Properties

Label 459.2.y.a.422.7
Level $459$
Weight $2$
Character 459.422
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(44,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([40, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.44"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 422.7
Character \(\chi\) \(=\) 459.422
Dual form 459.2.y.a.62.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.196546 + 0.256144i) q^{2} +(0.490659 + 1.83116i) q^{4} +(0.803783 - 0.0526827i) q^{5} +(0.182581 - 2.78565i) q^{7} +(-1.16205 - 0.481337i) q^{8} +(-0.144486 + 0.216239i) q^{10} +(3.20484 - 2.81057i) q^{11} +(4.89065 - 1.31045i) q^{13} +(0.677643 + 0.594277i) q^{14} +(-2.93186 + 1.69271i) q^{16} +(0.361775 + 4.10720i) q^{17} +(5.27449 - 2.18477i) q^{19} +(0.490854 + 1.44601i) q^{20} +(0.0900113 + 1.37331i) q^{22} +(-2.49870 + 7.36094i) q^{23} +(-4.31393 + 0.567940i) q^{25} +(-0.625576 + 1.51027i) q^{26} +(5.19057 - 1.03247i) q^{28} +(-0.570719 - 0.281448i) q^{29} +(-1.44065 + 1.64275i) q^{31} +(0.471019 - 3.57775i) q^{32} +(-1.12314 - 0.714589i) q^{34} -2.24868i q^{35} +(-0.897790 + 4.51350i) q^{37} +(-0.477067 + 1.78044i) q^{38} +(-0.959395 - 0.325671i) q^{40} +(1.85115 + 3.75377i) q^{41} +(-1.07042 - 8.13062i) q^{43} +(6.71909 + 4.48955i) q^{44} +(-1.39435 - 2.08679i) q^{46} +(2.96048 + 0.793260i) q^{47} +(-0.786402 - 0.103532i) q^{49} +(0.702413 - 1.21662i) q^{50} +(4.79928 + 8.31260i) q^{52} +(-3.67083 - 8.86216i) q^{53} +(2.42793 - 2.42793i) q^{55} +(-1.55301 + 3.14919i) q^{56} +(0.184264 - 0.0908689i) q^{58} +(7.79797 - 5.98360i) q^{59} +(0.312284 + 0.0204682i) q^{61} +(-0.137626 - 0.691891i) q^{62} +(-3.96387 - 3.96387i) q^{64} +(3.86198 - 1.31097i) q^{65} +(-2.17017 - 1.25295i) q^{67} +(-7.34345 + 2.67770i) q^{68} +(0.575986 + 0.441969i) q^{70} +(1.92783 + 0.383470i) q^{71} +(-4.62155 + 3.08802i) q^{73} +(-0.979648 - 1.11707i) q^{74} +(6.58864 + 8.58648i) q^{76} +(-7.24412 - 9.44072i) q^{77} +(-4.01302 - 4.57597i) q^{79} +(-2.26741 + 1.51503i) q^{80} +(-1.32534 - 0.263627i) q^{82} +(-8.53828 - 6.55165i) q^{83} +(0.507167 + 3.28224i) q^{85} +(2.29300 + 1.32386i) q^{86} +(-5.07702 + 1.72342i) q^{88} +(-9.50851 - 9.50851i) q^{89} +(-2.75750 - 13.8629i) q^{91} +(-14.7051 - 0.963823i) q^{92} +(-0.785061 + 0.602399i) q^{94} +(4.12445 - 2.03395i) q^{95} +(-5.09492 + 10.3315i) q^{97} +(0.181083 - 0.181083i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.196546 + 0.256144i −0.138979 + 0.181121i −0.857657 0.514222i \(-0.828081\pi\)
0.718678 + 0.695343i \(0.244748\pi\)
\(3\) 0 0
\(4\) 0.490659 + 1.83116i 0.245329 + 0.915582i
\(5\) 0.803783 0.0526827i 0.359463 0.0235604i 0.115398 0.993319i \(-0.463186\pi\)
0.244065 + 0.969759i \(0.421519\pi\)
\(6\) 0 0
\(7\) 0.182581 2.78565i 0.0690092 1.05288i −0.813189 0.581999i \(-0.802271\pi\)
0.882198 0.470878i \(-0.156063\pi\)
\(8\) −1.16205 0.481337i −0.410847 0.170178i
\(9\) 0 0
\(10\) −0.144486 + 0.216239i −0.0456906 + 0.0683807i
\(11\) 3.20484 2.81057i 0.966295 0.847418i −0.0220332 0.999757i \(-0.507014\pi\)
0.988328 + 0.152339i \(0.0486806\pi\)
\(12\) 0 0
\(13\) 4.89065 1.31045i 1.35642 0.363452i 0.493921 0.869507i \(-0.335563\pi\)
0.862501 + 0.506055i \(0.168897\pi\)
\(14\) 0.677643 + 0.594277i 0.181108 + 0.158827i
\(15\) 0 0
\(16\) −2.93186 + 1.69271i −0.732966 + 0.423178i
\(17\) 0.361775 + 4.10720i 0.0877433 + 0.996143i
\(18\) 0 0
\(19\) 5.27449 2.18477i 1.21005 0.501220i 0.315818 0.948820i \(-0.397721\pi\)
0.894234 + 0.447600i \(0.147721\pi\)
\(20\) 0.490854 + 1.44601i 0.109758 + 0.323337i
\(21\) 0 0
\(22\) 0.0900113 + 1.37331i 0.0191905 + 0.292790i
\(23\) −2.49870 + 7.36094i −0.521016 + 1.53486i 0.294223 + 0.955737i \(0.404939\pi\)
−0.815238 + 0.579126i \(0.803394\pi\)
\(24\) 0 0
\(25\) −4.31393 + 0.567940i −0.862787 + 0.113588i
\(26\) −0.625576 + 1.51027i −0.122686 + 0.296189i
\(27\) 0 0
\(28\) 5.19057 1.03247i 0.980925 0.195118i
\(29\) −0.570719 0.281448i −0.105980 0.0522635i 0.388526 0.921438i \(-0.372984\pi\)
−0.494506 + 0.869174i \(0.664651\pi\)
\(30\) 0 0
\(31\) −1.44065 + 1.64275i −0.258749 + 0.295047i −0.866599 0.499005i \(-0.833699\pi\)
0.607850 + 0.794052i \(0.292032\pi\)
\(32\) 0.471019 3.57775i 0.0832652 0.632462i
\(33\) 0 0
\(34\) −1.12314 0.714589i −0.192617 0.122551i
\(35\) 2.24868i 0.380096i
\(36\) 0 0
\(37\) −0.897790 + 4.51350i −0.147596 + 0.742014i 0.834108 + 0.551601i \(0.185983\pi\)
−0.981704 + 0.190413i \(0.939017\pi\)
\(38\) −0.477067 + 1.78044i −0.0773905 + 0.288825i
\(39\) 0 0
\(40\) −0.959395 0.325671i −0.151694 0.0514931i
\(41\) 1.85115 + 3.75377i 0.289101 + 0.586240i 0.992172 0.124881i \(-0.0398548\pi\)
−0.703070 + 0.711120i \(0.748188\pi\)
\(42\) 0 0
\(43\) −1.07042 8.13062i −0.163237 1.23991i −0.855324 0.518093i \(-0.826642\pi\)
0.692087 0.721814i \(-0.256691\pi\)
\(44\) 6.71909 + 4.48955i 1.01294 + 0.676825i
\(45\) 0 0
\(46\) −1.39435 2.08679i −0.205586 0.307681i
\(47\) 2.96048 + 0.793260i 0.431831 + 0.115709i 0.468186 0.883630i \(-0.344908\pi\)
−0.0363545 + 0.999339i \(0.511575\pi\)
\(48\) 0 0
\(49\) −0.786402 0.103532i −0.112343 0.0147903i
\(50\) 0.702413 1.21662i 0.0993362 0.172055i
\(51\) 0 0
\(52\) 4.79928 + 8.31260i 0.665540 + 1.15275i
\(53\) −3.67083 8.86216i −0.504227 1.21731i −0.947162 0.320757i \(-0.896063\pi\)
0.442935 0.896554i \(-0.353937\pi\)
\(54\) 0 0
\(55\) 2.42793 2.42793i 0.327381 0.327381i
\(56\) −1.55301 + 3.14919i −0.207529 + 0.420828i
\(57\) 0 0
\(58\) 0.184264 0.0908689i 0.0241950 0.0119317i
\(59\) 7.79797 5.98360i 1.01521 0.778998i 0.0397575 0.999209i \(-0.487341\pi\)
0.975452 + 0.220212i \(0.0706748\pi\)
\(60\) 0 0
\(61\) 0.312284 + 0.0204682i 0.0399839 + 0.00262068i 0.0853820 0.996348i \(-0.472789\pi\)
−0.0453980 + 0.998969i \(0.514456\pi\)
\(62\) −0.137626 0.691891i −0.0174785 0.0878703i
\(63\) 0 0
\(64\) −3.96387 3.96387i −0.495484 0.495484i
\(65\) 3.86198 1.31097i 0.479020 0.162605i
\(66\) 0 0
\(67\) −2.17017 1.25295i −0.265128 0.153072i 0.361543 0.932355i \(-0.382250\pi\)
−0.626672 + 0.779283i \(0.715583\pi\)
\(68\) −7.34345 + 2.67770i −0.890524 + 0.324719i
\(69\) 0 0
\(70\) 0.575986 + 0.441969i 0.0688435 + 0.0528254i
\(71\) 1.92783 + 0.383470i 0.228792 + 0.0455095i 0.308155 0.951336i \(-0.400289\pi\)
−0.0793629 + 0.996846i \(0.525289\pi\)
\(72\) 0 0
