Properties

Label 459.3.b.d.188.10
Level $459$
Weight $3$
Character 459.188
Analytic conductor $12.507$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(188,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.188"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-20,0,0,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 34x^{10} + 395x^{8} + 1888x^{6} + 3523x^{4} + 1566x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 188.10
Root \(2.15341i\) of defining polynomial
Character \(\chi\) \(=\) 459.188
Dual form 459.3.b.d.188.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.15341i q^{2} -0.637159 q^{4} -8.83083i q^{5} -10.7410 q^{7} +7.24156i q^{8} +19.0164 q^{10} +16.2351i q^{11} +2.08942 q^{13} -23.1298i q^{14} -18.1427 q^{16} -4.12311i q^{17} +7.95171 q^{19} +5.62664i q^{20} -34.9607 q^{22} +43.0080i q^{23} -52.9835 q^{25} +4.49936i q^{26} +6.84376 q^{28} +31.0930i q^{29} -43.3950 q^{31} -10.1023i q^{32} +8.87872 q^{34} +94.8524i q^{35} -31.2688 q^{37} +17.1233i q^{38} +63.9490 q^{40} +32.0376i q^{41} -33.9170 q^{43} -10.3443i q^{44} -92.6136 q^{46} -50.5628i q^{47} +66.3701 q^{49} -114.095i q^{50} -1.33129 q^{52} -89.1797i q^{53} +143.369 q^{55} -77.7820i q^{56} -66.9559 q^{58} +47.8328i q^{59} -4.33392 q^{61} -93.4471i q^{62} -50.8163 q^{64} -18.4513i q^{65} +52.2521 q^{67} +2.62707i q^{68} -204.256 q^{70} +64.1659i q^{71} -18.4693 q^{73} -67.3345i q^{74} -5.06650 q^{76} -174.381i q^{77} +43.7991 q^{79} +160.215i q^{80} -68.9900 q^{82} +92.3664i q^{83} -36.4104 q^{85} -73.0371i q^{86} -117.567 q^{88} -3.17265i q^{89} -22.4425 q^{91} -27.4029i q^{92} +108.882 q^{94} -70.2202i q^{95} +24.8273 q^{97} +142.922i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{4} - 54 q^{7} - 12 q^{10} - 50 q^{13} + 108 q^{16} - 50 q^{19} - 106 q^{22} - 48 q^{25} + 382 q^{28} + 2 q^{31} - 244 q^{37} + 208 q^{40} - 78 q^{43} - 18 q^{46} + 470 q^{49} + 42 q^{52} + 290 q^{55}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15341i 1.07670i 0.842720 + 0.538352i \(0.180953\pi\)
−0.842720 + 0.538352i \(0.819047\pi\)
\(3\) 0 0
\(4\) −0.637159 −0.159290
\(5\) − 8.83083i − 1.76617i −0.469217 0.883083i \(-0.655464\pi\)
0.469217 0.883083i \(-0.344536\pi\)
\(6\) 0 0
\(7\) −10.7410 −1.53444 −0.767218 0.641387i \(-0.778359\pi\)
−0.767218 + 0.641387i \(0.778359\pi\)
\(8\) 7.24156i 0.905195i
\(9\) 0 0
\(10\) 19.0164 1.90164
\(11\) 16.2351i 1.47591i 0.674848 + 0.737957i \(0.264209\pi\)
−0.674848 + 0.737957i \(0.735791\pi\)
\(12\) 0 0
\(13\) 2.08942 0.160724 0.0803622 0.996766i \(-0.474392\pi\)
0.0803622 + 0.996766i \(0.474392\pi\)
\(14\) − 23.1298i − 1.65213i
\(15\) 0 0
\(16\) −18.1427 −1.13392
\(17\) − 4.12311i − 0.242536i
\(18\) 0 0
\(19\) 7.95171 0.418511 0.209255 0.977861i \(-0.432896\pi\)
0.209255 + 0.977861i \(0.432896\pi\)
\(20\) 5.62664i 0.281332i
\(21\) 0 0
\(22\) −34.9607 −1.58912
\(23\) 43.0080i 1.86991i 0.354764 + 0.934956i \(0.384561\pi\)
−0.354764 + 0.934956i \(0.615439\pi\)
\(24\) 0 0
\(25\) −52.9835 −2.11934
\(26\) 4.49936i 0.173052i
\(27\) 0 0
\(28\) 6.84376 0.244420
\(29\) 31.0930i 1.07217i 0.844163 + 0.536086i \(0.180098\pi\)
−0.844163 + 0.536086i \(0.819902\pi\)
\(30\) 0 0
\(31\) −43.3950 −1.39984 −0.699920 0.714222i \(-0.746781\pi\)
−0.699920 + 0.714222i \(0.746781\pi\)
\(32\) − 10.1023i − 0.315696i
\(33\) 0 0
\(34\) 8.87872 0.261139
\(35\) 94.8524i 2.71007i
\(36\) 0 0
\(37\) −31.2688 −0.845103 −0.422551 0.906339i \(-0.638865\pi\)
−0.422551 + 0.906339i \(0.638865\pi\)
\(38\) 17.1233i 0.450612i
\(39\) 0 0
\(40\) 63.9490 1.59873
\(41\) 32.0376i 0.781406i 0.920517 + 0.390703i \(0.127768\pi\)
−0.920517 + 0.390703i \(0.872232\pi\)
\(42\) 0 0
\(43\) −33.9170 −0.788767 −0.394384 0.918946i \(-0.629042\pi\)
−0.394384 + 0.918946i \(0.629042\pi\)
\(44\) − 10.3443i − 0.235098i
\(45\) 0 0
\(46\) −92.6136 −2.01334
\(47\) − 50.5628i − 1.07581i −0.843007 0.537903i \(-0.819217\pi\)
0.843007 0.537903i \(-0.180783\pi\)
\(48\) 0 0
\(49\) 66.3701 1.35449
\(50\) − 114.095i − 2.28190i
\(51\) 0 0
\(52\) −1.33129 −0.0256017
\(53\) − 89.1797i − 1.68264i −0.540541 0.841318i \(-0.681780\pi\)
0.540541 0.841318i \(-0.318220\pi\)
\(54\) 0 0
\(55\) 143.369 2.60671
\(56\) − 77.7820i − 1.38896i
\(57\) 0 0
\(58\) −66.9559 −1.15441
\(59\) 47.8328i 0.810726i 0.914156 + 0.405363i \(0.132855\pi\)
−0.914156 + 0.405363i \(0.867145\pi\)
\(60\) 0 0
\(61\) −4.33392 −0.0710478 −0.0355239 0.999369i \(-0.511310\pi\)
−0.0355239 + 0.999369i \(0.511310\pi\)
\(62\) − 93.4471i − 1.50721i
\(63\) 0 0
\(64\) −50.8163 −0.794005
\(65\) − 18.4513i − 0.283866i
\(66\) 0 0
\(67\) 52.2521 0.779882 0.389941 0.920840i \(-0.372495\pi\)
