\pi\)
−0.829620 + 0.558329i \(0.811443\pi\)
\(54\) 0 0
\(55\) −8.79543 −0.159917
\(56\) − 64.0809i − 1.14430i
\(57\) 0 0
\(58\) 92.7498 1.59913
\(59\) 38.6083i 0.654378i 0.944959 + 0.327189i \(0.106101\pi\)
−0.944959 + 0.327189i \(0.893899\pi\)
\(60\) 0 0
\(61\) 14.2459 0.233539 0.116769 0.993159i \(-0.462746\pi\)
0.116769 + 0.993159i \(0.462746\pi\)
\(62\) − 154.296i − 2.48865i
\(63\) 0 0
\(64\) 103.644 1.61944
\(65\) 11.1397i 0.171381i
\(66\) 0 0
\(67\) −126.421 −1.88689 −0.943444 0.331532i \(-0.892434\pi\)
−0.943444 + 0.331532i \(0.892434\pi\)
\(68\) − 24.4293i − 0.359254i
\(69\) 0 0
\(70\) −29.5854 −0.422649
\(71\) − 25.5335i − 0.359627i −0.983701 0.179814i \(-0.942451\pi\)
0.983701 0.179814i \(-0.0575495\pi\)
\(72\) 0 0
\(73\) 16.3979 0.224628 0.112314 0.993673i \(-0.464174\pi\)
0.112314 + 0.993673i \(0.464174\pi\)
\(74\) 31.7096i 0.428508i
\(75\) 0 0
\(76\) 62.2161 0.818632
\(77\) − 104.573i − 1.35810i
\(78\) 0 0
\(79\) −57.9343 −0.733345 −0.366672 0.930350i \(-0.619503\pi\)
−0.366672 + 0.930350i \(0.619503\pi\)
\(80\) − 4.08338i − 0.0510422i
\(81\) 0 0
\(82\) 65.1253 0.794211
\(83\) − 123.734i − 1.49077i −0.666634 0.745385i \(-0.732266\pi\)
0.666634 0.745385i \(-0.267734\pi\)
\(84\) 0 0
\(85\) −3.66437 −0.0431102
\(86\) 195.280i 2.27070i
\(87\) 0 0
\(88\) −60.0167 −0.682008
\(89\) 101.810i 1.14393i 0.820278 + 0.571965i \(0.193819\pi\)
−0.820278 + 0.571965i \(0.806181\pi\)
\(90\) 0 0
\(91\) −132.446 −1.45545
\(92\) − 110.357i − 1.19953i
\(93\) 0 0
\(94\) 8.88668 0.0945392
\(95\) − 9.33233i − 0.0982351i
\(96\) 0 0
\(97\) −58.6859 −0.605010 −0.302505 0.953148i \(-0.597823\pi\)
−0.302505 + 0.953148i \(0.597823\pi\)
\(98\) − 197.387i − 2.01415i
\(99\) 0 0
\(100\) −143.444 −1.43444
\(101\) − 78.6743i − 0.778954i −0.921036 0.389477i \(-0.872656\pi\)
0.921036 0.389477i \(-0.127344\pi\)
\(102\) 0 0
\(103\) −83.9849 −0.815388 −0.407694 0.913119i \(-0.633667\pi\)
−0.407694 + 0.913119i \(0.633667\pi\)
\(104\) 76.0135i 0.730899i
\(105\) 0 0
\(106\) 186.449 1.75896
\(107\) 169.045i 1.57986i 0.613199 + 0.789928i \(0.289882\pi\)
−0.613199 + 0.789928i \(0.710118\pi\)
\(108\) 0 0
\(109\) −61.1657 −0.561153 −0.280576 0.959832i \(-0.590526\pi\)
−0.280576 + 0.959832i \(0.590526\pi\)
\(110\) 27.7090i 0.251900i
\(111\) 0 0
\(112\) 48.5494 0.433476
\(113\) 3.37271i 0.0298470i 0.999889 + 0.0149235i \(0.00475047\pi\)
−0.999889 + 0.0149235i \(0.995250\pi\)
\(114\) 0 0
\(115\) −16.5534 −0.143942
\(116\) − 174.436i − 1.50375i
\(117\) 0 0
\(118\) 121.631 1.03077
\(119\) − 43.5675i − 0.366114i
\(120\) 0 0
\(121\) 23.0589 0.190569
\(122\) − 44.8801i − 0.367870i
\(123\) 0 0
\(124\) −290.186 −2.34021
\(125\) 43.7350i 0.349880i
\(126\) 0 0
\(127\) −154.265 −1.21469 −0.607343 0.794440i \(-0.707764\pi\)
−0.607343 + 0.794440i \(0.707764\pi\)
\(128\) − 171.590i − 1.34055i
\(129\) 0 0
\(130\) 35.0946 0.269958
\(131\) 194.713i 1.48636i 0.669090 + 0.743181i \(0.266684\pi\)
−0.669090 + 0.743181i \(0.733316\pi\)
\(132\) 0 0
\(133\) 110.957 0.834263
\(134\) 398.277i 2.97222i
\(135\) 0 0
\(136\) −25.0043 −0.183855
\(137\) 168.707i 1.23144i 0.787965 + 0.615720i \(0.211135\pi\)
−0.787965 + 0.615720i \(0.788865\pi\)
\(138\) 0 0
\(139\) 154.598 1.11221 0.556107 0.831111i \(-0.312295\pi\)
0.556107 + 0.831111i \(0.312295\pi\)
\(140\) 55.6416i 0.397440i
\(141\) 0 0
\(142\) −80.4407 −0.566484
\(143\) 124.046i 0.867456i
\(144\) 0 0
\(145\) −26.1651 −0.180449
\(146\) − 51.6597i − 0.353834i
\(147\) 0 0
\(148\) 59.6366 0.402950
\(149\) 224.338i 1.50562i 0.658237 + 0.752811i \(0.271302\pi\)
−0.658237 + 0.752811i \(0.728698\pi\)
\(150\) 0 0
\(151\) 155.240 1.02808 0.514040 0.857766i \(-0.328148\pi\)
0.514040 + 0.857766i \(0.328148\pi\)
\(152\) − 63.6804i − 0.418950i
\(153\) 0 0
\(154\) −329.447 −2.13927
\(155\) 43.5276i 0.280823i
\(156\) 0 0
\(157\) −69.5880 −0.443236 −0.221618 0.975134i \(-0.571134\pi\)
−0.221618 + 0.975134i \(0.571134\pi\)
\(158\) 182.516i 1.15516i
\(159\) 0 0
\(160\) −34.4230 −0.215144
\(161\) − 196.811i − 1.22243i
\(162\) 0 0
\(163\) 295.962 1.81572 0.907858 0.419277i \(-0.137716\pi\)
0.907858 + 0.419277i \(0.137716\pi\)