\(73\) −4.62155 + 3.08802i −0.540912 + 0.361426i −0.795814 0.605541i \(-0.792957\pi\)
0.254902 + 0.966967i \(0.417957\pi\)
\(74\) −0.979648 1.11707i −0.113882 0.129857i
\(75\) 0 0
\(76\) 6.58864 + 8.58648i 0.755769 + 0.984937i
\(77\) −7.24412 9.44072i −0.825544 1.07587i
\(78\) 0 0
\(79\) −4.01302 4.57597i −0.451500 0.514837i 0.480649 0.876913i \(-0.340401\pi\)
−0.932148 + 0.362076i \(0.882068\pi\)
\(80\) −2.26741 + 1.51503i −0.253504 + 0.169386i
\(81\) 0 0
\(82\) −1.32534 0.263627i −0.146360 0.0291127i
\(83\) −8.53828 6.55165i −0.937198 0.719137i 0.0226251 0.999744i \(-0.492798\pi\)
−0.959823 + 0.280607i \(0.909464\pi\)
\(84\) 0 0
\(85\) 0.507167 + 3.28224i 0.0550100 + 0.356009i
\(86\) 2.29300 + 1.32386i 0.247260 + 0.142756i
\(87\) 0 0
\(88\) −5.07702 + 1.72342i −0.541212 + 0.183717i
\(89\) −9.50851 9.50851i −1.00790 1.00790i −0.999969 0.00793097i \(-0.997475\pi\)
−0.00793097 0.999969i \(-0.502525\pi\)
\(90\) 0 0
\(91\) −2.75750 13.8629i −0.289065 1.45323i
\(92\) −14.7051 0.963823i −1.53311 0.100486i
\(93\) 0 0
\(94\) −0.785061 + 0.602399i −0.0809729 + 0.0621327i
\(95\) 4.12445 2.03395i 0.423160 0.208679i
\(96\) 0 0
\(97\) −5.09492 + 10.3315i −0.517311 + 1.04900i 0.468861 + 0.883272i \(0.344665\pi\)
−0.986171 + 0.165730i \(0.947002\pi\)
\(98\) 0.181083 0.181083i 0.0182922 0.0182922i
\(99\) 0 0
\(100\) −3.15666 7.62085i −0.315666 0.762085i
\(101\) 0.533410 + 0.923893i 0.0530762 + 0.0919307i 0.891343 0.453330i \(-0.149764\pi\)
−0.838267 + 0.545261i \(0.816431\pi\)
\(102\) 0 0
\(103\) −6.64266 + 11.5054i −0.654521 + 1.13366i 0.327493 + 0.944854i \(0.393796\pi\)
−0.982014 + 0.188810i \(0.939537\pi\)
\(104\) −6.31395 0.831248i −0.619134 0.0815105i
\(105\) 0 0
\(106\) 2.99148 + 0.801564i 0.290558 + 0.0778548i
\(107\) 9.57936 + 14.3365i 0.926072 + 1.38596i 0.922511 + 0.385971i \(0.126134\pi\)
0.00356116 + 0.999994i \(0.498866\pi\)
\(108\) 0 0
\(109\) 4.45912 + 2.97949i 0.427106 + 0.285383i 0.750487 0.660886i \(-0.229819\pi\)
−0.323380 + 0.946269i \(0.604819\pi\)
\(110\) 0.144699 + 1.09910i 0.0137965 + 0.104795i
\(111\) 0 0
\(112\) 4.18000 + 8.47621i 0.394973 + 0.800926i
\(113\) −7.14534 2.42551i −0.672177 0.228173i −0.0355762 0.999367i \(-0.511327\pi\)
−0.636601 + 0.771194i \(0.719660\pi\)
\(114\) 0 0
\(115\) −1.62062 + 6.04824i −0.151124 + 0.564001i
\(116\) 0.235348 1.18318i 0.0218515 0.109855i
\(117\) 0 0
\(118\) 3.17346i 0.292141i
\(119\) 11.5073 0.257880i 1.05487 0.0236398i
\(120\) 0 0
\(121\) 0.935909 7.10893i 0.0850826 0.646267i
\(122\) −0.0666211 + 0.0759669i −0.00603160 + 0.00687772i
\(123\) 0 0
\(124\) −3.71501 1.83204i −0.333618 0.164522i
\(125\) −7.38770 + 1.46950i −0.660776 + 0.131436i
\(126\) 0 0
\(127\) −1.70901 + 4.12592i −0.151650 + 0.366116i −0.981387 0.192038i \(-0.938490\pi\)
0.829737 + 0.558154i \(0.188490\pi\)
\(128\) 8.94990 1.17828i 0.791067 0.104146i
\(129\) 0 0
\(130\) −0.423262 + 1.24689i −0.0371226 + 0.109360i
\(131\) −0.314129 4.79268i −0.0274456 0.418739i −0.989370 0.145422i \(-0.953546\pi\)
0.961924 0.273317i \(-0.0881207\pi\)
\(132\) 0 0
\(133\) −5.12297 15.0918i −0.444218 1.30862i
\(134\) 0.747474 0.309614i 0.0645720 0.0267466i
\(135\) 0 0
\(136\) 1.55655 4.94692i 0.133473 0.424195i
\(137\) −11.1827 + 6.45634i −0.955403 + 0.551602i −0.894755 0.446557i \(-0.852650\pi\)
−0.0606478 + 0.998159i \(0.519317\pi\)
\(138\) 0 0
\(139\) −9.20744 8.07471i −0.780965 0.684888i 0.172961 0.984929i \(-0.444666\pi\)
−0.953926 + 0.300041i \(0.903000\pi\)
\(140\) 4.11770 1.10333i 0.348009 0.0932487i
\(141\) 0 0
\(142\) −0.477132 + 0.418434i −0.0400400 + 0.0351142i
\(143\) 11.9906 17.9453i 1.00271 1.50066i
\(144\) 0 0
\(145\) −0.473562 0.196156i −0.0393272 0.0162899i
\(146\) 0.117370 1.79072i 0.00971362 0.148201i
\(147\) 0 0
\(148\) −8.70546 + 0.570586i −0.715584 + 0.0469019i
\(149\) −1.85758 6.93257i −0.152179 0.567939i −0.999330 0.0365876i \(-0.988351\pi\)
0.847152 0.531351i \(-0.178315\pi\)
\(150\) 0 0
\(151\) 3.23263 4.21285i 0.263068 0.342837i −0.643079 0.765800i \(-0.722343\pi\)
0.906147 + 0.422963i \(0.139010\pi\)
\(152\) −7.18084 −0.582443
\(153\) 0 0
\(154\) 3.84199 0.309596
\(155\) −1.07143 + 1.39631i −0.0860591 + 0.112154i
\(156\) 0 0
\(157\) −4.37101 16.3128i −0.348844 1.30190i −0.888056 0.459735i \(-0.847945\pi\)
0.539212 0.842170i \(-0.318722\pi\)
\(158\) 1.96085 0.128521i 0.155997 0.0102246i
\(159\) 0 0
\(160\) 0.190112 2.90055i 0.0150297 0.229308i
\(161\) 20.0488 + 8.30449i 1.58007 + 0.654485i
\(162\) 0 0
\(163\) −5.10782 + 7.64440i −0.400076 + 0.598755i −0.975740 0.218930i \(-0.929743\pi\)
0.575665 + 0.817686i \(0.304743\pi\)
\(164\) −5.96547 + 5.23158i −0.465825 + 0.408518i
\(165\) 0 0
\(166\) 3.35633 0.899327i 0.260502 0.0698013i
\(167\) 10.2922 + 9.02598i 0.796431 + 0.698452i 0.957482 0.288495i \(-0.0931547\pi\)
−0.161050 + 0.986946i \(0.551488\pi\)
\(168\) 0 0
\(169\) 10.9429 6.31786i 0.841758 0.485989i
\(170\) −0.940409 0.515205i −0.0721261 0.0395144i
\(171\) 0 0
\(172\) 14.3633 5.94946i 1.09519 0.453642i
\(173\) 0.258251 + 0.760782i 0.0196344 + 0.0578412i 0.956306 0.292369i \(-0.0944435\pi\)
−0.936671 + 0.350210i \(0.886110\pi\)
\(174\) 0 0
\(175\) 0.794440 + 12.1208i 0.0600540 + 0.916247i
\(176\) −4.63867 + 13.6651i −0.349653 + 1.03004i
\(177\) 0 0
\(178\) 4.30441 0.566686i 0.322629 0.0424749i
\(179\) −2.75669 + 6.65524i −0.206045 + 0.497436i −0.992794 0.119837i \(-0.961763\pi\)
0.786749 + 0.617273i \(0.211763\pi\)
\(180\) 0 0
\(181\) −3.34914 + 0.666185i −0.248939 + 0.0495171i −0.317983 0.948097i \(-0.603005\pi\)
0.0690433 + 0.997614i \(0.478005\pi\)
\(182\) 4.09288 + 2.01839i 0.303384 + 0.149613i
\(183\) 0 0
\(184\) 6.44672 7.35107i 0.475258 0.541928i
\(185\) −0.483845 + 3.67517i −0.0355730 + 0.270204i
\(186\) 0 0
\(187\) 12.7030 + 12.1461i 0.928935 + 0.888213i
\(188\) 5.81035i 0.423763i
\(189\) 0 0
\(190\) −0.289660 + 1.45622i −0.0210142 + 0.105645i
\(191\) −2.17003 + 8.09867i −0.157018 + 0.585999i 0.841906 + 0.539624i \(0.181434\pi\)
−0.998924 + 0.0463750i \(0.985233\pi\)
\(192\) 0 0
\(193\) −9.96043 3.38111i −0.716968 0.243378i −0.0609689 0.998140i \(-0.519419\pi\)
−0.655999 + 0.754762i \(0.727752\pi\)
\(194\) −1.64496 3.33565i −0.118101 0.239485i
\(195\) 0 0
\(196\) −0.196271 1.49083i −0.0140194 0.106488i
\(197\) −12.4640 8.32821i −0.888027 0.593360i 0.0257092 0.999669i \(-0.491816\pi\)