0.389941 + 0.920840i \(0.372495\pi\)
\(68\) 2.62707i 0.0386335i
\(69\) 0 0
\(70\) −204.256 −2.91794
\(71\) 64.1659i 0.903745i 0.892082 + 0.451873i \(0.149244\pi\)
−0.892082 + 0.451873i \(0.850756\pi\)
\(72\) 0 0
\(73\) −18.4693 −0.253004 −0.126502 0.991966i \(-0.540375\pi\)
−0.126502 + 0.991966i \(0.540375\pi\)
\(74\) − 67.3345i − 0.909925i
\(75\) 0 0
\(76\) −5.06650 −0.0666645
\(77\) − 174.381i − 2.26469i
\(78\) 0 0
\(79\) 43.7991 0.554419 0.277210 0.960809i \(-0.410590\pi\)
0.277210 + 0.960809i \(0.410590\pi\)
\(80\) 160.215i 2.00268i
\(81\) 0 0
\(82\) −68.9900 −0.841342
\(83\) 92.3664i 1.11285i 0.830898 + 0.556424i \(0.187827\pi\)
−0.830898 + 0.556424i \(0.812173\pi\)
\(84\) 0 0
\(85\) −36.4104 −0.428358
\(86\) − 73.0371i − 0.849268i
\(87\) 0 0
\(88\) −117.567 −1.33599
\(89\) − 3.17265i − 0.0356477i −0.999841 0.0178239i \(-0.994326\pi\)
0.999841 0.0178239i \(-0.00567381\pi\)
\(90\) 0 0
\(91\) −22.4425 −0.246621
\(92\) − 27.4029i − 0.297858i
\(93\) 0 0
\(94\) 108.882 1.15832
\(95\) − 70.2202i − 0.739160i
\(96\) 0 0
\(97\) 24.8273 0.255951 0.127976 0.991777i \(-0.459152\pi\)
0.127976 + 0.991777i \(0.459152\pi\)
\(98\) 142.922i 1.45839i
\(99\) 0 0
\(100\) 33.7590 0.337590
\(101\) 32.3169i 0.319970i 0.987119 + 0.159985i \(0.0511445\pi\)
−0.987119 + 0.159985i \(0.948855\pi\)
\(102\) 0 0
\(103\) 120.835 1.17315 0.586575 0.809895i \(-0.300476\pi\)
0.586575 + 0.809895i \(0.300476\pi\)
\(104\) 15.1306i 0.145487i
\(105\) 0 0
\(106\) 192.040 1.81170
\(107\) − 128.021i − 1.19646i −0.801325 0.598229i \(-0.795871\pi\)
0.801325 0.598229i \(-0.204129\pi\)
\(108\) 0 0
\(109\) −11.0503 −0.101379 −0.0506896 0.998714i \(-0.516142\pi\)
−0.0506896 + 0.998714i \(0.516142\pi\)
\(110\) 308.732i 2.80665i
\(111\) 0 0
\(112\) 194.871 1.73992
\(113\) − 133.693i − 1.18312i −0.806260 0.591562i \(-0.798512\pi\)
0.806260 0.591562i \(-0.201488\pi\)
\(114\) 0 0
\(115\) 379.796 3.30257
\(116\) − 19.8112i − 0.170786i
\(117\) 0 0
\(118\) −103.003 −0.872911
\(119\) 44.2865i 0.372155i
\(120\) 0 0
\(121\) −142.577 −1.17832
\(122\) − 9.33269i − 0.0764974i
\(123\) 0 0
\(124\) 27.6495 0.222980
\(125\) 247.118i 1.97694i
\(126\) 0 0
\(127\) 18.1596 0.142989 0.0714944 0.997441i \(-0.477223\pi\)
0.0714944 + 0.997441i \(0.477223\pi\)
\(128\) − 149.837i − 1.17060i
\(129\) 0 0
\(130\) 39.7331 0.305639
\(131\) − 11.3244i − 0.0864459i −0.999065 0.0432230i \(-0.986237\pi\)
0.999065 0.0432230i \(-0.0137626\pi\)
\(132\) 0 0
\(133\) −85.4097 −0.642178
\(134\) 112.520i 0.839701i
\(135\) 0 0
\(136\) 29.8577 0.219542
\(137\) 82.7619i 0.604101i 0.953292 + 0.302051i \(0.0976712\pi\)
−0.953292 + 0.302051i \(0.902329\pi\)
\(138\) 0 0
\(139\) −222.320 −1.59943 −0.799713 0.600382i \(-0.795015\pi\)
−0.799713 + 0.600382i \(0.795015\pi\)
\(140\) − 60.4361i − 0.431686i
\(141\) 0 0
\(142\) −138.175 −0.973066
\(143\) 33.9218i 0.237215i
\(144\) 0 0
\(145\) 274.577 1.89363
\(146\) − 39.7719i − 0.272410i
\(147\) 0 0
\(148\) 19.9232 0.134616
\(149\) − 32.1525i − 0.215789i −0.994162 0.107894i \(-0.965589\pi\)
0.994162 0.107894i \(-0.0344108\pi\)
\(150\) 0 0
\(151\) 254.580 1.68596 0.842982 0.537942i \(-0.180798\pi\)
0.842982 + 0.537942i \(0.180798\pi\)
\(152\) 57.5828i 0.378834i
\(153\) 0 0
\(154\) 375.514 2.43840
\(155\) 383.214i 2.47235i
\(156\) 0 0
\(157\) −189.235 −1.20532 −0.602659 0.797999i \(-0.705892\pi\)
−0.602659 + 0.797999i \(0.705892\pi\)
\(158\) 94.3173i 0.596945i
\(159\) 0 0
\(160\) −89.2115 −0.557572
\(161\) − 461.951i − 2.86926i
\(162\) 0 0
\(163\) −276.990 −1.69933 −0.849663 0.527327i \(-0.823194\pi\)
−0.849663 + 0.527327i \(0.823194\pi\)
\(164\) − 20.4131i − 0.124470i
\(165\) 0 0
\(166\) −198.902 −1.19821
\(167\) 0.178520i 0.00106898i 1.00000 0.000534492i \(0.000170134\pi\)
−1.00000 0.000534492i \(0.999830\pi\)
\(168\) 0 0
\(169\) −164.634 −0.974168
\(170\) − 78.4065i − 0.461215i
\(171\) 0 0
\(172\) 21.6105 0.125643
\(173\) − 135.509i − 0.783287i −0.920117 0.391643i \(-0.871907\pi\)
0.920117 0.391643i \(-0.128093\pi\)
\(174\) 0 0
\(175\) 569.099 3.25199
\(176\) − 294.547i − 1.67356i
\(177\) 0 0
\(178\) 6.83200 0.0383820
\(179\) − 25.8984i − 0.144684i −0.997380 0.0723419i \(-0.976953\pi\)
0.997380 0.0723419i \(-0.0230473\pi\)
\(180\) 0 0
\(181\) −27.6495 −0.152760 −0.0763798 0.997079i \(-0.524336\pi\)
−0.0763798 + 0.997079i \(0.524336\pi\)
\(182\) − 48.3279i − 0.265538i
\(183\) 0 0
\(184\) −311.445 −1.69264
\(185\) 276.129i 1.49259i
\(186\) 0 0
\(187\) 66.9388 0.357962
\(188\) 32.2166i 0.171365i
\(189\) 0 0
\(190\) 151.213 0.795856
\(191\) 250.341i 1.31069i 0.755331 + 0.655343i \(0.227476\pi\)
−0.755331 + 0.655343i \(0.772524\pi\)
\(192\) 0 0