\(164\) − 122.482i − 0.746840i
\(165\) 0 0
\(166\) −389.811 −2.34826
\(167\) 247.319i 1.48095i 0.672084 + 0.740475i \(0.265399\pi\)
−0.672084 + 0.740475i \(0.734601\pi\)
\(168\) 0 0
\(169\) −11.8906 −0.0703588
\(170\) 11.5442i 0.0679070i
\(171\) 0 0
\(172\) 367.266 2.13527
\(173\) − 269.938i − 1.56034i −0.625570 0.780168i \(-0.715133\pi\)
0.625570 0.780168i \(-0.284867\pi\)
\(174\) 0 0
\(175\) −255.821 −1.46183
\(176\) − 45.4703i − 0.258354i
\(177\) 0 0
\(178\) 320.741 1.80192
\(179\) − 317.609i − 1.77435i −0.461432 0.887176i \(-0.652664\pi\)
0.461432 0.887176i \(-0.347336\pi\)
\(180\) 0 0
\(181\) 51.4419 0.284209 0.142105 0.989852i \(-0.454613\pi\)
0.142105 + 0.989852i \(0.454613\pi\)
\(182\) 417.258i 2.29262i
\(183\) 0 0
\(184\) −112.954 −0.613880
\(185\) − 8.94542i − 0.0483536i
\(186\) 0 0
\(187\) −40.8044 −0.218205
\(188\) − 16.7133i − 0.0889004i
\(189\) 0 0
\(190\) −29.4005 −0.154740
\(191\) 122.709i 0.642456i 0.947002 + 0.321228i \(0.104096\pi\)
−0.947002 + 0.321228i \(0.895904\pi\)
\(192\) 0 0
\(193\) −77.8242 −0.403234 −0.201617 0.979464i \(-0.564620\pi\)
−0.201617 + 0.979464i \(0.564620\pi\)
\(194\) 184.884i 0.953009i
\(195\) 0 0
\(196\) −371.227 −1.89402
\(197\) 95.2181i 0.483341i 0.970358 + 0.241670i \(0.0776952\pi\)
−0.970358 + 0.241670i \(0.922305\pi\)
\(198\) 0 0
\(199\) −285.742 −1.43589 −0.717946 0.696099i \(-0.754918\pi\)
−0.717946 + 0.696099i \(0.754918\pi\)
\(200\) 146.821i 0.734103i
\(201\) 0 0
\(202\) −247.855 −1.22701
\(203\) − 311.091i − 1.53247i
\(204\) 0 0
\(205\) −18.3721 −0.0896201
\(206\) 264.585i 1.28440i
\(207\) 0 0
\(208\) −57.5899 −0.276874
\(209\) − 103.920i − 0.497224i
\(210\) 0 0
\(211\) −281.344 −1.33338 −0.666691 0.745334i \(-0.732290\pi\)
−0.666691 + 0.745334i \(0.732290\pi\)
\(212\) − 350.657i − 1.65404i
\(213\) 0 0
\(214\) 532.557 2.48858
\(215\) − 55.0894i − 0.256230i
\(216\) 0 0
\(217\) −517.522 −2.38489
\(218\) 192.696i 0.883926i
\(219\) 0 0
\(220\) 52.1127 0.236876
\(221\) 51.6804i 0.233848i
\(222\) 0 0
\(223\) 78.3787 0.351474 0.175737 0.984437i \(-0.443769\pi\)
0.175737 + 0.984437i \(0.443769\pi\)
\(224\) − 409.273i − 1.82711i
\(225\) 0 0
\(226\) 10.6254 0.0470148
\(227\) 151.503i 0.667413i 0.942677 + 0.333707i \(0.108300\pi\)
−0.942677 + 0.333707i \(0.891700\pi\)
\(228\) 0 0
\(229\) 231.801 1.01223 0.506116 0.862465i \(-0.331081\pi\)
0.506116 + 0.862465i \(0.331081\pi\)
\(230\) 52.1496i 0.226737i
\(231\) 0 0
\(232\) −178.541 −0.769574
\(233\) − 272.899i − 1.17124i −0.810585 0.585621i \(-0.800851\pi\)
0.810585 0.585621i \(-0.199149\pi\)
\(234\) 0 0
\(235\) −2.50697 −0.0106680
\(236\) − 228.753i − 0.969293i
\(237\) 0 0
\(238\) −137.255 −0.576701
\(239\) − 116.935i − 0.489267i −0.969616 0.244634i \(-0.921332\pi\)
0.969616 0.244634i \(-0.0786677\pi\)
\(240\) 0 0
\(241\) 425.733 1.76653 0.883263 0.468877i \(-0.155341\pi\)
0.883263 + 0.468877i \(0.155341\pi\)
\(242\) − 72.6445i − 0.300184i
\(243\) 0 0
\(244\) −84.4064 −0.345928
\(245\) 55.6837i 0.227280i
\(246\) 0 0
\(247\) −131.619 −0.532869
\(248\) 297.016i 1.19765i
\(249\) 0 0
\(250\) 137.782 0.551129
\(251\) − 249.281i − 0.993150i −0.867994 0.496575i \(-0.834591\pi\)
0.867994 0.496575i \(-0.165409\pi\)
\(252\) 0 0
\(253\) −184.329 −0.728574
\(254\) 485.995i 1.91337i
\(255\) 0 0
\(256\) −125.999 −0.492184
\(257\) − 35.5290i − 0.138245i −0.997608 0.0691227i \(-0.977980\pi\)
0.997608 0.0691227i \(-0.0220200\pi\)
\(258\) 0 0
\(259\) 106.357 0.410644
\(260\) − 66.0027i − 0.253857i
\(261\) 0 0
\(262\) 613.424 2.34131
\(263\) − 379.455i − 1.44279i −0.692522 0.721397i \(-0.743500\pi\)
0.692522 0.721397i \(-0.256500\pi\)
\(264\) 0 0
\(265\) −52.5981 −0.198483
\(266\) − 349.558i − 1.31413i
\(267\) 0 0
\(268\) 749.044 2.79494
\(269\) − 15.1816i − 0.0564370i −0.999602 0.0282185i \(-0.991017\pi\)
0.999602 0.0282185i \(-0.00898343\pi\)
\(270\) 0 0
\(271\) −376.207 −1.38822 −0.694109 0.719870i \(-0.744201\pi\)
−0.694109 + 0.719870i \(0.744201\pi\)
\(272\) − 18.9439i − 0.0696467i
\(273\) 0 0
\(274\) 531.494 1.93976
\(275\) 239.596i 0.871259i
\(276\) 0 0
\(277\) −10.9140 −0.0394007 −0.0197003 0.999806i \(-0.506271\pi\)