−0.913736 + 0.406309i \(0.866816\pi\)
\(198\) 0 0
\(199\) 5.21079 + 7.79850i 0.369383 + 0.552821i 0.968872 0.247562i \(-0.0796295\pi\)
−0.599489 + 0.800383i \(0.704629\pi\)
\(200\) 5.28638 + 1.41648i 0.373804 + 0.100160i
\(201\) 0 0
\(202\) −0.341489 0.0449579i −0.0240271 0.00316323i
\(203\) −0.888218 + 1.53844i −0.0623407 + 0.107977i
\(204\) 0 0
\(205\) 1.68568 + 2.91969i 0.117733 + 0.203920i
\(206\) −1.64146 3.96283i −0.114366 0.276103i
\(207\) 0 0
\(208\) −12.1205 + 12.1205i −0.840406 + 0.840406i
\(209\) 10.7635 21.8261i 0.744524 1.50975i
\(210\) 0 0
\(211\) 7.47399 3.68576i 0.514530 0.253738i −0.166437 0.986052i \(-0.553226\pi\)
0.680967 + 0.732314i \(0.261560\pi\)
\(212\) 14.4269 11.0702i 0.990846 0.760303i
\(213\) 0 0
\(214\) −5.55501 0.364094i −0.379733 0.0248890i
\(215\) −1.28873 6.47886i −0.0878903 0.441854i
\(216\) 0 0
\(217\) 4.31309 + 4.31309i 0.292792 + 0.292792i
\(218\) −1.63960 + 0.556570i −0.111048 + 0.0376957i
\(219\) 0 0
\(220\) 5.63721 + 3.25465i 0.380061 + 0.219428i
\(221\) 7.15158 + 19.6128i 0.481067 + 1.31930i
\(222\) 0 0
\(223\) −6.06711 4.65546i −0.406284 0.311753i 0.385325 0.922781i \(-0.374089\pi\)
−0.791609 + 0.611028i \(0.790756\pi\)
\(224\) −9.88035 1.96532i −0.660159 0.131314i
\(225\) 0 0
\(226\) 2.02567 1.35351i 0.134746 0.0900342i
\(227\) −1.46020 1.66504i −0.0969172 0.110513i 0.701348 0.712819i \(-0.252582\pi\)
−0.798265 + 0.602306i \(0.794249\pi\)
\(228\) 0 0
\(229\) 11.9156 + 15.5287i 0.787407 + 1.02617i 0.998810 + 0.0487694i \(0.0155300\pi\)
−0.211403 + 0.977399i \(0.567803\pi\)
\(230\) −1.23069 1.60387i −0.0811496 0.105756i
\(231\) 0 0
\(232\) 0.527734 + 0.601765i 0.0346474 + 0.0395078i
\(233\) −15.2210 + 10.1704i −0.997161 + 0.666282i −0.943188 0.332260i \(-0.892189\pi\)
−0.0539737 + 0.998542i \(0.517189\pi\)
\(234\) 0 0
\(235\) 2.42138 + 0.481642i 0.157953 + 0.0314189i
\(236\) 14.7831 + 11.3435i 0.962297 + 0.738396i
\(237\) 0 0
\(238\) −2.19566 + 2.99821i −0.142324 + 0.194345i
\(239\) 18.9106 + 10.9180i 1.22323 + 0.706229i 0.965604 0.260017i \(-0.0837281\pi\)
0.257621 + 0.966246i \(0.417061\pi\)
\(240\) 0 0
\(241\) −7.84710 + 2.66373i −0.505476 + 0.171586i −0.562517 0.826786i \(-0.690167\pi\)
0.0570406 + 0.998372i \(0.481834\pi\)
\(242\) 1.63696 + 1.63696i 0.105228 + 0.105228i
\(243\) 0 0
\(244\) 0.115744 + 0.581886i 0.00740978 + 0.0372515i
\(245\) −0.637551 0.0417873i −0.0407316 0.00266969i
\(246\) 0 0
\(247\) 22.9327 17.5969i 1.45917 1.11966i
\(248\) 2.46483 1.21552i 0.156517 0.0771856i
\(249\) 0 0
\(250\) 1.07562 2.18114i 0.0680282 0.137947i
\(251\) −5.47029 + 5.47029i −0.345282 + 0.345282i −0.858349 0.513067i \(-0.828509\pi\)
0.513067 + 0.858349i \(0.328509\pi\)
\(252\) 0 0
\(253\) 12.6805 + 30.6134i 0.797215 + 1.92465i
\(254\) −0.720930 1.24869i −0.0452351 0.0783496i
\(255\) 0 0
\(256\) 4.14850 7.18541i 0.259281 0.449088i
\(257\) −27.8814 3.67066i −1.73920 0.228970i −0.806906 0.590680i \(-0.798860\pi\)
−0.932290 + 0.361711i \(0.882193\pi\)
\(258\) 0 0
\(259\) 12.4091 + 3.32501i 0.771064 + 0.206606i
\(260\) 4.29551 + 6.42868i 0.266396 + 0.398690i
\(261\) 0 0
\(262\) 1.28936 + 0.861522i 0.0796569 + 0.0532250i
\(263\) −2.03175 15.4327i −0.125283 0.951619i −0.932451 0.361297i \(-0.882334\pi\)
0.807168 0.590322i \(-0.200999\pi\)
\(264\) 0 0
\(265\) −3.41743 6.92986i −0.209931 0.425698i
\(266\) 4.87258 + 1.65402i 0.298757 + 0.101414i
\(267\) 0 0
\(268\) 1.22954 4.58871i 0.0751061 0.280300i
\(269\) −0.513314 + 2.58060i −0.0312973 + 0.157342i −0.993274 0.115791i \(-0.963060\pi\)
0.961976 + 0.273133i \(0.0880598\pi\)
\(270\) 0 0
\(271\) 9.04660i 0.549542i −0.961510 0.274771i \(-0.911398\pi\)
0.961510 0.274771i \(-0.0886020\pi\)
\(272\) −8.01299 11.4294i −0.485859 0.693008i
\(273\) 0 0
\(274\) 0.544166 4.13335i 0.0328743 0.249705i
\(275\) −12.2292 + 13.9448i −0.737450 + 0.840900i
\(276\) 0 0
\(277\) 17.6237 + 8.69103i 1.05890 + 0.522194i 0.886450 0.462824i \(-0.153164\pi\)
0.172454 + 0.985018i \(0.444830\pi\)
\(278\) 3.87798 0.771378i 0.232586 0.0462642i
\(279\) 0 0
\(280\) −1.08237 + 2.61308i −0.0646841 + 0.156161i
\(281\) 11.3949 1.50016i 0.679761 0.0894922i 0.217264 0.976113i \(-0.430287\pi\)
0.462497 + 0.886621i \(0.346954\pi\)
\(282\) 0 0
\(283\) 8.91019 26.2486i 0.529656 1.56032i −0.271857 0.962338i \(-0.587638\pi\)
0.801513 0.597978i \(-0.204029\pi\)
\(284\) 0.243712 + 3.71833i 0.0144617 + 0.220642i
\(285\) 0 0
\(286\) 2.23986 + 6.59841i 0.132446 + 0.390172i
\(287\) 10.7947 4.47130i 0.637189 0.263932i
\(288\) 0 0
\(289\) −16.7382 + 2.97176i −0.984602 + 0.174810i
\(290\) 0.143321 0.0827464i 0.00841610 0.00485904i
\(291\) 0 0
\(292\) −7.92228 6.94765i −0.463616 0.406580i
\(293\) 7.32982 1.96402i 0.428213 0.114739i −0.0382743 0.999267i \(-0.512186\pi\)
0.466487 + 0.884528i \(0.345519\pi\)
\(294\) 0 0
\(295\) 5.95265 5.22033i 0.346576 0.303939i
\(296\) 3.21579 4.81277i 0.186914 0.279737i
\(297\) 0 0
\(298\) 2.14084 + 0.886764i 0.124015 + 0.0513689i
\(299\) −2.57417 + 39.2742i −0.148868 + 2.27129i
\(300\) 0 0
\(301\) −22.8445 + 1.49731i −1.31673 + 0.0863034i
\(302\) 0.443734 + 1.65604i 0.0255340 + 0.0952943i
\(303\) 0 0
\(304\) −11.7659 + 15.3336i −0.674821 + 0.879444i
\(305\) 0.252087 0.0144345
\(306\) 0 0
\(307\) −17.0157 −0.971135 −0.485568 0.874199i \(-0.661387\pi\)
−0.485568 + 0.874199i \(0.661387\pi\)
\(308\) 13.7331 17.8973i 0.782516 1.01980i
\(309\) 0 0
\(310\) −0.147072 0.548880i −0.00835312 0.0311743i
\(311\) −2.59171 + 0.169869i −0.146962 + 0.00963242i −0.138707 0.990334i \(-0.544295\pi\)
−0.00825557 + 0.999966i \(0.502628\pi\)
\(312\) 0 0
\(313\) 0.362272 5.52720i 0.0204768 0.312416i −0.975318 0.220805i \(-0.929132\pi\)
0.995795 0.0916111i \(-0.0292017\pi\)
\(314\) 5.03754 + 2.08662i 0.284285 + 0.117755i
\(315\) 0 0
\(316\) 6.41033 9.59373i 0.360609 0.539690i
\(317\) −3.91901 + 3.43688i −0.220114 + 0.193035i −0.762300 0.647224i \(-0.775930\pi\)
0.542186 + 0.840258i \(0.317597\pi\)
\(318\) 0 0
\(319\) −2.62009 + 0.702051i −0.146697 + 0.0393073i
\(320\) −3.39492 2.97726i −0.189782 0.166434i
\(321\) 0 0
\(322\) −6.06766 + 3.50317i −0.338138 + 0.195224i
\(323\) 10.8815 + 20.8730i 0.605461 + 1.16141i
\(324\) 0 0
\(325\) −20.3537 + 8.43077i −1.12902 + 0.467655i
\(326\) −0.954144 2.81082i −0.0528451 0.155677i