\(193\) 205.896 1.06682 0.533411 0.845856i \(-0.320910\pi\)
0.533411 + 0.845856i \(0.320910\pi\)
\(194\) 53.4632i 0.275584i
\(195\) 0 0
\(196\) −42.2883 −0.215757
\(197\) 188.394i 0.956316i 0.878274 + 0.478158i \(0.158695\pi\)
−0.878274 + 0.478158i \(0.841305\pi\)
\(198\) 0 0
\(199\) −17.3590 −0.0872310 −0.0436155 0.999048i \(-0.513888\pi\)
−0.0436155 + 0.999048i \(0.513888\pi\)
\(200\) − 383.684i − 1.91842i
\(201\) 0 0
\(202\) −69.5915 −0.344512
\(203\) − 333.971i − 1.64518i
\(204\) 0 0
\(205\) 282.919 1.38009
\(206\) 260.206i 1.26314i
\(207\) 0 0
\(208\) −37.9076 −0.182248
\(209\) 129.096i 0.617686i
\(210\) 0 0
\(211\) −188.111 −0.891519 −0.445760 0.895153i \(-0.647066\pi\)
−0.445760 + 0.895153i \(0.647066\pi\)
\(212\) 56.8217i 0.268027i
\(213\) 0 0
\(214\) 275.681 1.28823
\(215\) 299.515i 1.39309i
\(216\) 0 0
\(217\) 466.108 2.14796
\(218\) − 23.7958i − 0.109155i
\(219\) 0 0
\(220\) −91.3489 −0.415222
\(221\) − 8.61488i − 0.0389814i
\(222\) 0 0
\(223\) −80.8240 −0.362439 −0.181220 0.983443i \(-0.558005\pi\)
−0.181220 + 0.983443i \(0.558005\pi\)
\(224\) 108.509i 0.484415i
\(225\) 0 0
\(226\) 287.895 1.27387
\(227\) − 14.8085i − 0.0652359i −0.999468 0.0326179i \(-0.989616\pi\)
0.999468 0.0326179i \(-0.0103845\pi\)
\(228\) 0 0
\(229\) 419.255 1.83081 0.915404 0.402536i \(-0.131871\pi\)
0.915404 + 0.402536i \(0.131871\pi\)
\(230\) 817.855i 3.55589i
\(231\) 0 0
\(232\) −225.162 −0.970526
\(233\) 273.497i 1.17380i 0.809658 + 0.586902i \(0.199653\pi\)
−0.809658 + 0.586902i \(0.800347\pi\)
\(234\) 0 0
\(235\) −446.512 −1.90005
\(236\) − 30.4771i − 0.129140i
\(237\) 0 0
\(238\) −95.3668 −0.400701
\(239\) − 212.504i − 0.889136i −0.895745 0.444568i \(-0.853357\pi\)
0.895745 0.444568i \(-0.146643\pi\)
\(240\) 0 0
\(241\) 195.819 0.812526 0.406263 0.913756i \(-0.366832\pi\)
0.406263 + 0.913756i \(0.366832\pi\)
\(242\) − 307.026i − 1.26870i
\(243\) 0 0
\(244\) 2.76140 0.0113172
\(245\) − 586.103i − 2.39226i
\(246\) 0 0
\(247\) 16.6144 0.0672649
\(248\) − 314.248i − 1.26713i
\(249\) 0 0
\(250\) −532.145 −2.12858
\(251\) 393.530i 1.56785i 0.620856 + 0.783925i \(0.286785\pi\)
−0.620856 + 0.783925i \(0.713215\pi\)
\(252\) 0 0
\(253\) −698.237 −2.75983
\(254\) 39.1050i 0.153957i
\(255\) 0 0
\(256\) 119.395 0.466388
\(257\) 33.9160i 0.131969i 0.997821 + 0.0659845i \(0.0210188\pi\)
−0.997821 + 0.0659845i \(0.978981\pi\)
\(258\) 0 0
\(259\) 335.860 1.29676
\(260\) 11.7564i 0.0452169i
\(261\) 0 0
\(262\) 24.3861 0.0930766
\(263\) − 394.277i − 1.49915i −0.661919 0.749575i \(-0.730258\pi\)
0.661919 0.749575i \(-0.269742\pi\)
\(264\) 0 0
\(265\) −787.530 −2.97181
\(266\) − 183.922i − 0.691435i
\(267\) 0 0
\(268\) −33.2929 −0.124227
\(269\) − 299.051i − 1.11171i −0.831279 0.555856i \(-0.812391\pi\)
0.831279 0.555856i \(-0.187609\pi\)
\(270\) 0 0
\(271\) −102.506 −0.378252 −0.189126 0.981953i \(-0.560565\pi\)
−0.189126 + 0.981953i \(0.560565\pi\)
\(272\) 74.8041i 0.275015i
\(273\) 0 0
\(274\) −178.220 −0.650438
\(275\) − 860.191i − 3.12797i
\(276\) 0 0
\(277\) −10.0143 −0.0361528 −0.0180764 0.999837i \(-0.505754\pi\)
−0.0180764 + 0.999837i \(0.505754\pi\)
\(278\) − 478.746i − 1.72211i
\(279\) 0 0
\(280\) −686.879 −2.45314
\(281\) 147.806i 0.525999i 0.964796 + 0.262999i \(0.0847117\pi\)
−0.964796 + 0.262999i \(0.915288\pi\)
\(282\) 0 0
\(283\) 156.649 0.553529 0.276764 0.960938i \(-0.410738\pi\)
0.276764 + 0.960938i \(0.410738\pi\)
\(284\) − 40.8839i − 0.143957i
\(285\) 0 0
\(286\) −73.0474 −0.255410
\(287\) − 344.118i − 1.19902i
\(288\) 0 0
\(289\) −17.0000 −0.0588235
\(290\) 591.276i 2.03888i
\(291\) 0 0
\(292\) 11.7679 0.0403010
\(293\) − 223.189i − 0.761737i −0.924629 0.380868i \(-0.875625\pi\)
0.924629 0.380868i \(-0.124375\pi\)
\(294\) 0 0
\(295\) 422.403 1.43188
\(296\) − 226.435i − 0.764983i
\(297\) 0 0
\(298\) 69.2374 0.232340
\(299\) 89.8615i 0.300540i
\(300\) 0 0
\(301\) 364.304 1.21031
\(302\) 548.215i 1.81528i
\(303\) 0 0
\(304\) −144.265 −0.474556
\(305\) 38.2721i 0.125482i
\(306\) 0 0
\(307\) 147.629 0.480876 0.240438 0.970664i \(-0.422709\pi\)
0.240438 + 0.970664i \(0.422709\pi\)
\(308\) 111.109i 0.360743i
\(309\) 0 0
\(310\) −825.215 −2.66198
\(311\) 158.564i 0.509852i 0.966961 + 0.254926i \(0.0820511\pi\)
−0.966961 + 0.254926i \(0.917949\pi\)
\(312\) 0 0
\(313\) −100.108 −0.319835 −0.159917 0.987130i \(-0.551123\pi\)
−0.159917 + 0.987130i \(0.551123\pi\)
\(314\) − 407.500i − 1.29777i
\(315\) 0 0
\(316\) −27.9070 −0.0883134
\(317\) 232.336i 0.732922i 0.930433 + 0.366461i \(0.119431\pi\)
−0.930433 + 0.366461i \(0.880569\pi\)
\(318\) 0 0
\(319\) −504.797 −1.58243
\(320\) 448.750i 1.40235i
\(321\) 0 0