−0.0197003 + 0.999806i \(0.506271\pi\)
\(278\) − 487.043i − 1.75195i
\(279\) 0 0
\(280\) 56.9512 0.203397
\(281\) − 317.993i − 1.13165i −0.824526 0.565824i \(-0.808558\pi\)
0.824526 0.565824i \(-0.191442\pi\)
\(282\) 0 0
\(283\) 496.762 1.75534 0.877671 0.479264i \(-0.159096\pi\)
0.877671 + 0.479264i \(0.159096\pi\)
\(284\) 151.286i 0.532696i
\(285\) 0 0
\(286\) 390.794 1.36641
\(287\) − 218.436i − 0.761100i
\(288\) 0 0
\(289\) −17.0000 −0.0588235
\(290\) 82.4304i 0.284243i
\(291\) 0 0
\(292\) −97.1569 −0.332729
\(293\) − 461.796i − 1.57609i −0.615615 0.788047i \(-0.711092\pi\)
0.615615 0.788047i \(-0.288908\pi\)
\(294\) 0 0
\(295\) −34.3127 −0.116314
\(296\) − 61.0402i − 0.206217i
\(297\) 0 0
\(298\) 706.751 2.37165
\(299\) 233.460i 0.780803i
\(300\) 0 0
\(301\) 654.987 2.17604
\(302\) − 489.067i − 1.61943i
\(303\) 0 0
\(304\) 48.2460 0.158704
\(305\) 12.6609i 0.0415110i
\(306\) 0 0
\(307\) −386.037 −1.25745 −0.628725 0.777628i \(-0.716423\pi\)
−0.628725 + 0.777628i \(0.716423\pi\)
\(308\) 619.594i 2.01167i
\(309\) 0 0
\(310\) 137.129 0.442351
\(311\) 295.253i 0.949366i 0.880157 + 0.474683i \(0.157437\pi\)
−0.880157 + 0.474683i \(0.842563\pi\)
\(312\) 0 0
\(313\) −28.9955 −0.0926373 −0.0463187 0.998927i \(-0.514749\pi\)
−0.0463187 + 0.998927i \(0.514749\pi\)
\(314\) 219.229i 0.698183i
\(315\) 0 0
\(316\) 343.259 1.08626
\(317\) − 126.503i − 0.399062i −0.979891 0.199531i \(-0.936058\pi\)
0.979891 0.199531i \(-0.0639419\pi\)
\(318\) 0 0
\(319\) −291.361 −0.913356
\(320\) 92.1125i 0.287852i
\(321\) 0 0
\(322\) −620.033 −1.92557
\(323\) − 43.2953i − 0.134041i
\(324\) 0 0
\(325\) 303.458 0.933716
\(326\) − 932.396i − 2.86011i
\(327\) 0 0
\(328\) −125.365 −0.382209
\(329\) − 29.8067i − 0.0905978i
\(330\) 0 0
\(331\) 392.966 1.18721 0.593605 0.804757i \(-0.297704\pi\)
0.593605 + 0.804757i \(0.297704\pi\)
\(332\) 733.121i 2.20819i
\(333\) 0 0
\(334\) 779.151 2.33279
\(335\) − 112.356i − 0.335390i
\(336\) 0 0
\(337\) 223.852 0.664250 0.332125 0.943235i \(-0.392234\pi\)
0.332125 + 0.943235i \(0.392234\pi\)
\(338\) 37.4602i 0.110829i
\(339\) 0 0
\(340\) 21.7113 0.0638567
\(341\) 484.700i 1.42141i
\(342\) 0 0
\(343\) −144.285 −0.420655
\(344\) − 375.910i − 1.09276i
\(345\) 0 0
\(346\) −850.412 −2.45784
\(347\) − 595.431i − 1.71594i −0.513701 0.857969i \(-0.671726\pi\)
0.513701 0.857969i \(-0.328274\pi\)
\(348\) 0 0
\(349\) −558.124 −1.59921 −0.799605 0.600526i \(-0.794958\pi\)
−0.799605 + 0.600526i \(0.794958\pi\)
\(350\) 805.936i 2.30267i
\(351\) 0 0
\(352\) −383.316 −1.08897
\(353\) 294.388i 0.833960i 0.908916 + 0.416980i \(0.136911\pi\)
−0.908916 + 0.416980i \(0.863089\pi\)
\(354\) 0 0
\(355\) 22.6927 0.0639230
\(356\) − 603.221i − 1.69444i
\(357\) 0 0
\(358\) −1000.59 −2.79495
\(359\) 425.659i 1.18568i 0.805320 + 0.592840i \(0.201993\pi\)
−0.805320 + 0.592840i \(0.798007\pi\)
\(360\) 0 0
\(361\) −250.736 −0.694561
\(362\) − 162.062i − 0.447685i
\(363\) 0 0
\(364\) 784.740 2.15588
\(365\) 14.5734i 0.0399272i
\(366\) 0 0
\(367\) −237.639 −0.647518 −0.323759 0.946140i \(-0.604947\pi\)
−0.323759 + 0.946140i \(0.604947\pi\)
\(368\) − 85.5769i − 0.232546i
\(369\) 0 0
\(370\) −28.1816 −0.0761664
\(371\) − 625.366i − 1.68562i
\(372\) 0 0
\(373\) −44.4936 −0.119286 −0.0596429 0.998220i \(-0.518996\pi\)
−0.0596429 + 0.998220i \(0.518996\pi\)
\(374\) 128.550i 0.343716i
\(375\) 0 0
\(376\) −17.1066 −0.0454964
\(377\) 369.020i 0.978832i
\(378\) 0 0
\(379\) 350.367 0.924452 0.462226 0.886762i \(-0.347051\pi\)
0.462226 + 0.886762i \(0.347051\pi\)
\(380\) 55.2939i 0.145510i
\(381\) 0 0
\(382\) 386.582 1.01199
\(383\) 388.918i 1.01545i 0.861518 + 0.507726i \(0.169514\pi\)
−0.861518 + 0.507726i \(0.830486\pi\)
\(384\) 0 0
\(385\) 92.9384 0.241399
\(386\) 245.177i 0.635173i
\(387\) 0 0
\(388\) 347.713 0.896167
\(389\) − 145.514i − 0.374071i −0.982353 0.187036i \(-0.940112\pi\)
0.982353 0.187036i \(-0.0598879\pi\)
\(390\) 0 0
\(391\) −76.7955 −0.196408
\(392\) 379.965i 0.969298i
\(393\) 0 0
\(394\) 299.974 0.761356
\(395\) − 51.4884i − 0.130350i
\(396\) 0 0
\(397\) −583.455 −1.46966 −0.734831 0.678251i \(-0.762738\pi\)