\(327\) 0 0
\(328\) −0.344306 5.25310i −0.0190111 0.290054i
\(329\) 2.75027 8.10204i 0.151627 0.446680i
\(330\) 0 0
\(331\) 26.5414 3.49424i 1.45884 0.192061i 0.641018 0.767525i \(-0.278512\pi\)
0.817827 + 0.575465i \(0.195179\pi\)
\(332\) 7.80776 18.8496i 0.428507 1.03451i
\(333\) 0 0
\(334\) −4.33484 + 0.862253i −0.237192 + 0.0471804i
\(335\) −1.81035 0.892768i −0.0989102 0.0487771i
\(336\) 0 0
\(337\) −8.19640 + 9.34620i −0.446486 + 0.509120i −0.930677 0.365843i \(-0.880781\pi\)
0.484190 + 0.874963i \(0.339114\pi\)
\(338\) −0.532495 + 4.04470i −0.0289639 + 0.220003i
\(339\) 0 0
\(340\) −5.76147 + 2.53917i −0.312460 + 0.137706i
\(341\) 9.31380i 0.504371i
\(342\) 0 0
\(343\) 3.38035 16.9942i 0.182522 0.917599i
\(344\) −2.66969 + 9.96343i −0.143940 + 0.537192i
\(345\) 0 0
\(346\) −0.245628 0.0833795i −0.0132050 0.00448251i
\(347\) −2.41681 4.90080i −0.129741 0.263089i 0.822303 0.569050i \(-0.192689\pi\)
−0.952044 + 0.305961i \(0.901022\pi\)
\(348\) 0 0
\(349\) 0.0942739 + 0.716082i 0.00504637 + 0.0383310i 0.993783 0.111336i \(-0.0355131\pi\)
−0.988736 + 0.149667i \(0.952180\pi\)
\(350\) −3.26082 2.17881i −0.174298 0.116462i
\(351\) 0 0
\(352\) −8.54596 12.7899i −0.455501 0.681705i
\(353\) −4.90084 1.31318i −0.260846 0.0698934i 0.126026 0.992027i \(-0.459778\pi\)
−0.386872 + 0.922134i \(0.626444\pi\)
\(354\) 0 0
\(355\) 1.56976 + 0.206663i 0.0833143 + 0.0109685i
\(356\) 12.7462 22.0771i 0.675547 1.17008i
\(357\) 0 0
\(358\) −1.16288 2.01417i −0.0614603 0.106452i
\(359\) 8.31165 + 20.0661i 0.438672 + 1.05905i 0.976408 + 0.215934i \(0.0692798\pi\)
−0.537736 + 0.843113i \(0.680720\pi\)
\(360\) 0 0
\(361\) 9.61205 9.61205i 0.505897 0.505897i
\(362\) 0.487621 0.988798i 0.0256288 0.0519701i
\(363\) 0 0
\(364\) 24.0323 11.8514i 1.25963 0.621182i
\(365\) −3.55204 + 2.72558i −0.185922 + 0.142663i
\(366\) 0 0
\(367\) 31.0245 + 2.03345i 1.61946 + 0.106145i 0.847953 0.530071i \(-0.177835\pi\)
0.771511 + 0.636217i \(0.219502\pi\)
\(368\) −5.13410 25.8109i −0.267633 1.34548i
\(369\) 0 0
\(370\) −0.846275 0.846275i −0.0439958 0.0439958i
\(371\) −25.3571 + 8.60757i −1.31647 + 0.446883i
\(372\) 0 0
\(373\) −13.1878 7.61399i −0.682839 0.394237i 0.118085 0.993004i \(-0.462325\pi\)
−0.800924 + 0.598766i \(0.795658\pi\)
\(374\) −5.60789 + 0.866523i −0.289977 + 0.0448068i
\(375\) 0 0
\(376\) −3.05841 2.34680i −0.157725 0.121027i
\(377\) −3.16001 0.628565i −0.162749 0.0323728i
\(378\) 0 0
\(379\) −4.09074 + 2.73335i −0.210127 + 0.140403i −0.656181 0.754604i \(-0.727829\pi\)
0.446053 + 0.895006i \(0.352829\pi\)
\(380\) 5.74820 + 6.55456i 0.294876 + 0.336242i
\(381\) 0 0
\(382\) −1.64791 2.14760i −0.0843147 0.109881i
\(383\) −23.2804 30.3396i −1.18957 1.55028i −0.763806 0.645446i \(-0.776672\pi\)
−0.425765 0.904834i \(-0.639995\pi\)
\(384\) 0 0
\(385\) −6.32006 7.20665i −0.322100 0.367285i
\(386\) 2.82374 1.88676i 0.143725 0.0960337i
\(387\) 0 0
\(388\) −21.4185 4.26040i −1.08736 0.216289i
\(389\) −10.3440 7.93725i −0.524463 0.402435i 0.312314 0.949979i \(-0.398896\pi\)
−0.836777 + 0.547545i \(0.815563\pi\)
\(390\) 0 0
\(391\) −31.1369 7.59968i −1.57466 0.384332i
\(392\) 0.864006 + 0.498834i 0.0436389 + 0.0251949i
\(393\) 0 0
\(394\) 4.58298 1.55571i 0.230887 0.0783757i
\(395\) −3.46667 3.46667i −0.174427 0.174427i
\(396\) 0 0
\(397\) 5.01160 + 25.1950i 0.251525 + 1.26450i 0.875561 + 0.483107i \(0.160492\pi\)
−0.624036 + 0.781395i \(0.714508\pi\)
\(398\) −3.02170 0.198053i −0.151464 0.00992749i
\(399\) 0 0
\(400\) 11.6865 8.96737i 0.584325 0.448368i
\(401\) 34.8860 17.2039i 1.74212 0.859121i 0.765720 0.643174i \(-0.222383\pi\)
0.976405 0.215947i \(-0.0692837\pi\)
\(402\) 0 0
\(403\) −4.89299 + 9.92201i −0.243737 + 0.494251i
\(404\) −1.43008 + 1.43008i −0.0711489 + 0.0711489i
\(405\) 0 0
\(406\) −0.219486 0.529886i −0.0108929 0.0262978i
\(407\) 9.80821 + 16.9883i 0.486175 + 0.842080i
\(408\) 0 0
\(409\) −15.8253 + 27.4102i −0.782509 + 1.35535i 0.147967 + 0.988992i \(0.452727\pi\)
−0.930476 + 0.366353i \(0.880606\pi\)
\(410\) −1.07918 0.142076i −0.0532967 0.00701665i
\(411\) 0 0
\(412\) −24.3276 6.51856i −1.19853 0.321146i
\(413\) −15.2444 22.8149i −0.750130 1.12265i
\(414\) 0 0
\(415\) −7.20808 4.81629i −0.353831 0.236422i
\(416\) −2.38485 18.1147i −0.116927 0.888149i
\(417\) 0 0
\(418\) 3.47512 + 7.04685i 0.169974 + 0.344673i
\(419\) −12.6991 4.31077i −0.620393 0.210595i −0.00649318 0.999979i \(-0.502067\pi\)
−0.613900 + 0.789384i \(0.710400\pi\)
\(420\) 0 0
\(421\) 3.72424 13.8990i 0.181508 0.677398i −0.813843 0.581085i \(-0.802628\pi\)
0.995351 0.0963130i \(-0.0307050\pi\)
\(422\) −0.524898 + 2.63884i −0.0255516 + 0.128457i
\(423\) 0 0
\(424\) 12.0652i 0.585937i
\(425\) −3.89332 17.5127i −0.188854 0.849492i
\(426\) 0 0
\(427\) 0.114034 0.866178i 0.00551852 0.0419173i
\(428\) −21.5523 + 24.5757i −1.04177 + 1.18791i
\(429\) 0 0
\(430\) 1.91282 + 0.943296i 0.0922442 + 0.0454898i
\(431\) −19.9425 + 3.96681i −0.960596 + 0.191074i −0.650395 0.759597i \(-0.725396\pi\)
−0.310201 + 0.950671i \(0.600396\pi\)
\(432\) 0 0
\(433\) −4.60087 + 11.1075i −0.221104 + 0.533792i −0.995040 0.0994712i \(-0.968285\pi\)
0.773937 + 0.633263i \(0.218285\pi\)
\(434\) −1.95250 + 0.257051i −0.0937228 + 0.0123388i
\(435\) 0 0
\(436\) −3.26803 + 9.62729i −0.156510 + 0.461064i
\(437\) 2.90255 + 44.2843i 0.138848 + 2.11841i
\(438\) 0 0
\(439\) 13.0083 + 38.3213i 0.620854 + 1.82898i 0.556165 + 0.831072i \(0.312272\pi\)
0.0646889 + 0.997905i \(0.479394\pi\)
\(440\) −3.99003 + 1.65272i −0.190217 + 0.0787905i
\(441\) 0 0
\(442\) −6.42932 2.02299i −0.305812 0.0962238i
\(443\) 19.5513 11.2880i 0.928912 0.536308i 0.0424450 0.999099i \(-0.486485\pi\)
0.886467 + 0.462791i \(0.153152\pi\)
\(444\) 0 0
\(445\) −8.14371 7.14184i −0.386049 0.338556i
\(446\) 2.38494 0.639042i 0.112930 0.0302595i
\(447\) 0 0
\(448\) −11.7657 + 10.3182i −0.555877 + 0.487491i
\(449\) 16.1218 24.1280i 0.760836 1.13867i −0.225551 0.974231i \(-0.572418\pi\)
0.986387 0.164440i \(-0.0525817\pi\)
\(450\) 0 0
\(451\) 16.4829 + 6.82742i 0.776148 + 0.321491i
\(452\) 0.935592 14.2744i 0.0440066 0.671410i
\(453\) 0 0
\(454\) 0.713489 0.0467645i 0.0334857 0.00219477i
\(455\) −2.94677 10.9975i −0.138147 0.515571i
\(456\) 0 0
\(457\) 20.6995 26.9761i 0.968282 1.26189i 0.00318605 0.999995i \(-0.498986\pi\)