\(322\) 994.767 3.08934
\(323\) − 32.7857i − 0.101504i
\(324\) 0 0
\(325\) −110.705 −0.340630
\(326\) − 596.472i − 1.82967i
\(327\) 0 0
\(328\) −232.002 −0.707325
\(329\) 543.098i 1.65075i
\(330\) 0 0
\(331\) −198.488 −0.599661 −0.299830 0.953992i \(-0.596930\pi\)
−0.299830 + 0.953992i \(0.596930\pi\)
\(332\) − 58.8521i − 0.177265i
\(333\) 0 0
\(334\) −0.384427 −0.00115098
\(335\) − 461.429i − 1.37740i
\(336\) 0 0
\(337\) 10.5780 0.0313887 0.0156943 0.999877i \(-0.495004\pi\)
0.0156943 + 0.999877i \(0.495004\pi\)
\(338\) − 354.525i − 1.04889i
\(339\) 0 0
\(340\) 23.1992 0.0682331
\(341\) − 704.520i − 2.06604i
\(342\) 0 0
\(343\) −186.573 −0.543945
\(344\) − 245.612i − 0.713989i
\(345\) 0 0
\(346\) 291.805 0.843367
\(347\) 322.802i 0.930265i 0.885241 + 0.465132i \(0.153993\pi\)
−0.885241 + 0.465132i \(0.846007\pi\)
\(348\) 0 0
\(349\) 176.530 0.505816 0.252908 0.967490i \(-0.418613\pi\)
0.252908 + 0.967490i \(0.418613\pi\)
\(350\) 1225.50i 3.50143i
\(351\) 0 0
\(352\) 164.011 0.465940
\(353\) 17.8128i 0.0504611i 0.999682 + 0.0252305i \(0.00803198\pi\)
−0.999682 + 0.0252305i \(0.991968\pi\)
\(354\) 0 0
\(355\) 566.638 1.59616
\(356\) 2.02148i 0.00567832i
\(357\) 0 0
\(358\) 55.7698 0.155782
\(359\) 299.351i 0.833846i 0.908942 + 0.416923i \(0.136892\pi\)
−0.908942 + 0.416923i \(0.863108\pi\)
\(360\) 0 0
\(361\) −297.770 −0.824849
\(362\) − 59.5406i − 0.164477i
\(363\) 0 0
\(364\) 14.2995 0.0392842
\(365\) 163.099i 0.446847i
\(366\) 0 0
\(367\) −580.018 −1.58043 −0.790215 0.612830i \(-0.790031\pi\)
−0.790215 + 0.612830i \(0.790031\pi\)
\(368\) − 780.279i − 2.12032i
\(369\) 0 0
\(370\) −594.619 −1.60708
\(371\) 957.883i 2.58189i
\(372\) 0 0
\(373\) 206.015 0.552320 0.276160 0.961112i \(-0.410938\pi\)
0.276160 + 0.961112i \(0.410938\pi\)
\(374\) 144.147i 0.385419i
\(375\) 0 0
\(376\) 366.154 0.973814
\(377\) 64.9662i 0.172324i
\(378\) 0 0
\(379\) −140.930 −0.371848 −0.185924 0.982564i \(-0.559528\pi\)
−0.185924 + 0.982564i \(0.559528\pi\)
\(380\) 44.7414i 0.117741i
\(381\) 0 0
\(382\) −539.086 −1.41122
\(383\) − 387.640i − 1.01212i −0.862500 0.506058i \(-0.831102\pi\)
0.862500 0.506058i \(-0.168898\pi\)
\(384\) 0 0
\(385\) −1539.93 −3.99983
\(386\) 443.379i 1.14865i
\(387\) 0 0
\(388\) −15.8189 −0.0407704
\(389\) − 3.28650i − 0.00844860i −0.999991 0.00422430i \(-0.998655\pi\)
0.999991 0.00422430i \(-0.00134464\pi\)
\(390\) 0 0
\(391\) 177.326 0.453520
\(392\) 480.623i 1.22608i
\(393\) 0 0
\(394\) −405.689 −1.02967
\(395\) − 386.783i − 0.979197i
\(396\) 0 0
\(397\) 12.7657 0.0321553 0.0160777 0.999871i \(-0.494882\pi\)
0.0160777 + 0.999871i \(0.494882\pi\)
\(398\) − 37.3809i − 0.0939219i
\(399\) 0 0
\(400\) 961.263 2.40316
\(401\) 666.354i 1.66173i 0.556473 + 0.830866i \(0.312154\pi\)
−0.556473 + 0.830866i \(0.687846\pi\)
\(402\) 0 0
\(403\) −90.6702 −0.224988
\(404\) − 20.5910i − 0.0509679i
\(405\) 0 0
\(406\) 719.176 1.77137
\(407\) − 507.651i − 1.24730i
\(408\) 0 0
\(409\) 553.417 1.35310 0.676549 0.736398i \(-0.263475\pi\)
0.676549 + 0.736398i \(0.263475\pi\)
\(410\) 609.239i 1.48595i
\(411\) 0 0
\(412\) −76.9908 −0.186871
\(413\) − 513.775i − 1.24401i
\(414\) 0 0
\(415\) 815.672 1.96547
\(416\) − 21.1079i − 0.0507401i
\(417\) 0 0
\(418\) −277.997 −0.665065
\(419\) 339.048i 0.809184i 0.914497 + 0.404592i \(0.132587\pi\)
−0.914497 + 0.404592i \(0.867413\pi\)
\(420\) 0 0
\(421\) 269.994 0.641317 0.320658 0.947195i \(-0.396096\pi\)
0.320658 + 0.947195i \(0.396096\pi\)
\(422\) − 405.079i − 0.959902i
\(423\) 0 0
\(424\) 645.800 1.52311
\(425\) 218.457i 0.514016i
\(426\) 0 0
\(427\) 46.5508 0.109018
\(428\) 81.5698i 0.190584i
\(429\) 0 0
\(430\) −644.978 −1.49995
\(431\) − 810.847i − 1.88131i −0.339358 0.940657i \(-0.610210\pi\)
0.339358 0.940657i \(-0.389790\pi\)
\(432\) 0 0
\(433\) −334.556 −0.772648 −0.386324 0.922363i \(-0.626255\pi\)
−0.386324 + 0.922363i \(0.626255\pi\)
\(434\) 1003.72i 2.31272i
\(435\) 0 0
\(436\) 7.04082 0.0161487
\(437\) 341.987i 0.782579i
\(438\) 0 0
\(439\) 322.793 0.735292 0.367646 0.929966i \(-0.380164\pi\)
0.367646 + 0.929966i \(0.380164\pi\)
\(440\) 1038.22i 2.35958i
\(441\) 0 0
\(442\) 18.5513 0.0419714
\(443\) 487.141i 1.09964i 0.835283 + 0.549820i \(0.185304\pi\)
−0.835283 + 0.549820i \(0.814696\pi\)
\(444\) 0 0
\(445\) −28.0171 −0.0629598
\(446\) − 174.047i − 0.390240i
\(447\) 0 0
\(448\) 545.821 1.21835
\(449\) 887.941i 1.97760i 0.149258 + 0.988798i \(0.452312\pi\)
−0.149258 + 0.988798i \(0.547688\pi\)
\(450\) 0 0
\(451\) −520.133 −1.15329
\(452\) 85.1837i 0.188460i
\(453\) 0 0
\(454\) 31.8888 0.0702397
\(455\) 198.186i 0.435574i
\(456\) 0 0