−0.734831 + 0.678251i \(0.762738\pi\)
\(398\) 900.201i 2.26181i
\(399\) 0 0
\(400\) −111.235 −0.278088
\(401\) 103.586i 0.258319i 0.991624 + 0.129159i \(0.0412279\pi\)
−0.991624 + 0.129159i \(0.958772\pi\)
\(402\) 0 0
\(403\) 613.891 1.52330
\(404\) 466.144i 1.15382i
\(405\) 0 0
\(406\) −980.058 −2.41393
\(407\) − 99.6114i − 0.244745i
\(408\) 0 0
\(409\) −120.594 −0.294851 −0.147426 0.989073i \(-0.547099\pi\)
−0.147426 + 0.989073i \(0.547099\pi\)
\(410\) 57.8794i 0.141169i
\(411\) 0 0
\(412\) 497.609 1.20779
\(413\) − 407.962i − 0.987800i
\(414\) 0 0
\(415\) 109.967 0.264981
\(416\) 485.485i 1.16703i
\(417\) 0 0
\(418\) −327.388 −0.783226
\(419\) 585.973i 1.39850i 0.714875 + 0.699252i \(0.246484\pi\)
−0.714875 + 0.699252i \(0.753516\pi\)
\(420\) 0 0
\(421\) −16.5774 −0.0393761 −0.0196881 0.999806i \(-0.506267\pi\)
−0.0196881 + 0.999806i \(0.506267\pi\)
\(422\) 886.343i 2.10034i
\(423\) 0 0
\(424\) −358.910 −0.846486
\(425\) 99.8210i 0.234873i
\(426\) 0 0
\(427\) −150.532 −0.352533
\(428\) − 1001.59i − 2.34015i
\(429\) 0 0
\(430\) −173.553 −0.403613
\(431\) 722.881i 1.67722i 0.544733 + 0.838609i \(0.316631\pi\)
−0.544733 + 0.838609i \(0.683369\pi\)
\(432\) 0 0
\(433\) 559.664 1.29253 0.646264 0.763114i \(-0.276331\pi\)
0.646264 + 0.763114i \(0.276331\pi\)
\(434\) 1630.40i 3.75667i
\(435\) 0 0
\(436\) 362.405 0.831204
\(437\) − 195.581i − 0.447555i
\(438\) 0 0
\(439\) −297.111 −0.676791 −0.338395 0.941004i \(-0.609884\pi\)
−0.338395 + 0.941004i \(0.609884\pi\)
\(440\) − 53.3392i − 0.121225i
\(441\) 0 0
\(442\) 162.813 0.368356
\(443\) − 601.063i − 1.35680i −0.734692 0.678401i \(-0.762673\pi\)
0.734692 0.678401i \(-0.237327\pi\)
\(444\) 0 0
\(445\) −90.4824 −0.203331
\(446\) − 246.924i − 0.553641i
\(447\) 0 0
\(448\) −1095.17 −2.44458
\(449\) 48.5849i 0.108207i 0.998535 + 0.0541034i \(0.0172301\pi\)
−0.998535 + 0.0541034i \(0.982770\pi\)
\(450\) 0 0
\(451\) −204.582 −0.453619
\(452\) − 19.9832i − 0.0442106i
\(453\) 0 0
\(454\) 477.294 1.05131
\(455\) − 117.710i − 0.258704i
\(456\) 0 0
\(457\) 604.556 1.32288 0.661440 0.749998i \(-0.269946\pi\)
0.661440 + 0.749998i \(0.269946\pi\)
\(458\) − 730.265i − 1.59447i
\(459\) 0 0
\(460\) 98.0782 0.213213
\(461\) 2.46881i 0.00535533i 0.999996 + 0.00267766i \(0.000852328\pi\)
−0.999996 + 0.00267766i \(0.999148\pi\)
\(462\) 0 0
\(463\) 22.1762 0.0478967 0.0239483 0.999713i \(-0.492376\pi\)
0.0239483 + 0.999713i \(0.492376\pi\)
\(464\) − 135.267i − 0.291525i
\(465\) 0 0
\(466\) −859.740 −1.84493
\(467\) − 579.900i − 1.24176i −0.783907 0.620878i \(-0.786776\pi\)
0.783907 0.620878i \(-0.213224\pi\)
\(468\) 0 0
\(469\) 1335.86 2.84831
\(470\) 7.89794i 0.0168041i
\(471\) 0 0
\(472\) −234.137 −0.496053
\(473\) − 613.446i − 1.29693i
\(474\) 0 0
\(475\) −254.222 −0.535204
\(476\) 258.137i 0.542304i
\(477\) 0 0
\(478\) −368.391 −0.770692
\(479\) − 750.497i − 1.56680i −0.621519 0.783399i \(-0.713484\pi\)
0.621519 0.783399i \(-0.286516\pi\)
\(480\) 0 0
\(481\) −126.162 −0.262290
\(482\) − 1341.23i − 2.78263i
\(483\) 0 0
\(484\) −136.623 −0.282280
\(485\) − 52.1565i − 0.107539i
\(486\) 0 0
\(487\) 515.880 1.05930 0.529651 0.848216i \(-0.322323\pi\)
0.529651 + 0.848216i \(0.322323\pi\)
\(488\) 86.3931i 0.177035i
\(489\) 0 0
\(490\) 175.425 0.358011
\(491\) 542.940i 1.10578i 0.833253 + 0.552892i \(0.186476\pi\)
−0.833253 + 0.552892i \(0.813524\pi\)
\(492\) 0 0
\(493\) −121.387 −0.246221
\(494\) 414.650i 0.839373i
\(495\) 0 0
\(496\) −225.027 −0.453684
\(497\) 269.805i 0.542867i
\(498\) 0 0
\(499\) 863.555 1.73057 0.865286 0.501279i \(-0.167137\pi\)
0.865286 + 0.501279i \(0.167137\pi\)
\(500\) − 259.129i − 0.518257i
\(501\) 0 0
\(502\) −785.332 −1.56441
\(503\) 9.54565i 0.0189774i 0.999955 + 0.00948872i \(0.00302040\pi\)
−0.999955 + 0.00948872i \(0.996980\pi\)
\(504\) 0 0
\(505\) 69.9210 0.138457
\(506\) 580.709i 1.14765i
\(507\) 0 0
\(508\) 914.016 1.79925
\(509\) 509.699i 1.00137i 0.865629 + 0.500687i \(0.166919\pi\)
−0.865629 + 0.500687i \(0.833081\pi\)
\(510\) 0 0
\(511\) −173.271 −0.339082
\(512\) − 289.413i − 0.565259i
\(513\) 0 0
\(514\) −111.930 −0.217764