0.965096 0.261895i \(-0.0843475\pi\)
\(458\) −6.31957 −0.295294
\(459\) 0 0
\(460\) −11.8705 −0.553464
\(461\) −16.5894 + 21.6197i −0.772646 + 1.00693i 0.226810 + 0.973939i \(0.427170\pi\)
−0.999456 + 0.0329923i \(0.989496\pi\)
\(462\) 0 0
\(463\) 6.69584 + 24.9892i 0.311182 + 1.16135i 0.927492 + 0.373843i \(0.121960\pi\)
−0.616310 + 0.787504i \(0.711373\pi\)
\(464\) 2.14968 0.140898i 0.0997965 0.00654100i
\(465\) 0 0
\(466\) 0.386557 5.89772i 0.0179069 0.273207i
\(467\) 28.3180 + 11.7297i 1.31040 + 0.542787i 0.925002 0.379962i \(-0.124063\pi\)
0.385401 + 0.922749i \(0.374063\pi\)
\(468\) 0 0
\(469\) −3.88651 + 5.81657i −0.179462 + 0.268584i
\(470\) −0.599283 + 0.525557i −0.0276429 + 0.0242421i
\(471\) 0 0
\(472\) −11.9418 + 3.19979i −0.549665 + 0.147282i
\(473\) −26.2822 23.0488i −1.20845 1.05979i
\(474\) 0 0
\(475\) −21.5130 + 12.4205i −0.987084 + 0.569893i
\(476\) 6.11837 + 20.9452i 0.280435 + 0.960021i
\(477\) 0 0
\(478\) −6.51340 + 2.69794i −0.297916 + 0.123401i
\(479\) −8.98937 26.4818i −0.410735 1.20999i −0.933832 0.357713i \(-0.883557\pi\)
0.523097 0.852273i \(-0.324777\pi\)
\(480\) 0 0
\(481\) 1.52391 + 23.2504i 0.0694845 + 1.06013i
\(482\) 0.860020 2.53354i 0.0391728 0.115399i
\(483\) 0 0
\(484\) 13.4768 1.77426i 0.612583 0.0806481i
\(485\) −3.55092 + 8.57268i −0.161239 + 0.389265i
\(486\) 0 0
\(487\) 10.4183 2.07233i 0.472098 0.0939062i 0.0466932 0.998909i \(-0.485132\pi\)
0.425405 + 0.905003i \(0.360132\pi\)
\(488\) −0.353038 0.174099i −0.0159813 0.00788110i
\(489\) 0 0
\(490\) 0.136012 0.155092i 0.00614439 0.00700633i
\(491\) 3.71899 28.2485i 0.167836 1.27484i −0.675463 0.737394i \(-0.736056\pi\)
0.843299 0.537445i \(-0.180610\pi\)
\(492\) 0 0
\(493\) 0.949491 2.44588i 0.0427629 0.110157i
\(494\) 9.33267i 0.419897i
\(495\) 0 0
\(496\) 1.44309 7.25493i 0.0647969 0.325756i
\(497\) 1.42020 5.30026i 0.0637047 0.237749i
\(498\) 0 0
\(499\) −13.4460 4.56430i −0.601925 0.204326i 0.00380945 0.999993i \(-0.498787\pi\)
−0.605735 + 0.795667i \(0.707121\pi\)
\(500\) −6.31574 12.8071i −0.282448 0.572749i
\(501\) 0 0
\(502\) −0.326017 2.47635i −0.0145509 0.110525i
\(503\) −16.9393 11.3185i −0.755288 0.504667i 0.117317 0.993095i \(-0.462571\pi\)
−0.872605 + 0.488427i \(0.837571\pi\)
\(504\) 0 0
\(505\) 0.477419 + 0.714508i 0.0212449 + 0.0317952i
\(506\) −10.3337 2.76892i −0.459391 0.123093i
\(507\) 0 0
\(508\) −8.39377 1.10506i −0.372413 0.0490291i
\(509\) −6.50648 + 11.2696i −0.288395 + 0.499514i −0.973427 0.228999i \(-0.926455\pi\)
0.685032 + 0.728513i \(0.259788\pi\)
\(510\) 0 0
\(511\) 7.75834 + 13.4378i 0.343209 + 0.594455i
\(512\) 7.93419 + 19.1548i 0.350645 + 0.846532i
\(513\) 0 0
\(514\) 6.42021 6.42021i 0.283183 0.283183i
\(515\) −4.73312 + 9.59782i −0.208566 + 0.422931i
\(516\) 0 0
\(517\) 11.7174 5.77837i 0.515330 0.254133i
\(518\) −3.29065 + 2.52500i −0.144583 + 0.110942i
\(519\) 0 0
\(520\) −5.11884 0.335507i −0.224476 0.0147129i
\(521\) 1.11715 + 5.61631i 0.0489434 + 0.246055i 0.997510 0.0705218i \(-0.0224664\pi\)
−0.948567 + 0.316577i \(0.897466\pi\)
\(522\) 0 0
\(523\) −3.38005 3.38005i −0.147799 0.147799i 0.629335 0.777134i \(-0.283327\pi\)
−0.777134 + 0.629335i \(0.783327\pi\)
\(524\) 8.62206 2.92679i 0.376656 0.127858i
\(525\) 0 0
\(526\) 4.35232 + 2.51281i 0.189770 + 0.109564i
\(527\) −7.26830 5.32275i −0.316612 0.231863i
\(528\) 0 0
\(529\) −29.6928 22.7841i −1.29099 0.990614i
\(530\) 2.44673 + 0.486684i 0.106279 + 0.0211402i
\(531\) 0 0
\(532\) 25.1219 16.7859i 1.08917 0.727762i
\(533\) 13.9724 + 15.9325i 0.605214 + 0.690114i
\(534\) 0 0
\(535\) 8.45502 + 11.0188i 0.365542 + 0.476384i
\(536\) 1.91876 + 2.50057i 0.0828777 + 0.108008i
\(537\) 0 0
\(538\) −0.560117 0.638691i −0.0241483 0.0275359i
\(539\) −2.81127 + 1.87843i −0.121090 + 0.0809098i
\(540\) 0 0
\(541\) 36.6083 + 7.28184i 1.57391 + 0.313071i 0.903390 0.428819i \(-0.141070\pi\)
0.670522 + 0.741890i \(0.266070\pi\)
\(542\) 2.31723 + 1.77808i 0.0995337 + 0.0763749i
\(543\) 0 0
\(544\) 14.8649 + 0.640234i 0.637329 + 0.0274498i
\(545\) 3.74113 + 2.15995i 0.160253 + 0.0925219i
\(546\) 0 0
\(547\) −1.97164 + 0.669282i −0.0843013 + 0.0286164i −0.363271 0.931683i \(-0.618340\pi\)
0.278970 + 0.960300i \(0.410007\pi\)
\(548\) −17.3095 17.3095i −0.739425 0.739425i
\(549\) 0 0
\(550\) −1.16826 5.87323i −0.0498147 0.250436i
\(551\) −3.62515 0.237605i −0.154437 0.0101223i
\(552\) 0 0
\(553\) −13.4798 + 10.3434i −0.573218 + 0.439845i
\(554\) −5.69003 + 2.80601i −0.241746 + 0.119216i
\(555\) 0 0
\(556\) 10.2684 20.8223i 0.435477 0.883060i
\(557\) 10.6020 10.6020i 0.449223 0.449223i −0.445873 0.895096i \(-0.647107\pi\)
0.895096 + 0.445873i \(0.147107\pi\)
\(558\) 0 0
\(559\) −15.8898 38.3613i −0.672065 1.62251i
\(560\) 3.80636 + 6.59282i 0.160848 + 0.278597i
\(561\) 0 0
\(562\) −1.85536 + 3.21358i −0.0782637 + 0.135557i
\(563\) 15.8824 + 2.09096i 0.669365 + 0.0881236i 0.457547 0.889186i \(-0.348728\pi\)
0.211818 + 0.977309i \(0.432062\pi\)
\(564\) 0 0
\(565\) −5.87108 1.57315i −0.246998 0.0661830i
\(566\) 4.97215 + 7.44135i 0.208995 + 0.312783i
\(567\) 0 0
\(568\) −2.05566 1.37355i −0.0862537 0.0576329i
\(569\) 5.40322 + 41.0416i 0.226515 + 1.72055i 0.606095 + 0.795393i \(0.292735\pi\)
−0.379580 + 0.925159i \(0.623931\pi\)
\(570\) 0 0
\(571\) −7.85328 15.9249i −0.328649 0.666435i 0.668350 0.743847i \(-0.267001\pi\)
−0.996999 + 0.0774121i \(0.975334\pi\)
\(572\) 38.7440 + 13.1518i 1.61997 + 0.549905i
\(573\) 0 0
\(574\) −0.976356 + 3.64381i −0.0407523 + 0.152090i
\(575\) 6.59866 33.1737i 0.275183 1.38344i
\(576\) 0 0
\(577\) 2.00687i 0.0835470i −0.999127 0.0417735i \(-0.986699\pi\)
0.999127 0.0417735i \(-0.0133008\pi\)
\(578\) 2.52864 4.87149i 0.105178 0.202627i
\(579\) 0 0
\(580\) 0.126836 0.963415i 0.00526658 0.0400036i
\(581\) −19.8095 + 22.5885i −0.821838 + 0.937127i
\(582\) 0 0
\(583\) −36.6721 18.0847i −1.51880 0.748991i
\(584\) 6.85686 1.36391i 0.283739 0.0564392i
\(585\) 0 0
\(586\) −0.937577 + 2.26351i −0.0387310 + 0.0935048i
\(587\) 15.3995 2.02738i 0.635605 0.0836790i 0.194164 0.980969i \(-0.437801\pi\)
0.441441 + 0.897290i \(0.354467\pi\)
\(588\) 0 0
\(589\) −4.00969 + 11.8122i −0.165216 + 0.486712i
\(590\) 0.167186 + 2.55077i 0.00688296 + 0.105014i
\(591\) 0 0
\(592\) −5.00785 14.7527i −0.205821 0.606330i