\(457\) 11.7191 0.0256436 0.0128218 0.999918i \(-0.495919\pi\)
0.0128218 + 0.999918i \(0.495919\pi\)
\(458\) 902.827i 1.97124i
\(459\) 0 0
\(460\) −241.991 −0.526066
\(461\) − 79.0941i − 0.171571i −0.996314 0.0857854i \(-0.972660\pi\)
0.996314 0.0857854i \(-0.0273399\pi\)
\(462\) 0 0
\(463\) 192.265 0.415259 0.207630 0.978208i \(-0.433425\pi\)
0.207630 + 0.978208i \(0.433425\pi\)
\(464\) − 564.110i − 1.21575i
\(465\) 0 0
\(466\) −588.949 −1.26384
\(467\) − 632.971i − 1.35540i −0.735339 0.677700i \(-0.762977\pi\)
0.735339 0.677700i \(-0.237023\pi\)
\(468\) 0 0
\(469\) −561.242 −1.19668
\(470\) − 961.521i − 2.04579i
\(471\) 0 0
\(472\) −346.384 −0.733865
\(473\) − 550.644i − 1.16415i
\(474\) 0 0
\(475\) −421.310 −0.886968
\(476\) − 28.2175i − 0.0592805i
\(477\) 0 0
\(478\) 457.606 0.957336
\(479\) 622.366i 1.29930i 0.760232 + 0.649652i \(0.225085\pi\)
−0.760232 + 0.649652i \(0.774915\pi\)
\(480\) 0 0
\(481\) −65.3336 −0.135829
\(482\) 421.677i 0.874849i
\(483\) 0 0
\(484\) 90.8442 0.187695
\(485\) − 219.245i − 0.452052i
\(486\) 0 0
\(487\) 756.159 1.55269 0.776344 0.630309i \(-0.217072\pi\)
0.776344 + 0.630309i \(0.217072\pi\)
\(488\) − 31.3843i − 0.0643122i
\(489\) 0 0
\(490\) 1262.12 2.57575
\(491\) − 434.325i − 0.884571i −0.896874 0.442286i \(-0.854168\pi\)
0.896874 0.442286i \(-0.145832\pi\)
\(492\) 0 0
\(493\) 128.200 0.260040
\(494\) 35.7776i 0.0724243i
\(495\) 0 0
\(496\) 787.301 1.58730
\(497\) − 689.209i − 1.38674i
\(498\) 0 0
\(499\) −274.131 −0.549360 −0.274680 0.961536i \(-0.588572\pi\)
−0.274680 + 0.961536i \(0.588572\pi\)
\(500\) − 157.453i − 0.314907i
\(501\) 0 0
\(502\) −847.430 −1.68811
\(503\) − 356.757i − 0.709259i −0.935007 0.354630i \(-0.884607\pi\)
0.935007 0.354630i \(-0.115393\pi\)
\(504\) 0 0
\(505\) 285.385 0.565119
\(506\) − 1503.59i − 2.97152i
\(507\) 0 0
\(508\) −11.5705 −0.0227767
\(509\) − 189.234i − 0.371775i −0.982571 0.185888i \(-0.940484\pi\)
0.982571 0.185888i \(-0.0595161\pi\)
\(510\) 0 0
\(511\) 198.380 0.388218
\(512\) − 342.243i − 0.668443i
\(513\) 0 0
\(514\) −73.0350 −0.142091
\(515\) − 1067.07i − 2.07198i
\(516\) 0 0
\(517\) 820.890 1.58780
\(518\) 723.243i 1.39622i
\(519\) 0 0
\(520\) 133.616 0.256954
\(521\) 395.986i 0.760049i 0.924976 + 0.380025i \(0.124085\pi\)
−0.924976 + 0.380025i \(0.875915\pi\)
\(522\) 0 0
\(523\) 257.549 0.492445 0.246223 0.969213i \(-0.420811\pi\)
0.246223 + 0.969213i \(0.420811\pi\)
\(524\) 7.21545i 0.0137700i
\(525\) 0 0
\(526\) 849.038 1.61414
\(527\) 178.922i 0.339511i
\(528\) 0 0
\(529\) −1320.69 −2.49657
\(530\) − 1695.87i − 3.19976i
\(531\) 0 0
\(532\) 54.4196 0.102292
\(533\) 66.9399i 0.125591i
\(534\) 0 0
\(535\) −1130.53 −2.11314
\(536\) 378.387i 0.705946i
\(537\) 0 0
\(538\) 643.977 1.19698
\(539\) 1077.52i 1.99911i
\(540\) 0 0
\(541\) 609.909 1.12737 0.563687 0.825989i \(-0.309383\pi\)
0.563687 + 0.825989i \(0.309383\pi\)
\(542\) − 220.738i − 0.407265i
\(543\) 0 0
\(544\) −41.6528 −0.0765676
\(545\) 97.5835i 0.179052i
\(546\) 0 0
\(547\) 945.075 1.72774 0.863871 0.503713i \(-0.168033\pi\)
0.863871 + 0.503713i \(0.168033\pi\)
\(548\) − 52.7325i − 0.0962272i
\(549\) 0 0
\(550\) 1852.34 3.36789
\(551\) 247.243i 0.448716i
\(552\) 0 0
\(553\) −470.449 −0.850721
\(554\) − 21.5649i − 0.0389259i
\(555\) 0 0
\(556\) 141.653 0.254772
\(557\) − 137.874i − 0.247529i −0.992312 0.123764i \(-0.960503\pi\)
0.992312 0.123764i \(-0.0394967\pi\)
\(558\) 0 0
\(559\) −70.8667 −0.126774
\(560\) − 1720.87i − 3.07299i
\(561\) 0 0
\(562\) −318.286 −0.566344
\(563\) 930.409i 1.65259i 0.563236 + 0.826296i \(0.309556\pi\)
−0.563236 + 0.826296i \(0.690444\pi\)
\(564\) 0 0
\(565\) −1180.62 −2.08959
\(566\) 337.328i 0.595986i
\(567\) 0 0
\(568\) −464.662 −0.818066
\(569\) 1044.38i 1.83547i 0.397194 + 0.917735i \(0.369984\pi\)
−0.397194 + 0.917735i \(0.630016\pi\)
\(570\) 0 0
\(571\) −478.476 −0.837961 −0.418981 0.907995i \(-0.637613\pi\)
−0.418981 + 0.907995i \(0.637613\pi\)
\(572\) − 21.6136i − 0.0377860i
\(573\) 0 0
\(574\) 741.025 1.29098
\(575\) − 2278.71i − 3.96298i
\(576\) 0 0
\(577\) 497.918 0.862943 0.431472 0.902126i \(-0.357994\pi\)
0.431472 + 0.902126i \(0.357994\pi\)
\(578\) − 36.6079i − 0.0633355i
\(579\) 0 0
\(580\) −174.949 −0.301637
\(581\) − 992.112i − 1.70759i
\(582\) 0 0
\(583\) 1447.84 2.48342
\(584\) − 133.747i − 0.229018i
\(585\) 0 0
\(586\) 480.616 0.820165
\(587\) − 72.4672i − 0.123454i −0.998093 0.0617268i \(-0.980339\pi\)
0.998093 0.0617268i \(-0.0196607\pi\)
\(588\) 0 0
\(589\) −345.064 −0.585848
\(590\) 909.606i 1.54171i
\(591\) 0 0
\(592\) 567.300 0.958276
\(593\) 600.699i 1.01298i 0.862245 + 0.506491i \(0.169058\pi\)