\(515\) − 74.6407i − 0.144933i
\(516\) 0 0
\(517\) −27.9163 −0.0539967
\(518\) − 335.065i − 0.646844i
\(519\) 0 0
\(520\) −67.5562 −0.129916
\(521\) 542.030i 1.04036i 0.854055 + 0.520182i \(0.174136\pi\)
−0.854055 + 0.520182i \(0.825864\pi\)
\(522\) 0 0
\(523\) −369.678 −0.706842 −0.353421 0.935464i \(-0.614982\pi\)
−0.353421 + 0.935464i \(0.614982\pi\)
\(524\) − 1153.67i − 2.20166i
\(525\) 0 0
\(526\) −1195.43 −2.27268
\(527\) 201.936i 0.383181i
\(528\) 0 0
\(529\) 182.085 0.344206
\(530\) 165.705i 0.312650i
\(531\) 0 0
\(532\) −657.417 −1.23575
\(533\) 259.111i 0.486137i
\(534\) 0 0
\(535\) −150.237 −0.280816
\(536\) − 766.674i − 1.43036i
\(537\) 0 0
\(538\) −47.8279 −0.0888994
\(539\) 620.063i 1.15040i
\(540\) 0 0
\(541\) 725.661 1.34133 0.670666 0.741759i \(-0.266008\pi\)
0.670666 + 0.741759i \(0.266008\pi\)
\(542\) 1185.20i 2.18672i
\(543\) 0 0
\(544\) −159.698 −0.293562
\(545\) − 54.3603i − 0.0997437i
\(546\) 0 0
\(547\) −822.618 −1.50387 −0.751936 0.659237i \(-0.770880\pi\)
−0.751936 + 0.659237i \(0.770880\pi\)
\(548\) − 999.586i − 1.82406i
\(549\) 0 0
\(550\) 754.822 1.37240
\(551\) − 309.147i − 0.561064i
\(552\) 0 0
\(553\) 612.173 1.10700
\(554\) 34.3833i 0.0620638i
\(555\) 0 0
\(556\) −915.987 −1.64746
\(557\) − 62.6284i − 0.112439i −0.998418 0.0562194i \(-0.982095\pi\)
0.998418 0.0562194i \(-0.0179046\pi\)
\(558\) 0 0
\(559\) −776.954 −1.38990
\(560\) 43.1477i 0.0770495i
\(561\) 0 0
\(562\) −1001.80 −1.78257
\(563\) 208.133i 0.369686i 0.982768 + 0.184843i \(0.0591777\pi\)
−0.982768 + 0.184843i \(0.940822\pi\)
\(564\) 0 0
\(565\) −2.99746 −0.00530523
\(566\) − 1564.99i − 2.76501i
\(567\) 0 0
\(568\) 154.846 0.272617
\(569\) 746.533i 1.31201i 0.754757 + 0.656004i \(0.227755\pi\)
−0.754757 + 0.656004i \(0.772245\pi\)
\(570\) 0 0
\(571\) 241.951 0.423732 0.211866 0.977299i \(-0.432046\pi\)
0.211866 + 0.977299i \(0.432046\pi\)
\(572\) − 734.971i − 1.28491i
\(573\) 0 0
\(574\) −688.158 −1.19888
\(575\) 450.930i 0.784226i
\(576\) 0 0
\(577\) 1140.42 1.97646 0.988228 0.152986i \(-0.0488890\pi\)
0.988228 + 0.152986i \(0.0488890\pi\)
\(578\) 53.5567i 0.0926586i
\(579\) 0 0
\(580\) 155.028 0.267289
\(581\) 1307.46i 2.25036i
\(582\) 0 0
\(583\) −585.704 −1.00464
\(584\) 99.4436i 0.170280i
\(585\) 0 0
\(586\) −1454.84 −2.48266
\(587\) 34.1484i 0.0581744i 0.999577 + 0.0290872i \(0.00926004\pi\)
−0.999577 + 0.0290872i \(0.990740\pi\)
\(588\) 0 0
\(589\) −514.288 −0.873154
\(590\) 108.099i 0.183218i
\(591\) 0 0
\(592\) 46.2457 0.0781177
\(593\) − 33.4618i − 0.0564279i −0.999602 0.0282140i \(-0.991018\pi\)
0.999602 0.0282140i \(-0.00898198\pi\)
\(594\) 0 0
\(595\) 38.7202 0.0650759
\(596\) − 1329.19i − 2.23019i
\(597\) 0 0
\(598\) 735.491 1.22992
\(599\) − 840.770i − 1.40362i −0.712363 0.701811i \(-0.752375\pi\)
0.712363 0.701811i \(-0.247625\pi\)
\(600\) 0 0
\(601\) 830.903 1.38253 0.691267 0.722599i \(-0.257053\pi\)
0.691267 + 0.722599i \(0.257053\pi\)
\(602\) − 2063.47i − 3.42768i
\(603\) 0 0
\(604\) −919.794 −1.52284
\(605\) 20.4933i 0.0338733i
\(606\) 0 0
\(607\) −633.043 −1.04290 −0.521452 0.853280i \(-0.674610\pi\)
−0.521452 + 0.853280i \(0.674610\pi\)
\(608\) − 406.715i − 0.668940i
\(609\) 0 0
\(610\) 39.8867 0.0653880
\(611\) 35.3570i 0.0578675i
\(612\) 0 0
\(613\) −822.606 −1.34193 −0.670967 0.741487i \(-0.734121\pi\)
−0.670967 + 0.741487i \(0.734121\pi\)
\(614\) 1216.17i 1.98073i
\(615\) 0 0
\(616\) 634.177 1.02951
\(617\) − 1197.99i − 1.94164i −0.239810 0.970820i \(-0.577085\pi\)
0.239810 0.970820i \(-0.422915\pi\)
\(618\) 0 0
\(619\) −510.165 −0.824176 −0.412088 0.911144i \(-0.635200\pi\)
−0.412088 + 0.911144i \(0.635200\pi\)
\(620\) − 257.900i − 0.415967i
\(621\) 0 0
\(622\) 930.163 1.49544
\(623\) − 1075.79i − 1.72679i
\(624\) 0 0
\(625\) 566.385 0.906215
\(626\) 91.3472i 0.145922i
\(627\) 0 0
\(628\) 412.307 0.656540
\(629\) − 41.5003i − 0.0659782i
\(630\) 0 0
\(631\) −6.87574 −0.0108966 −0.00544829 0.999985i \(-0.501734\pi\)
−0.00544829 + 0.999985i \(0.501734\pi\)
\(632\) − 351.338i − 0.555915i
\(633\) 0 0
\(634\) −398.533 −0.628601
\(635\) − 137.101i − 0.215908i
\(636\) 0 0