\(593\) 0.256906 0.106414i 0.0105499 0.00436989i −0.377402 0.926049i \(-0.623183\pi\)
0.387952 + 0.921680i \(0.373183\pi\)
\(594\) 0 0
\(595\) 9.23578 0.813515i 0.378630 0.0333509i
\(596\) 11.7832 6.80306i 0.482660 0.278664i
\(597\) 0 0
\(598\) −9.55392 8.37856i −0.390689 0.342625i
\(599\) 38.6629 10.3597i 1.57972 0.423286i 0.640884 0.767638i \(-0.278568\pi\)
0.938841 + 0.344352i \(0.111901\pi\)
\(600\) 0 0
\(601\) −27.3605 + 23.9945i −1.11606 + 0.978757i −0.999895 0.0144733i \(-0.995393\pi\)
−0.116163 + 0.993230i \(0.537060\pi\)
\(602\) 4.10648 6.14578i 0.167367 0.250483i
\(603\) 0 0
\(604\) 9.30053 + 3.85240i 0.378433 + 0.156752i
\(605\) 0.377750 5.76335i 0.0153577 0.234313i
\(606\) 0 0
\(607\) 19.4159 1.27259i 0.788068 0.0516527i 0.333946 0.942592i \(-0.391620\pi\)
0.454122 + 0.890940i \(0.349953\pi\)
\(608\) −5.33215 19.8999i −0.216247 0.807046i
\(609\) 0 0
\(610\) −0.0495468 + 0.0645706i −0.00200609 + 0.00261439i
\(611\) 15.5182 0.627800
\(612\) 0 0
\(613\) −8.57112 −0.346184 −0.173092 0.984906i \(-0.555376\pi\)
−0.173092 + 0.984906i \(0.555376\pi\)
\(614\) 3.34437 4.35846i 0.134968 0.175893i
\(615\) 0 0
\(616\) 3.87387 + 14.4575i 0.156082 + 0.582508i
\(617\) 28.9062 1.89461i 1.16372 0.0762742i 0.528727 0.848792i \(-0.322670\pi\)
0.634993 + 0.772518i \(0.281003\pi\)
\(618\) 0 0
\(619\) −1.58675 + 24.2092i −0.0637769 + 0.973048i 0.839327 + 0.543627i \(0.182949\pi\)
−0.903104 + 0.429422i \(0.858717\pi\)
\(620\) −3.08258 1.27685i −0.123799 0.0512794i
\(621\) 0 0
\(622\) 0.465880 0.697238i 0.0186801 0.0279567i
\(623\) −28.2235 + 24.7513i −1.13075 + 0.991640i
\(624\) 0 0
\(625\) 15.1538 4.06045i 0.606152 0.162418i
\(626\) 1.34456 + 1.17914i 0.0537393 + 0.0471281i
\(627\) 0 0
\(628\) 27.7268 16.0081i 1.10642 0.638791i
\(629\) −18.8626 2.05454i −0.752103 0.0819198i
\(630\) 0 0
\(631\) 10.5557 4.37233i 0.420217 0.174060i −0.162547 0.986701i \(-0.551971\pi\)
0.582764 + 0.812641i \(0.301971\pi\)
\(632\) 2.46075 + 7.24913i 0.0978833 + 0.288355i
\(633\) 0 0
\(634\) −0.110070 1.67934i −0.00437143 0.0666951i
\(635\) −1.15631 + 3.40638i −0.0458867 + 0.135178i
\(636\) 0 0
\(637\) −3.98169 + 0.524199i −0.157760 + 0.0207695i
\(638\) 0.335143 0.809107i 0.0132684 0.0320328i
\(639\) 0 0
\(640\) 7.13170 1.41858i 0.281905 0.0560744i
\(641\) −1.10937 0.547079i −0.0438174 0.0216083i 0.420248 0.907409i \(-0.361943\pi\)
−0.464065 + 0.885801i \(0.653610\pi\)
\(642\) 0 0
\(643\) 23.8732 27.2222i 0.941467 1.07354i −0.0557101 0.998447i \(-0.517742\pi\)
0.997177 0.0750900i \(-0.0239244\pi\)
\(644\) −5.36975 + 40.7873i −0.211598 + 1.60724i
\(645\) 0 0
\(646\) −7.48521 1.31529i −0.294502 0.0517495i
\(647\) 42.3860i 1.66637i 0.552997 + 0.833183i \(0.313484\pi\)
−0.552997 + 0.833183i \(0.686516\pi\)
\(648\) 0 0
\(649\) 8.17394 41.0932i 0.320855 1.61305i
\(650\) 1.84095 6.87051i 0.0722079 0.269484i
\(651\) 0 0
\(652\) −16.5043 5.60247i −0.646360 0.219410i
\(653\) 21.0967 + 42.7798i 0.825576 + 1.67410i 0.734852 + 0.678227i \(0.237251\pi\)
0.0907239 + 0.995876i \(0.471082\pi\)
\(654\) 0 0
\(655\) −0.504983 3.83573i −0.0197313 0.149874i
\(656\) −11.7814 7.87206i −0.459985 0.307352i
\(657\) 0 0
\(658\) 1.53474 + 2.29689i 0.0598302 + 0.0895422i
\(659\) −12.3752 3.31593i −0.482070 0.129170i 0.00959616 0.999954i \(-0.496945\pi\)
−0.491666 + 0.870784i \(0.663612\pi\)
\(660\) 0 0
\(661\) 36.4196 + 4.79473i 1.41656 + 0.186493i 0.799614 0.600515i \(-0.205038\pi\)
0.616943 + 0.787008i \(0.288371\pi\)
\(662\) −4.32158 + 7.48519i −0.167963 + 0.290920i
\(663\) 0 0
\(664\) 6.76836 + 11.7231i 0.262663 + 0.454946i
\(665\) −4.91284 11.8606i −0.190512 0.459936i
\(666\) 0 0
\(667\) 3.49778 3.49778i 0.135435 0.135435i
\(668\) −11.4781 + 23.2753i −0.444101 + 0.900549i
\(669\) 0 0
\(670\) 0.584496 0.288241i 0.0225810 0.0111357i
\(671\) 1.05835 0.812099i 0.0408571 0.0313507i
\(672\) 0 0
\(673\) −8.70566 0.570599i −0.335578 0.0219950i −0.103317 0.994648i \(-0.532946\pi\)
−0.232261 + 0.972653i \(0.574612\pi\)
\(674\) −0.783003 3.93642i −0.0301602 0.151625i
\(675\) 0 0
\(676\) 16.9382 + 16.9382i 0.651471 + 0.651471i
\(677\) 18.3702 6.23584i 0.706024 0.239663i 0.0547439 0.998500i \(-0.482566\pi\)
0.651280 + 0.758838i \(0.274232\pi\)
\(678\) 0 0
\(679\) 27.8496 + 16.0790i 1.06877 + 0.617055i
\(680\) 0.990511 4.05825i 0.0379844 0.155627i
\(681\) 0 0
\(682\) −2.38568 1.83059i −0.0913522 0.0700970i
\(683\) −21.7757 4.33145i −0.833223 0.165738i −0.239996 0.970774i \(-0.577146\pi\)
−0.593227 + 0.805036i \(0.702146\pi\)
\(684\) 0 0
\(685\) −8.64833 + 5.77863i −0.330436 + 0.220790i
\(686\) 3.68856 + 4.20600i 0.140830 + 0.160586i
\(687\) 0 0
\(688\) 16.9011 + 22.0259i 0.644349 + 0.839731i
\(689\) −29.5661 38.5313i −1.12638 1.46793i
\(690\) 0 0
\(691\) 2.35737 + 2.68807i 0.0896787 + 0.102259i 0.794939 0.606690i \(-0.207503\pi\)
−0.705260 + 0.708949i \(0.749170\pi\)
\(692\) −1.26640 + 0.846183i −0.0481414 + 0.0321671i
\(693\) 0 0
\(694\) 1.73032 + 0.344183i 0.0656822 + 0.0130650i
\(695\) −7.82618 6.00524i −0.296864 0.227792i
\(696\) 0 0
\(697\) −14.7478 + 8.96108i −0.558612 + 0.339425i
\(698\) −0.201949 0.116596i −0.00764390 0.00441321i
\(699\) 0 0
\(700\) −21.8054 + 7.40193i −0.824166 + 0.279767i
\(701\) 21.3393 + 21.3393i 0.805976 + 0.805976i 0.984022 0.178046i \(-0.0569776\pi\)
−0.178046 + 0.984022i \(0.556978\pi\)
\(702\) 0 0
\(703\) 5.12555 + 25.7679i 0.193314 + 0.971854i
\(704\) −23.8443 1.56284i −0.898666 0.0589017i
\(705\) 0 0
\(706\) 1.29961 0.997222i 0.0489113 0.0375310i
\(707\) 2.67103 1.31721i 0.100455 0.0495387i
\(708\) 0 0
\(709\) −0.645378 + 1.30870i −0.0242377 + 0.0491491i −0.908655 0.417548i \(-0.862890\pi\)
0.884417 + 0.466697i \(0.154556\pi\)
\(710\) −0.361467 + 0.361467i −0.0135656 + 0.0135656i
\(711\) 0 0
\(712\) 6.47257 + 15.6262i 0.242570 + 0.585616i
\(713\) −8.49242 14.7093i −0.318044 0.550868i
\(714\) 0 0
\(715\) 8.69247 15.0558i 0.325080 0.563055i
\(716\) −13.5394 1.78250i −0.505992 0.0666152i
\(717\) 0 0
\(718\) −6.77344 1.81494i −0.252782 0.0677328i
\(719\) 2.37660 + 3.55683i 0.0886321 + 0.132647i 0.873136 0.487476i \(-0.162082\pi\)
−0.784504 + 0.620124i \(0.787082\pi\)
\(720\) 0 0
\(721\) 30.8373 + 20.6048i 1.14844 + 0.767363i
\(722\) 0.572857 + 4.35128i 0.0213195 + 0.161938i
\(723\) 0 0