−0.862245 + 0.506491i \(0.830942\pi\)
\(594\) 0 0
\(595\) 391.086 0.657288
\(596\) 20.4863i 0.0343729i
\(597\) 0 0
\(598\) −193.508 −0.323593
\(599\) 102.906i 0.171797i 0.996304 + 0.0858983i \(0.0273760\pi\)
−0.996304 + 0.0858983i \(0.972624\pi\)
\(600\) 0 0
\(601\) −631.616 −1.05094 −0.525470 0.850812i \(-0.676111\pi\)
−0.525470 + 0.850812i \(0.676111\pi\)
\(602\) 784.495i 1.30315i
\(603\) 0 0
\(604\) −162.208 −0.268557
\(605\) 1259.07i 2.08111i
\(606\) 0 0
\(607\) 366.006 0.602975 0.301487 0.953470i \(-0.402517\pi\)
0.301487 + 0.953470i \(0.402517\pi\)
\(608\) − 80.3304i − 0.132122i
\(609\) 0 0
\(610\) −82.4154 −0.135107
\(611\) − 105.647i − 0.172908i
\(612\) 0 0
\(613\) −711.746 −1.16109 −0.580543 0.814229i \(-0.697160\pi\)
−0.580543 + 0.814229i \(0.697160\pi\)
\(614\) 317.905i 0.517761i
\(615\) 0 0
\(616\) 1262.79 2.04999
\(617\) 248.749i 0.403159i 0.979472 + 0.201579i \(0.0646074\pi\)
−0.979472 + 0.201579i \(0.935393\pi\)
\(618\) 0 0
\(619\) 255.280 0.412407 0.206204 0.978509i \(-0.433889\pi\)
0.206204 + 0.978509i \(0.433889\pi\)
\(620\) − 244.168i − 0.393820i
\(621\) 0 0
\(622\) −341.453 −0.548959
\(623\) 34.0776i 0.0546991i
\(624\) 0 0
\(625\) 857.667 1.37227
\(626\) − 215.574i − 0.344367i
\(627\) 0 0
\(628\) 120.573 0.191995
\(629\) 128.925i 0.204968i
\(630\) 0 0
\(631\) 127.689 0.202360 0.101180 0.994868i \(-0.467738\pi\)
0.101180 + 0.994868i \(0.467738\pi\)
\(632\) 317.174i 0.501858i
\(633\) 0 0
\(634\) −500.314 −0.789139
\(635\) − 160.364i − 0.252542i
\(636\) 0 0
\(637\) 138.675 0.217700
\(638\) − 1087.03i − 1.70381i
\(639\) 0 0
\(640\) −1323.19 −2.06748
\(641\) 235.225i 0.366965i 0.983023 + 0.183483i \(0.0587371\pi\)
−0.983023 + 0.183483i \(0.941263\pi\)
\(642\) 0 0
\(643\) −355.072 −0.552211 −0.276105 0.961127i \(-0.589044\pi\)
−0.276105 + 0.961127i \(0.589044\pi\)
\(644\) 294.336i 0.457044i
\(645\) 0 0
\(646\) 70.6010 0.109289
\(647\) 419.285i 0.648045i 0.946049 + 0.324023i \(0.105035\pi\)
−0.946049 + 0.324023i \(0.894965\pi\)
\(648\) 0 0
\(649\) −776.568 −1.19656
\(650\) − 238.392i − 0.366757i
\(651\) 0 0
\(652\) 176.487 0.270685
\(653\) − 90.6357i − 0.138799i −0.997589 0.0693994i \(-0.977892\pi\)
0.997589 0.0693994i \(-0.0221083\pi\)
\(654\) 0 0
\(655\) −100.004 −0.152678
\(656\) − 581.248i − 0.886049i
\(657\) 0 0
\(658\) −1169.51 −1.77737
\(659\) 968.353i 1.46943i 0.678377 + 0.734714i \(0.262684\pi\)
−0.678377 + 0.734714i \(0.737316\pi\)
\(660\) 0 0
\(661\) −725.240 −1.09719 −0.548593 0.836089i \(-0.684836\pi\)
−0.548593 + 0.836089i \(0.684836\pi\)
\(662\) − 427.425i − 0.645657i
\(663\) 0 0
\(664\) −668.877 −1.00735
\(665\) 754.238i 1.13419i
\(666\) 0 0
\(667\) −1337.25 −2.00487
\(668\) − 0.113746i 0 0.000170278i
\(669\) 0 0
\(670\) 993.645 1.48305
\(671\) − 70.3614i − 0.104861i
\(672\) 0 0
\(673\) −615.604 −0.914716 −0.457358 0.889283i \(-0.651204\pi\)
−0.457358 + 0.889283i \(0.651204\pi\)
\(674\) 22.7787i 0.0337963i
\(675\) 0 0
\(676\) 104.898 0.155175
\(677\) 138.151i 0.204064i 0.994781 + 0.102032i \(0.0325344\pi\)
−0.994781 + 0.102032i \(0.967466\pi\)
\(678\) 0 0
\(679\) −266.671 −0.392741
\(680\) − 263.668i − 0.387748i
\(681\) 0 0
\(682\) 1517.12 2.22451
\(683\) 762.513i 1.11642i 0.829701 + 0.558209i \(0.188511\pi\)
−0.829701 + 0.558209i \(0.811489\pi\)
\(684\) 0 0
\(685\) 730.856 1.06694
\(686\) − 401.767i − 0.585667i
\(687\) 0 0
\(688\) 615.345 0.894396
\(689\) − 186.333i − 0.270440i
\(690\) 0 0
\(691\) 903.484 1.30750 0.653751 0.756709i \(-0.273194\pi\)
0.653751 + 0.756709i \(0.273194\pi\)
\(692\) 86.3406i 0.124770i
\(693\) 0 0
\(694\) −695.124 −1.00162
\(695\) 1963.27i 2.82485i
\(696\) 0 0
\(697\) 132.095 0.189519
\(698\) 380.141i 0.544614i
\(699\) 0 0
\(700\) −362.607 −0.518009
\(701\) − 818.788i − 1.16803i −0.811743 0.584014i \(-0.801481\pi\)
0.811743 0.584014i \(-0.198519\pi\)
\(702\) 0 0
\(703\) −248.640 −0.353685
\(704\) − 825.006i − 1.17188i
\(705\) 0 0
\(706\) −38.3581 −0.0543316
\(707\) − 347.118i − 0.490973i
\(708\) 0 0
\(709\) 406.551 0.573415 0.286708 0.958018i \(-0.407439\pi\)
0.286708 + 0.958018i \(0.407439\pi\)
\(710\) 1220.20i 1.71860i
\(711\) 0 0
\(712\) 22.9749 0.0322682
\(713\) − 1866.33i − 2.61758i
\(714\) 0 0
\(715\) 299.557 0.418962
\(716\) 16.5014i 0.0230467i
\(717\) 0 0
\(718\) −644.624 −0.897805
\(719\) 577.298i 0.802919i 0.915877 + 0.401459i \(0.131497\pi\)
−0.915877 + 0.401459i \(0.868503\pi\)
\(720\) 0 0
\(721\) −1297.89 −1.80012
\(722\) − 641.221i − 0.888117i
\(723\) 0 0
\(724\) 17.6171 0.0243330
\(725\) − 1647.42i − 2.27230i
\(726\) 0 0
\(727\) 834.418 1.14776 0.573878 0.818941i \(-0.305438\pi\)
0.573878 + 0.818941i \(0.305438\pi\)