\(637\) 785.334 1.23286
\(638\) 917.901i 1.43872i
\(639\) 0 0
\(640\) 152.499 0.238279
\(641\) 475.717i 0.742149i 0.928603 + 0.371074i \(0.121010\pi\)
−0.928603 + 0.371074i \(0.878990\pi\)
\(642\) 0 0
\(643\) −52.1901 −0.0811666 −0.0405833 0.999176i \(-0.512922\pi\)
−0.0405833 + 0.999176i \(0.512922\pi\)
\(644\) 1166.10i 1.81072i
\(645\) 0 0
\(646\) −136.397 −0.211141
\(647\) 350.025i 0.540997i 0.962720 + 0.270499i \(0.0871885\pi\)
−0.962720 + 0.270499i \(0.912811\pi\)
\(648\) 0 0
\(649\) −382.088 −0.588733
\(650\) − 956.011i − 1.47079i
\(651\) 0 0
\(652\) −1753.57 −2.68952
\(653\) 168.972i 0.258763i 0.991595 + 0.129382i \(0.0412992\pi\)
−0.991595 + 0.129382i \(0.958701\pi\)
\(654\) 0 0
\(655\) −173.049 −0.264198
\(656\) − 94.9796i − 0.144786i
\(657\) 0 0
\(658\) −93.9027 −0.142709
\(659\) 1256.97i 1.90740i 0.300764 + 0.953699i \(0.402758\pi\)
−0.300764 + 0.953699i \(0.597242\pi\)
\(660\) 0 0
\(661\) 527.830 0.798533 0.399267 0.916835i \(-0.369265\pi\)
0.399267 + 0.916835i \(0.369265\pi\)
\(662\) − 1238.00i − 1.87009i
\(663\) 0 0
\(664\) 750.376 1.13008
\(665\) 98.6118i 0.148288i
\(666\) 0 0
\(667\) −548.353 −0.822118
\(668\) − 1465.36i − 2.19365i
\(669\) 0 0
\(670\) −353.965 −0.528305
\(671\) 140.985i 0.210111i
\(672\) 0 0
\(673\) 148.226 0.220247 0.110124 0.993918i \(-0.464875\pi\)
0.110124 + 0.993918i \(0.464875\pi\)
\(674\) − 705.223i − 1.04632i
\(675\) 0 0
\(676\) 70.4517 0.104218
\(677\) − 1112.16i − 1.64278i −0.570366 0.821390i \(-0.693199\pi\)
0.570366 0.821390i \(-0.306801\pi\)
\(678\) 0 0
\(679\) 620.115 0.913277
\(680\) − 22.2223i − 0.0326798i
\(681\) 0 0
\(682\) 1526.99 2.23899
\(683\) 87.0626i 0.127471i 0.997967 + 0.0637354i \(0.0203014\pi\)
−0.997967 + 0.0637354i \(0.979699\pi\)
\(684\) 0 0
\(685\) −149.937 −0.218886
\(686\) 454.554i 0.662615i
\(687\) 0 0
\(688\) 284.799 0.413953
\(689\) 741.817i 1.07666i
\(690\) 0 0
\(691\) −652.515 −0.944305 −0.472152 0.881517i \(-0.656523\pi\)
−0.472152 + 0.881517i \(0.656523\pi\)
\(692\) 1599.38i 2.31124i
\(693\) 0 0
\(694\) −1875.84 −2.70294
\(695\) 137.397i 0.197694i
\(696\) 0 0
\(697\) −85.2334 −0.122286
\(698\) 1758.31i 2.51907i
\(699\) 0 0
\(700\) 1515.73 2.16533
\(701\) − 648.629i − 0.925290i −0.886544 0.462645i \(-0.846900\pi\)
0.886544 0.462645i \(-0.153100\pi\)
\(702\) 0 0
\(703\) 105.692 0.150344
\(704\) 1025.72i 1.45698i
\(705\) 0 0
\(706\) 927.437 1.31365
\(707\) 831.327i 1.17585i
\(708\) 0 0
\(709\) −733.868 −1.03508 −0.517538 0.855661i \(-0.673151\pi\)
−0.517538 + 0.855661i \(0.673151\pi\)
\(710\) − 71.4908i − 0.100691i
\(711\) 0 0
\(712\) −617.418 −0.867160
\(713\) 912.224i 1.27942i
\(714\) 0 0
\(715\) −110.245 −0.154188
\(716\) 1881.82i 2.62825i
\(717\) 0 0
\(718\) 1340.99 1.86768
\(719\) 847.039i 1.17808i 0.808104 + 0.589039i \(0.200494\pi\)
−0.808104 + 0.589039i \(0.799506\pi\)
\(720\) 0 0
\(721\) 887.442 1.23085
\(722\) 789.918i 1.09407i
\(723\) 0 0
\(724\) −304.792 −0.420983
\(725\) 712.764i 0.983123i
\(726\) 0 0
\(727\) 896.272 1.23284 0.616418 0.787419i \(-0.288583\pi\)
0.616418 + 0.787419i \(0.288583\pi\)
\(728\) − 803.210i − 1.10331i
\(729\) 0 0
\(730\) 45.9120 0.0628931
\(731\) − 255.575i − 0.349624i
\(732\) 0 0
\(733\) −583.413 −0.795924 −0.397962 0.917402i \(-0.630282\pi\)
−0.397962 + 0.917402i \(0.630282\pi\)
\(734\) 748.656i 1.01997i
\(735\) 0 0
\(736\) −721.417 −0.980186
\(737\) − 1251.13i − 1.69760i
\(738\) 0 0
\(739\) 460.901 0.623682 0.311841 0.950134i \(-0.399054\pi\)
0.311841 + 0.950134i \(0.399054\pi\)
\(740\) 53.0014i 0.0716235i
\(741\) 0 0
\(742\) −1970.15 −2.65519
\(743\) − 678.005i − 0.912524i −0.889846 0.456262i \(-0.849188\pi\)
0.889846 0.456262i \(-0.150812\pi\)
\(744\) 0 0
\(745\) −199.378 −0.267621
\(746\) 140.172i 0.187899i
\(747\) 0 0
\(748\) 241.765 0.323215
\(749\) − 1786.24i − 2.38483i
\(750\) 0 0
\(751\) −770.775 −1.02633 −0.513166 0.858290i \(-0.671527\pi\)
−0.513166 + 0.858290i \(0.671527\pi\)
\(752\) − 12.9604i − 0.0172346i
\(753\) 0 0
\(754\) 1162.56 1.54185
\(755\) 137.968i 0.182739i
\(756\) 0 0
\(757\) 783.588 1.03512 0.517561 0.855646i \(-0.326840\pi\)
0.517561 + 0.855646i \(0.326840\pi\)