\(724\) −2.86318 5.80595i −0.106409 0.215776i
\(725\) 2.62189 + 0.890012i 0.0973746 + 0.0330542i
\(726\) 0 0
\(727\) −2.44443 + 9.12275i −0.0906591 + 0.338344i −0.996326 0.0856465i \(-0.972704\pi\)
0.905667 + 0.423991i \(0.139371\pi\)
\(728\) −3.46838 + 17.4367i −0.128547 + 0.646247i
\(729\) 0 0
\(730\) 1.44554i 0.0535017i
\(731\) 33.0068 7.33787i 1.22080 0.271401i
\(732\) 0 0
\(733\) 0.0329235 0.250079i 0.00121606 0.00923686i −0.990826 0.135143i \(-0.956851\pi\)
0.992042 + 0.125906i \(0.0401839\pi\)
\(734\) −6.61860 + 7.54707i −0.244297 + 0.278567i
\(735\) 0 0
\(736\) 25.1586 + 12.4069i 0.927360 + 0.457323i
\(737\) −10.4765 + 2.08391i −0.385908 + 0.0767619i
\(738\) 0 0
\(739\) 5.65622 13.6553i 0.208067 0.502319i −0.785051 0.619431i \(-0.787363\pi\)
0.993119 + 0.117111i \(0.0373635\pi\)
\(740\) −6.96724 + 0.917254i −0.256121 + 0.0337189i
\(741\) 0 0
\(742\) 2.77906 8.18686i 0.102023 0.300549i
\(743\) 0.579925 + 8.84795i 0.0212754 + 0.324600i 0.995209 + 0.0977677i \(0.0311702\pi\)
−0.973934 + 0.226832i \(0.927163\pi\)
\(744\) 0 0
\(745\) −1.85832 5.47442i −0.0680834 0.200567i
\(746\) 4.54230 1.88148i 0.166305 0.0688859i
\(747\) 0 0
\(748\) −16.0087 + 29.2209i −0.585336 + 1.06842i
\(749\) 41.6856 24.0672i 1.52316 0.879396i
\(750\) 0 0
\(751\) 34.5661 + 30.3137i 1.26134 + 1.10616i 0.989609 + 0.143788i \(0.0459283\pi\)
0.271728 + 0.962374i \(0.412405\pi\)
\(752\) −10.0225 + 2.68552i −0.365483 + 0.0979308i
\(753\) 0 0
\(754\) 0.782092 0.685876i 0.0284821 0.0249781i
\(755\) 2.37639 3.55652i 0.0864857 0.129435i
\(756\) 0 0
\(757\) −31.0055 12.8429i −1.12691 0.466782i −0.260182 0.965560i \(-0.583783\pi\)
−0.866730 + 0.498777i \(0.833783\pi\)
\(758\) 0.103890 1.58505i 0.00377344 0.0575716i
\(759\) 0 0
\(760\) −5.77184 + 0.378306i −0.209367 + 0.0137226i
\(761\) 9.36216 + 34.9400i 0.339378 + 1.26658i 0.899044 + 0.437858i \(0.144263\pi\)
−0.559666 + 0.828718i \(0.689071\pi\)
\(762\) 0 0
\(763\) 9.11397 11.8776i 0.329948 0.429997i
\(764\) −15.8947 −0.575051
\(765\) 0 0
\(766\) 12.3470 0.446114
\(767\) 30.2960 39.4825i 1.09392 1.42563i
\(768\) 0 0
\(769\) −5.87798 21.9369i −0.211965 0.791065i −0.987213 0.159408i \(-0.949042\pi\)
0.775248 0.631657i \(-0.217625\pi\)
\(770\) 3.08813 0.202406i 0.111288 0.00729422i
\(771\) 0 0
\(772\) 1.30419 19.8982i 0.0469390 0.716150i
\(773\) −38.1699 15.8105i −1.37288 0.568664i −0.430310 0.902681i \(-0.641596\pi\)
−0.942567 + 0.334017i \(0.891596\pi\)
\(774\) 0 0
\(775\) 5.28190 7.90492i 0.189731 0.283953i
\(776\) 10.8935 9.55333i 0.391053 0.342944i
\(777\) 0 0
\(778\) 4.06616 1.08952i 0.145779 0.0390613i
\(779\) 17.9650 + 15.7549i 0.643663 + 0.564477i
\(780\) 0 0
\(781\) 7.25616 4.18935i 0.259646 0.149907i
\(782\) 8.06645 6.48184i 0.288456 0.231790i
\(783\) 0 0
\(784\) 2.48087 1.02761i 0.0886026 0.0367004i
\(785\) −4.37274 12.8817i −0.156070 0.459767i
\(786\) 0 0
\(787\) −0.414301 6.32101i −0.0147682 0.225320i −0.998863 0.0476749i \(-0.984819\pi\)
0.984095 0.177645i \(-0.0568478\pi\)
\(788\) 9.13472 26.9100i 0.325411 0.958629i
\(789\) 0 0
\(790\) 1.56933 0.206606i 0.0558342 0.00735071i
\(791\) −8.06124 + 19.4616i −0.286625 + 0.691973i
\(792\) 0 0
\(793\) 1.55410 0.309129i 0.0551876 0.0109775i
\(794\) −7.43857 3.66830i −0.263985 0.130183i
\(795\) 0 0
\(796\) −11.7236 + 13.3682i −0.415532 + 0.473824i
\(797\) −0.0599584 + 0.455429i −0.00212384 + 0.0161321i −0.992474 0.122456i \(-0.960923\pi\)
0.990350 + 0.138588i \(0.0442564\pi\)
\(798\) 0 0
\(799\) −2.18705 + 12.4463i −0.0773723 + 0.440318i
\(800\) 15.7017i 0.555138i
\(801\) 0 0
\(802\) −2.45005 + 12.3172i −0.0865141 + 0.434936i
\(803\) −6.13223 + 22.8858i −0.216402 + 0.807622i
\(804\) 0 0
\(805\) 16.5524 + 5.61878i 0.583395 + 0.198036i
\(806\) −1.57977 3.20345i −0.0556449 0.112837i
\(807\) 0 0
\(808\) −0.175145 1.33036i −0.00616159 0.0468019i
\(809\) 10.9710 + 7.33062i 0.385721 + 0.257731i 0.733279 0.679928i \(-0.237989\pi\)
−0.347558 + 0.937659i \(0.612989\pi\)
\(810\) 0 0
\(811\) −6.77215 10.1352i −0.237802 0.355897i 0.693303 0.720646i \(-0.256155\pi\)
−0.931106 + 0.364749i \(0.881155\pi\)
\(812\) −3.25294 0.871623i −0.114156 0.0305880i
\(813\) 0 0
\(814\) −6.27923 0.826676i −0.220087 0.0289750i
\(815\) −3.70285 + 6.41353i −0.129705 + 0.224656i
\(816\) 0 0
\(817\) −23.4094 40.5463i −0.818991 1.41853i
\(818\) −3.91056 9.44092i −0.136729 0.330094i
\(819\) 0 0
\(820\) −4.51933 + 4.51933i −0.157822 + 0.157822i
\(821\) −8.36253 + 16.9575i −0.291854 + 0.591822i −0.992578 0.121611i \(-0.961194\pi\)
0.700723 + 0.713433i \(0.252861\pi\)
\(822\) 0 0
\(823\) −33.0876 + 16.3170i −1.15336 + 0.568774i −0.915418 0.402505i \(-0.868140\pi\)
−0.237942 + 0.971279i \(0.576473\pi\)
\(824\) 13.2571 10.1725i 0.461833 0.354377i
\(825\) 0 0
\(826\) 8.84015 + 0.579414i 0.307588 + 0.0201604i
\(827\) −3.07795 15.4739i −0.107031 0.538079i −0.996679 0.0814328i \(-0.974050\pi\)
0.889648 0.456647i \(-0.150950\pi\)
\(828\) 0 0
\(829\) −11.0403 11.0403i −0.383447 0.383447i 0.488896 0.872342i \(-0.337400\pi\)
−0.872342 + 0.488896i \(0.837400\pi\)
\(830\) 2.65039 0.899685i 0.0919962 0.0312285i
\(831\) 0 0
\(832\) −24.5803 14.1915i −0.852170 0.492001i
\(833\) 0.140726 3.26737i 0.00487586 0.113208i
\(834\) 0 0
\(835\) 8.74818 + 6.71271i 0.302743 + 0.232303i
\(836\) 45.2484 + 9.00047i 1.56495 + 0.311288i
\(837\) 0 0
\(838\) 3.60015 2.40554i 0.124365 0.0830981i
\(839\) −16.5293 18.8481i −0.570656 0.650708i 0.392469 0.919765i \(-0.371621\pi\)
−0.963124 + 0.269057i \(0.913288\pi\)
\(840\) 0 0
\(841\) −17.4076 22.6860i −0.600261 0.782276i
\(842\) 2.82817 + 3.68575i 0.0974653 + 0.127019i
\(843\) 0 0
\(844\) 10.4164 + 11.8776i 0.358548 + 0.408845i
\(845\) 8.46284 5.65469i 0.291131 0.194527i
\(846\) 0 0
\(847\) −19.6321 3.90507i −0.674568 0.134180i
\(848\) 25.7634 + 19.7690i 0.884720 + 0.678870i
\(849\) 0 0
\(850\) 5.25100 + 2.44481i 0.180108 + 0.0838564i
\(851\) −30.9803 17.8865i −1.06199 0.613140i
\(852\) 0 0
\(853\) 0.129609 0.0439962i 0.00443771 0.00150640i −0.319220 0.947681i \(-0.603421\pi\)
0.323657 + 0.946174i \(0.395087\pi\)
\(854\) 0.199453 + 0.199453i 0.00682515 + 0.00682515i
\(855\) 0 0
\(856\) −4.23100 21.2707i −0.144613 0.727017i
\(857\) −40.4206 2.64931i −1.38074 0.0904986i −0.643147 0.765743i \(-0.722372\pi\)
−0.737594 + 0.675244i \(0.764038\pi\)
\(858\) 0 0