\(728\) − 162.519i − 0.223240i
\(729\) 0 0
\(730\) −351.219 −0.481122
\(731\) 139.843i 0.191304i
\(732\) 0 0
\(733\) 20.6440 0.0281637 0.0140818 0.999901i \(-0.495517\pi\)
0.0140818 + 0.999901i \(0.495517\pi\)
\(734\) − 1249.01i − 1.70165i
\(735\) 0 0
\(736\) 434.479 0.590324
\(737\) 848.316i 1.15104i
\(738\) 0 0
\(739\) 728.199 0.985385 0.492692 0.870204i \(-0.336013\pi\)
0.492692 + 0.870204i \(0.336013\pi\)
\(740\) − 175.938i − 0.237755i
\(741\) 0 0
\(742\) −2062.71 −2.77993
\(743\) − 50.5350i − 0.0680148i −0.999422 0.0340074i \(-0.989173\pi\)
0.999422 0.0340074i \(-0.0108270\pi\)
\(744\) 0 0
\(745\) −283.933 −0.381119
\(746\) 443.635i 0.594684i
\(747\) 0 0
\(748\) −42.6507 −0.0570197
\(749\) 1375.08i 1.83589i
\(750\) 0 0
\(751\) 797.006 1.06126 0.530630 0.847604i \(-0.321955\pi\)
0.530630 + 0.847604i \(0.321955\pi\)
\(752\) 917.345i 1.21987i
\(753\) 0 0
\(754\) −139.899 −0.185542
\(755\) − 2248.16i − 2.97769i
\(756\) 0 0
\(757\) 92.1377 0.121714 0.0608571 0.998146i \(-0.480617\pi\)
0.0608571 + 0.998146i \(0.480617\pi\)
\(758\) − 303.481i − 0.400370i
\(759\) 0 0
\(760\) 508.504 0.669084
\(761\) 345.415i 0.453896i 0.973907 + 0.226948i \(0.0728747\pi\)
−0.973907 + 0.226948i \(0.927125\pi\)
\(762\) 0 0
\(763\) 118.692 0.155560
\(764\) − 159.507i − 0.208779i
\(765\) 0 0
\(766\) 834.747 1.08975
\(767\) 99.9427i 0.130303i
\(768\) 0 0
\(769\) 925.147 1.20305 0.601526 0.798853i \(-0.294559\pi\)
0.601526 + 0.798853i \(0.294559\pi\)
\(770\) − 3316.10i − 4.30663i
\(771\) 0 0
\(772\) −131.189 −0.169934
\(773\) 394.040i 0.509754i 0.966973 + 0.254877i \(0.0820350\pi\)
−0.966973 + 0.254877i \(0.917965\pi\)
\(774\) 0 0
\(775\) 2299.22 2.96674
\(776\) 179.788i 0.231686i
\(777\) 0 0
\(778\) 7.07718 0.00909663
\(779\) 254.754i 0.327027i
\(780\) 0 0
\(781\) −1041.74 −1.33385
\(782\) 381.856i 0.488307i
\(783\) 0 0
\(784\) −1204.13 −1.53588
\(785\) 1671.10i 2.12879i
\(786\) 0 0
\(787\) −1198.52 −1.52290 −0.761448 0.648226i \(-0.775511\pi\)
−0.761448 + 0.648226i \(0.775511\pi\)
\(788\) − 120.037i − 0.152331i
\(789\) 0 0
\(790\) 832.900 1.05430
\(791\) 1436.00i 1.81543i
\(792\) 0 0
\(793\) −9.05536 −0.0114191
\(794\) 27.4897i 0.0346217i
\(795\) 0 0
\(796\) 11.0604 0.0138950
\(797\) 489.381i 0.614028i 0.951705 + 0.307014i \(0.0993299\pi\)
−0.951705 + 0.307014i \(0.900670\pi\)
\(798\) 0 0
\(799\) −208.476 −0.260921
\(800\) 535.255i 0.669068i
\(801\) 0 0
\(802\) −1434.93 −1.78919
\(803\) − 299.850i − 0.373412i
\(804\) 0 0
\(805\) −4079.41 −5.06759
\(806\) − 195.250i − 0.242245i
\(807\) 0 0
\(808\) −234.025 −0.289635
\(809\) − 294.463i − 0.363984i −0.983300 0.181992i \(-0.941745\pi\)
0.983300 0.181992i \(-0.0582545\pi\)
\(810\) 0 0
\(811\) −639.238 −0.788209 −0.394105 0.919066i \(-0.628945\pi\)
−0.394105 + 0.919066i \(0.628945\pi\)
\(812\) 212.793i 0.262060i
\(813\) 0 0
\(814\) 1093.18 1.34297
\(815\) 2446.05i 3.00129i
\(816\) 0 0
\(817\) −269.698 −0.330108
\(818\) 1191.73i 1.45688i
\(819\) 0 0
\(820\) −180.264 −0.219835
\(821\) − 158.726i − 0.193332i −0.995317 0.0966660i \(-0.969182\pi\)
0.995317 0.0966660i \(-0.0308179\pi\)
\(822\) 0 0
\(823\) −1222.65 −1.48560 −0.742800 0.669514i \(-0.766503\pi\)
−0.742800 + 0.669514i \(0.766503\pi\)
\(824\) 875.031i 1.06193i
\(825\) 0 0
\(826\) 1106.37 1.33943
\(827\) − 1268.36i − 1.53369i −0.641834 0.766843i \(-0.721826\pi\)
0.641834 0.766843i \(-0.278174\pi\)
\(828\) 0 0
\(829\) −510.662 −0.615998 −0.307999 0.951387i \(-0.599659\pi\)
−0.307999 + 0.951387i \(0.599659\pi\)
\(830\) 1756.47i 2.11623i
\(831\) 0 0
\(832\) −106.176 −0.127616
\(833\) − 273.651i − 0.328512i
\(834\) 0 0
\(835\) 1.57648 0.00188800
\(836\) − 82.2550i − 0.0983911i
\(837\) 0 0
\(838\) −730.109 −0.871251
\(839\) − 468.220i − 0.558069i −0.960281 0.279034i \(-0.909986\pi\)
0.960281 0.279034i \(-0.0900143\pi\)
\(840\) 0 0
\(841\) −125.775 −0.149554
\(842\) 581.408i 0.690508i
\(843\) 0 0
\(844\) 119.856 0.142010
\(845\) 1453.86i 1.72054i
\(846\) 0 0
\(847\) 1531.43 1.80806
\(848\) 1617.96i 1.90797i
\(849\) 0 0
\(850\) −470.426 −0.553443
\(851\) − 1344.81i − 1.58027i
\(852\) 0 0
\(853\) −466.860 −0.547315 −0.273657 0.961827i \(-0.588233\pi\)
−0.273657 + 0.961827i \(0.588233\pi\)
\(854\) 100.243i 0.117380i
\(855\) 0 0
\(856\) 927.073 1.08303
\(857\) − 1165.53i − 1.36001i −0.733205 0.680007i \(-0.761977\pi\)
0.733205 0.680007i \(-0.238023\pi\)
\(858\) 0 0
\(859\) 1287.48 1.49881 0.749406 0.662111i \(-0.230339\pi\)
0.749406 + 0.662111i \(0.230339\pi\)
\(860\) − 190.839i − 0.221906i
\(861\) 0 0
\(862\) 1746.08 2.02562
\(863\) 1512.53i 1.75264i 0.481731 + 0.876319i \(0.340008\pi\)
−0.481731 + 0.876319i \(0.659992\pi\)