\(758\) − 1103.79i − 1.45619i
\(759\) 0 0
\(760\) 56.5953 0.0744675
\(761\) 233.162i 0.306389i 0.988196 + 0.153195i \(0.0489561\pi\)
−0.988196 + 0.153195i \(0.951044\pi\)
\(762\) 0 0
\(763\) 646.318 0.847075
\(764\) − 727.049i − 0.951634i
\(765\) 0 0
\(766\) 1225.25 1.59954
\(767\) 483.929i 0.630938i
\(768\) 0 0
\(769\) 602.730 0.783784 0.391892 0.920011i \(-0.371821\pi\)
0.391892 + 0.920011i \(0.371821\pi\)
\(770\) − 292.793i − 0.380250i
\(771\) 0 0
\(772\) 461.107 0.597288
\(773\) 807.361i 1.04445i 0.852807 + 0.522226i \(0.174898\pi\)
−0.852807 + 0.522226i \(0.825102\pi\)
\(774\) 0 0
\(775\) 1185.73 1.52998
\(776\) − 355.897i − 0.458630i
\(777\) 0 0
\(778\) −458.425 −0.589235
\(779\) − 217.071i − 0.278653i
\(780\) 0 0
\(781\) 252.693 0.323551
\(782\) 241.936i 0.309381i
\(783\) 0 0
\(784\) −287.871 −0.367183
\(785\) − 61.8456i − 0.0787842i
\(786\) 0 0
\(787\) −223.724 −0.284275 −0.142137 0.989847i \(-0.545397\pi\)
−0.142137 + 0.989847i \(0.545397\pi\)
\(788\) − 564.165i − 0.715945i
\(789\) 0 0
\(790\) −162.209 −0.205328
\(791\) − 35.6383i − 0.0450548i
\(792\) 0 0
\(793\) 178.562 0.225173
\(794\) 1838.11i 2.31500i
\(795\) 0 0
\(796\) 1693.02 2.12691
\(797\) 1159.10i 1.45433i 0.686463 + 0.727165i \(0.259163\pi\)
−0.686463 + 0.727165i \(0.740837\pi\)
\(798\) 0 0
\(799\) −11.6305 −0.0145564
\(800\) 937.717i 1.17215i
\(801\) 0 0
\(802\) 326.336 0.406903
\(803\) 162.282i 0.202094i
\(804\) 0 0
\(805\) 174.914 0.217284
\(806\) − 1934.00i − 2.39950i
\(807\) 0 0
\(808\) 477.115 0.590489
\(809\) − 274.817i − 0.339700i −0.985470 0.169850i \(-0.945672\pi\)
0.985470 0.169850i \(-0.0543283\pi\)
\(810\) 0 0
\(811\) −264.647 −0.326322 −0.163161 0.986599i \(-0.552169\pi\)
−0.163161 + 0.986599i \(0.552169\pi\)
\(812\) 1843.20i 2.26996i
\(813\) 0 0
\(814\) −313.815 −0.385522
\(815\) 263.033i 0.322740i
\(816\) 0 0
\(817\) 650.894 0.796687
\(818\) 379.919i 0.464449i
\(819\) 0 0
\(820\) 108.854 0.132749
\(821\) − 129.094i − 0.157239i −0.996905 0.0786197i \(-0.974949\pi\)
0.996905 0.0786197i \(-0.0250513\pi\)
\(822\) 0 0
\(823\) −476.112 −0.578507 −0.289254 0.957252i \(-0.593407\pi\)
−0.289254 + 0.957252i \(0.593407\pi\)
\(824\) − 509.320i − 0.618107i
\(825\) 0 0
\(826\) −1285.24 −1.55598
\(827\) 576.036i 0.696537i 0.937395 + 0.348268i \(0.113230\pi\)
−0.937395 + 0.348268i \(0.886770\pi\)
\(828\) 0 0
\(829\) 931.225 1.12331 0.561655 0.827371i \(-0.310165\pi\)
0.561655 + 0.827371i \(0.310165\pi\)
\(830\) − 346.440i − 0.417398i
\(831\) 0 0
\(832\) 1299.11 1.56143
\(833\) 258.332i 0.310122i
\(834\) 0 0
\(835\) −219.802 −0.263236
\(836\) 615.723i 0.736510i
\(837\) 0 0
\(838\) 1846.05 2.20292
\(839\) 324.575i 0.386859i 0.981114 + 0.193430i \(0.0619611\pi\)
−0.981114 + 0.193430i \(0.938039\pi\)
\(840\) 0 0
\(841\) −25.7558 −0.0306252
\(842\) 52.2252i 0.0620252i
\(843\) 0 0
\(844\) 1666.95 1.97506
\(845\) − 10.5677i − 0.0125061i
\(846\) 0 0
\(847\) −243.656 −0.287669
\(848\) − 271.920i − 0.320660i
\(849\) 0 0
\(850\) 314.475 0.369971
\(851\) − 187.473i − 0.220297i
\(852\) 0 0
\(853\) 14.1695 0.0166114 0.00830569 0.999966i \(-0.497356\pi\)
0.00830569 + 0.999966i \(0.497356\pi\)
\(854\) 474.234i 0.555309i
\(855\) 0 0
\(856\) −1025.16 −1.19762
\(857\) 915.266i 1.06799i 0.845488 + 0.533994i \(0.179310\pi\)
−0.845488 + 0.533994i \(0.820690\pi\)
\(858\) 0 0
\(859\) −1414.02 −1.64612 −0.823060 0.567954i \(-0.807735\pi\)
−0.823060 + 0.567954i \(0.807735\pi\)
\(860\) 326.404i 0.379539i
\(861\) 0 0
\(862\) 2277.36 2.64195
\(863\) 900.463i 1.04341i 0.853126 + 0.521705i \(0.174704\pi\)
−0.853126 + 0.521705i \(0.825296\pi\)
\(864\) 0 0
\(865\) 239.905 0.277346
\(866\) − 1763.16i − 2.03598i
\(867\) 0 0
\(868\) 3066.30 3.53261
\(869\) − 573.347i − 0.659778i
\(870\) 0 0
\(871\) −1584.61 −1.81930
\(872\) − 370.935i − 0.425384i
\(873\) 0 0
\(874\) −616.158 −0.704987
\(875\) − 462.133i − 0.528153i
\(876\) 0 0
\(877\) −1192.09 −1.35928 −0.679639 0.733547i \(-0.737863\pi\)
−0.679639 + 0.733547i \(0.737863\pi\)
\(878\) 936.017i 1.06608i
\(879\) 0 0
\(880\) 40.4112 0.0459218
\(881\) − 1088.01i − 1.23497i −0.786582 0.617486i \(-0.788151\pi\)
0.786582 0.617486i \(-0.211849\pi\)
\(882\) 0 0
\(883\) 354.975 0.402011 0.201005 0.979590i \(-0.435579\pi\)
0.201005 + 0.979590i \(0.435579\pi\)
\(884\) − 306.205i − 0.346386i
\(885\) 0 0
\(886\) −1893.59 −2.13723
\(887\) 648.965i 0.731640i 0.930686 + 0.365820i \(0.119211\pi\)
−0.930686 + 0.365820i \(0.880789\pi\)
\(888\) 0 0
\(889\) 1630.07 1.83360
\(890\) 285.055i 0.320287i
\(891\) 0 0
\(892\) −464.392 −0.520619
\(893\) − 29.6204i − 0.0331695i
\(894\) 0 0
\(895\) 282.271 0.315387
\(896\) 1813.13i 2.02359i
\(897\) 0 0
\(898\) 153.061 0.170447
\(899\) 1441.91i 1.60391i
\(900\) 0 0
\(901\) −244.017 −0.270829
\(902\) 644.514i 0.714539i
\(903\) 0 0
\(904\) −20.4535 −0.0226256
\(905\) 45.7184i 0.0505176i
\(906\) 0 0
\(907\) 1386.46 1.52862 0.764308 0.644851i \(-0.223081\pi\)
0.764308 + 0.644851i \(0.223081\pi\)
\(908\) − 897.651i − 0.988602i
\(909\) 0 0
\(910\) −370.833 −0.407509
\(911\) − 1187.33i − 1.30333i −0.758507 0.651665i \(-0.774071\pi\)
0.758507 0.651665i \(-0.225929\pi\)
\(912\) 0 0
\(913\) 1224.54 1.34122
\(914\) − 1904.59i − 2.08380i
\(915\) 0 0
\(916\) −1373.42 −1.49936
\(917\) − 2057.47i − 2.24370i
\(918\) 0 0
\(919\) −1607.55 −1.74924 −0.874619 0.484812i \(-0.838888\pi\)
−0.874619 + 0.484812i \(0.838888\pi\)
\(920\) − 100.387i − 0.109116i
\(921\) 0 0
\(922\) 7.77771 0.00843569
\(923\) − 320.046i − 0.346745i
\(924\) 0 0
\(925\) −243.682 −0.263440
\(926\) − 69.8636i − 0.0754467i
\(927\) 0 0
\(928\) −1140.31 −1.22878
\(929\) 407.142i 0.438258i 0.975696 + 0.219129i \(0.0703216\pi\)
−0.975696 + 0.219129i \(0.929678\pi\)
\(930\) 0 0
\(931\) −657.915 −0.706675
\(932\) 1616.92i 1.73489i
\(933\) 0 0
\(934\) −1826.91 −1.95601
\(935\) − 36.2645i − 0.0387855i
\(936\) 0 0
\(937\) 459.581 0.490482 0.245241 0.969462i \(-0.421133\pi\)
0.245241 + 0.969462i \(0.421133\pi\)
\(938\) − 4208.47i − 4.48664i
\(939\) 0 0
\(940\) 14.8537 0.0158018
\(941\) − 163.667i − 0.173929i −0.996211 0.0869645i \(-0.972283\pi\)
0.996211 0.0869645i \(-0.0277167\pi\)
\(942\) 0 0
\(943\) −385.032 −0.408305
\(944\) − 177.389i − 0.187912i
\(945\) 0 0
\(946\) −1932.60 −2.04291
\(947\) 125.473i 0.132495i 0.997803 + 0.0662476i \(0.0211027\pi\)
−0.997803 + 0.0662476i \(0.978897\pi\)
\(948\) 0 0
\(949\) 205.536 0.216582
\(950\) 800.900i 0.843052i
\(951\) 0 0
\(952\) 264.212 0.277534
\(953\) 295.864i 0.310456i 0.987879 + 0.155228i \(0.0496112\pi\)
−0.987879 + 0.155228i \(0.950389\pi\)
\(954\) 0 0
\(955\) −109.056 −0.114195
\(956\) 692.836i 0.724724i
\(957\) 0 0
\(958\) −2364.36 −2.46802
\(959\) − 1782.67i − 1.85889i
\(960\) 0 0
\(961\) 1437.72 1.49607
\(962\) 397.459i 0.413159i
\(963\) 0 0
\(964\) −2522.46 −2.61666
\(965\) − 69.1654i − 0.0716740i
\(966\) 0 0
\(967\) 671.822 0.694748 0.347374 0.937727i \(-0.387073\pi\)
0.347374 + 0.937727i \(0.387073\pi\)
\(968\) 139.839i 0.144462i
\(969\) 0 0
\(970\) −164.313 −0.169395
\(971\) 375.020i 0.386221i 0.981177 + 0.193110i \(0.0618575\pi\)
−0.981177 + 0.193110i \(0.938142\pi\)
\(972\) 0 0
\(973\) −1633.58 −1.67891
\(974\) − 1625.22i − 1.66861i
\(975\) 0 0
\(976\) −65.4537 −0.0670632
\(977\) − 653.608i − 0.668995i −0.942397 0.334497i \(-0.891434\pi\)
0.942397 0.334497i \(-0.108566\pi\)
\(978\) 0 0
\(979\) −1007.56 −1.02918
\(980\) − 329.924i − 0.336658i
\(981\) 0 0
\(982\) 1710.48 1.74183
\(983\) 820.263i 0.834448i 0.908804 + 0.417224i \(0.136997\pi\)
−0.908804 + 0.417224i \(0.863003\pi\)
\(984\) 0 0
\(985\) −84.6240 −0.0859127
\(986\) 382.417i 0.387847i
\(987\) 0 0
\(988\) 779.836 0.789308
\(989\) − 1154.53i − 1.16737i
\(990\) 0 0
\(991\) 1531.08 1.54498 0.772491 0.635026i \(-0.219011\pi\)
0.772491 + 0.635026i \(0.219011\pi\)
\(992\) 1896.99i 1.91229i
\(993\) 0 0
\(994\) 849.991 0.855121
\(995\) − 253.951i − 0.255227i
\(996\) 0 0
\(997\) −178.236 −0.178772 −0.0893860 0.995997i \(-0.528490\pi\)
−0.0893860 + 0.995997i \(0.528490\pi\)
\(998\) − 2720.54i − 2.72599i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.b.d.188.2 12
3.2 odd 2 inner 459.3.b.d.188.11 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.3.b.d.188.2 12 1.1 even 1 trivial
459.3.b.d.188.11 yes 12 3.2 odd 2 inner