\(864\) 0 0
\(865\) −1196.65 −1.38341
\(866\) − 720.436i − 0.831912i
\(867\) 0 0
\(868\) −296.985 −0.342149
\(869\) 711.081i 0.818275i
\(870\) 0 0
\(871\) 109.176 0.125346
\(872\) − 80.0216i − 0.0917679i
\(873\) 0 0
\(874\) −736.437 −0.842605
\(875\) − 2654.30i − 3.03349i
\(876\) 0 0
\(877\) −1072.27 −1.22266 −0.611331 0.791375i \(-0.709365\pi\)
−0.611331 + 0.791375i \(0.709365\pi\)
\(878\) 695.104i 0.791691i
\(879\) 0 0
\(880\) −2601.10 −2.95579
\(881\) 1031.56i 1.17090i 0.810710 + 0.585448i \(0.199081\pi\)
−0.810710 + 0.585448i \(0.800919\pi\)
\(882\) 0 0
\(883\) −1761.12 −1.99448 −0.997239 0.0742568i \(-0.976342\pi\)
−0.997239 + 0.0742568i \(0.976342\pi\)
\(884\) 5.48905i 0.00620934i
\(885\) 0 0
\(886\) −1049.01 −1.18399
\(887\) − 1377.74i − 1.55326i −0.629955 0.776631i \(-0.716927\pi\)
0.629955 0.776631i \(-0.283073\pi\)
\(888\) 0 0
\(889\) −195.053 −0.219407
\(890\) − 60.3322i − 0.0677890i
\(891\) 0 0
\(892\) 51.4978 0.0577329
\(893\) − 402.061i − 0.450236i
\(894\) 0 0
\(895\) −228.704 −0.255536
\(896\) 1609.41i 1.79622i
\(897\) 0 0
\(898\) −1912.10 −2.12928
\(899\) − 1349.28i − 1.50087i
\(900\) 0 0
\(901\) −367.697 −0.408099
\(902\) − 1120.06i − 1.24175i
\(903\) 0 0
\(904\) 968.146 1.07096
\(905\) 244.168i 0.269799i
\(906\) 0 0
\(907\) 1380.88 1.52246 0.761232 0.648479i \(-0.224595\pi\)
0.761232 + 0.648479i \(0.224595\pi\)
\(908\) 9.43540i 0.0103914i
\(909\) 0 0
\(910\) −426.775 −0.468984
\(911\) 693.024i 0.760729i 0.924837 + 0.380365i \(0.124201\pi\)
−0.924837 + 0.380365i \(0.875799\pi\)
\(912\) 0 0
\(913\) −1499.57 −1.64247
\(914\) 25.2360i 0.0276105i
\(915\) 0 0
\(916\) −267.132 −0.291629
\(917\) 121.636i 0.132646i
\(918\) 0 0
\(919\) 378.985 0.412388 0.206194 0.978511i \(-0.433892\pi\)
0.206194 + 0.978511i \(0.433892\pi\)
\(920\) 2750.32i 2.98947i
\(921\) 0 0
\(922\) 170.322 0.184731
\(923\) 134.069i 0.145254i
\(924\) 0 0
\(925\) 1656.73 1.79106
\(926\) 414.025i 0.447111i
\(927\) 0 0
\(928\) 314.110 0.338481
\(929\) − 913.872i − 0.983715i −0.870676 0.491858i \(-0.836318\pi\)
0.870676 0.491858i \(-0.163682\pi\)
\(930\) 0 0
\(931\) 527.756 0.566870
\(932\) − 174.261i − 0.186975i
\(933\) 0 0
\(934\) 1363.04 1.45936
\(935\) − 591.125i − 0.632220i
\(936\) 0 0
\(937\) 1574.11 1.67994 0.839972 0.542629i \(-0.182571\pi\)
0.839972 + 0.542629i \(0.182571\pi\)
\(938\) − 1208.58i − 1.28847i
\(939\) 0 0
\(940\) 284.499 0.302659
\(941\) − 575.242i − 0.611309i −0.952142 0.305655i \(-0.901125\pi\)
0.952142 0.305655i \(-0.0988753\pi\)
\(942\) 0 0
\(943\) −1377.87 −1.46116
\(944\) − 867.815i − 0.919295i
\(945\) 0 0
\(946\) 1185.76 1.25345
\(947\) 200.497i 0.211718i 0.994381 + 0.105859i \(0.0337592\pi\)
−0.994381 + 0.105859i \(0.966241\pi\)
\(948\) 0 0
\(949\) −38.5901 −0.0406639
\(950\) − 907.251i − 0.955001i
\(951\) 0 0
\(952\) −320.703 −0.336873
\(953\) 61.9288i 0.0649830i 0.999472 + 0.0324915i \(0.0103442\pi\)
−0.999472 + 0.0324915i \(0.989656\pi\)
\(954\) 0 0
\(955\) 2210.72 2.31489
\(956\) 135.399i 0.141630i
\(957\) 0 0
\(958\) −1340.21 −1.39896
\(959\) − 888.949i − 0.926954i
\(960\) 0 0
\(961\) 922.127 0.959549
\(962\) − 140.690i − 0.146247i
\(963\) 0 0
\(964\) −124.768 −0.129427
\(965\) − 1818.24i − 1.88418i
\(966\) 0 0
\(967\) −942.391 −0.974551 −0.487276 0.873248i \(-0.662009\pi\)
−0.487276 + 0.873248i \(0.662009\pi\)
\(968\) − 1032.48i − 1.06661i
\(969\) 0 0
\(970\) 472.125 0.486726
\(971\) 591.900i 0.609578i 0.952420 + 0.304789i \(0.0985859\pi\)
−0.952420 + 0.304789i \(0.901414\pi\)
\(972\) 0 0
\(973\) 2387.95 2.45422
\(974\) 1628.32i 1.67178i
\(975\) 0 0
\(976\) 78.6288 0.0805623
\(977\) − 1024.42i − 1.04854i −0.851552 0.524271i \(-0.824338\pi\)
0.851552 0.524271i \(-0.175662\pi\)
\(978\) 0 0
\(979\) 51.5081 0.0526130
\(980\) 373.441i 0.381062i
\(981\) 0 0
\(982\) 935.277 0.952421
\(983\) − 31.1053i − 0.0316432i −0.999875 0.0158216i \(-0.994964\pi\)
0.999875 0.0158216i \(-0.00503639\pi\)
\(984\) 0 0
\(985\) 1663.68 1.68901
\(986\) 276.066i 0.279986i
\(987\) 0 0
\(988\) −10.5860 −0.0107146
\(989\) − 1458.70i − 1.47493i
\(990\) 0 0
\(991\) 938.169 0.946689 0.473344 0.880877i \(-0.343047\pi\)
0.473344 + 0.880877i \(0.343047\pi\)
\(992\) 438.389i 0.441924i
\(993\) 0 0
\(994\) 1484.15 1.49311
\(995\) 153.294i 0.154064i
\(996\) 0 0
\(997\) 738.410 0.740632 0.370316 0.928906i \(-0.379249\pi\)
0.370316 + 0.928906i \(0.379249\pi\)
\(998\) − 590.315i − 0.591498i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.b.d.188.10 yes 12
3.2 odd 2 inner 459.3.b.d.188.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.3.b.d.188.3 12 3.2 odd 2 inner
459.3.b.d.188.10 yes 12 1.1 even 1 trivial