\(859\) 31.0264 23.8074i 1.05861 0.812297i 0.0758341 0.997120i \(-0.475838\pi\)
0.982772 + 0.184824i \(0.0591714\pi\)
\(860\) 11.2315 5.53877i 0.382992 0.188871i
\(861\) 0 0
\(862\) 2.90355 5.88781i 0.0988953 0.200540i
\(863\) 30.7086 30.7086i 1.04533 1.04533i 0.0464096 0.998922i \(-0.485222\pi\)
0.998922 0.0464096i \(-0.0147779\pi\)
\(864\) 0 0
\(865\) 0.247657 + 0.597898i 0.00842061 + 0.0203291i
\(866\) −1.94083 3.36162i −0.0659522 0.114233i
\(867\) 0 0
\(868\) −5.78172 + 10.0142i −0.196244 + 0.339905i
\(869\) −25.7222 3.38639i −0.872564 0.114875i
\(870\) 0 0
\(871\) −12.2555 3.28384i −0.415261 0.111269i
\(872\) −3.74759 5.60866i −0.126909 0.189933i
\(873\) 0 0
\(874\) −11.9137 7.96045i −0.402986 0.269266i
\(875\) 2.74467 + 20.8478i 0.0927868 + 0.704786i
\(876\) 0 0
\(877\) 19.2988 + 39.1341i 0.651675 + 1.32147i 0.932313 + 0.361652i \(0.117787\pi\)
−0.280638 + 0.959814i \(0.590546\pi\)
\(878\) −12.3725 4.19991i −0.417553 0.141740i
\(879\) 0 0
\(880\) −3.00857 + 11.2281i −0.101419 + 0.378500i
\(881\) −0.892792 + 4.48837i −0.0300789 + 0.151217i −0.992906 0.118901i \(-0.962063\pi\)
0.962827 + 0.270118i \(0.0870628\pi\)
\(882\) 0 0
\(883\) 12.1431i 0.408647i −0.978903 0.204324i \(-0.934500\pi\)
0.978903 0.204324i \(-0.0654995\pi\)
\(884\) −32.4053 + 22.7189i −1.08991 + 0.764120i
\(885\) 0 0
\(886\) −0.951396 + 7.22657i −0.0319628 + 0.242781i
\(887\) 3.13535 3.57518i 0.105275 0.120043i −0.696803 0.717263i \(-0.745395\pi\)
0.802077 + 0.597220i \(0.203728\pi\)
\(888\) 0 0
\(889\) 11.1813 + 5.51402i 0.375010 + 0.184934i
\(890\) 3.42996 0.682261i 0.114972 0.0228694i
\(891\) 0 0
\(892\) 5.54802 13.3941i 0.185762 0.448468i
\(893\) 17.3481 2.28393i 0.580534 0.0764287i
\(894\) 0 0
\(895\) −1.86517 + 5.49460i −0.0623456 + 0.183664i
\(896\) −1.64818 25.1464i −0.0550620 0.840083i
\(897\) 0 0
\(898\) 3.01157 + 8.87178i 0.100497 + 0.296055i
\(899\) 1.28456 0.532081i 0.0428424 0.0177459i
\(900\) 0 0
\(901\) 35.0707 18.2829i 1.16837 0.609093i
\(902\) −4.98845 + 2.88008i −0.166097 + 0.0958963i
\(903\) 0 0
\(904\) 7.13576 + 6.25789i 0.237332 + 0.208134i
\(905\) −2.65688 + 0.711909i −0.0883177 + 0.0236647i
\(906\) 0 0
\(907\) 0.788543 0.691533i 0.0261831 0.0229620i −0.646154 0.763207i \(-0.723624\pi\)
0.672337 + 0.740245i \(0.265290\pi\)
\(908\) 2.33251 3.49084i 0.0774069 0.115848i
\(909\) 0 0
\(910\) 3.39612 + 1.40672i 0.112580 + 0.0466323i
\(911\) −1.91386 + 29.1998i −0.0634088 + 0.967432i 0.841073 + 0.540921i \(0.181924\pi\)
−0.904482 + 0.426511i \(0.859742\pi\)
\(912\) 0 0
\(913\) −45.7777 + 3.00043i −1.51502 + 0.0992996i
\(914\) 2.84137 + 10.6041i 0.0939840 + 0.350753i
\(915\) 0 0
\(916\) −22.5892 + 29.4388i −0.746367 + 0.972684i
\(917\) −13.4081 −0.442774
\(918\) 0 0
\(919\) 1.45071 0.0478547 0.0239273 0.999714i \(-0.492383\pi\)
0.0239273 + 0.999714i \(0.492383\pi\)
\(920\) 4.79449 6.24830i 0.158070 0.206000i
\(921\) 0 0
\(922\) −2.27718 8.49856i −0.0749950 0.279885i
\(923\) 9.93088 0.650904i 0.326879 0.0214248i
\(924\) 0 0
\(925\) 1.30961 19.9808i 0.0430598 0.656965i
\(926\) −7.71688 3.19644i −0.253593 0.105041i
\(927\) 0 0
\(928\) −1.27577 + 1.90932i −0.0418791 + 0.0626766i
\(929\) 17.9009 15.6987i 0.587311 0.515058i −0.313317 0.949648i \(-0.601440\pi\)
0.900628 + 0.434591i \(0.143107\pi\)
\(930\) 0 0
\(931\) −4.37406 + 1.17203i −0.143354 + 0.0384116i
\(932\) −26.0919 22.8820i −0.854668 0.749524i
\(933\) 0 0
\(934\) −8.57031 + 4.94807i −0.280429 + 0.161906i
\(935\) 10.8503 + 9.09362i 0.354844 + 0.297393i
\(936\) 0 0
\(937\) 25.8156 10.6932i 0.843357 0.349330i 0.0811809 0.996699i \(-0.474131\pi\)
0.762176 + 0.647369i \(0.224131\pi\)
\(938\) −0.726002 2.13873i −0.0237048 0.0698321i
\(939\) 0 0
\(940\) 0.306105 + 4.67026i 0.00998405 + 0.152327i
\(941\) 12.0191 35.4071i 0.391811 1.15424i −0.554834 0.831961i \(-0.687218\pi\)
0.946645 0.322277i \(-0.104448\pi\)
\(942\) 0 0
\(943\) −32.2567 + 4.24668i −1.05042 + 0.138291i
\(944\) −12.7341 + 30.7428i −0.414459 + 1.00059i
\(945\) 0 0
\(946\) 11.0695 2.20186i 0.359900 0.0715886i
\(947\) 39.7620 + 19.6085i 1.29209 + 0.637190i 0.952831 0.303502i \(-0.0981560\pi\)
0.339262 + 0.940692i \(0.389823\pi\)
\(948\) 0 0
\(949\) −18.5557 + 21.1587i −0.602344 + 0.686841i
\(950\) 1.04685 7.95164i 0.0339644 0.257985i
\(951\) 0 0
\(952\) −13.4962 5.23922i −0.437414 0.169804i
\(953\) 26.1473i 0.846993i 0.905898 + 0.423496i \(0.139197\pi\)
−0.905898 + 0.423496i \(0.860803\pi\)
\(954\) 0 0
\(955\) −1.31757 + 6.62389i −0.0426357 + 0.214344i
\(956\) −10.7141 + 39.9854i −0.346518 + 1.29322i
\(957\) 0 0
\(958\) 8.55000 + 2.90233i 0.276238 + 0.0937701i
\(959\) 15.9434 + 32.3299i 0.514838 + 1.04399i
\(960\) 0 0
\(961\) 3.42317 + 26.0015i 0.110425 + 0.838759i
\(962\) −6.25498 4.17945i −0.201669 0.134751i
\(963\) 0 0
\(964\) −8.72798 13.0623i −0.281109 0.420710i
\(965\) −8.18415 2.19294i −0.263457 0.0705932i
\(966\) 0 0
\(967\) −25.3968 3.34356i −0.816707 0.107521i −0.289413 0.957204i \(-0.593460\pi\)
−0.527294 + 0.849683i \(0.676793\pi\)
\(968\) −4.50937 + 7.81046i −0.144937 + 0.251038i
\(969\) 0 0
\(970\) −1.49792 2.59448i −0.0480953 0.0833036i
\(971\) −2.58935 6.25124i −0.0830962 0.200612i 0.876870 0.480727i \(-0.159627\pi\)
−0.959966 + 0.280115i \(0.909627\pi\)
\(972\) 0 0
\(973\) −24.1744 + 24.1744i −0.774997 + 0.774997i
\(974\) −1.51686 + 3.07589i −0.0486034 + 0.0985580i
\(975\) 0 0
\(976\) −0.950222 + 0.468597i −0.0304159 + 0.0149994i
\(977\) 10.8454 8.32199i 0.346976 0.266244i −0.420540 0.907274i \(-0.638159\pi\)
0.767516 + 0.641030i \(0.221493\pi\)
\(978\) 0 0
\(979\) −57.1975 3.74892i −1.82804 0.119816i
\(980\) −0.236300 1.18796i −0.00754834 0.0379481i
\(981\) 0 0
\(982\) 6.50474 + 6.50474i 0.207575 + 0.207575i
\(983\) −9.28400 + 3.15149i −0.296114 + 0.100517i −0.465543 0.885025i \(-0.654141\pi\)
0.169429 + 0.985542i \(0.445808\pi\)
\(984\) 0 0
\(985\) −10.4571 6.03743i −0.333192 0.192369i
\(986\) 0.439879 + 0.723936i 0.0140086 + 0.0230548i
\(987\) 0 0
\(988\) 43.4749 + 33.3594i 1.38312 + 1.06130i
\(989\) 62.5237 + 12.4367i 1.98814 + 0.395465i
\(990\) 0 0
\(991\) −25.8145 + 17.2487i −0.820024 + 0.547922i −0.893337 0.449387i \(-0.851643\pi\)
0.0733136 + 0.997309i \(0.476643\pi\)
\(992\) 5.19877 + 5.92806i 0.165061 + 0.188216i
\(993\) 0 0
\(994\) 1.07849 + 1.40552i 0.0342078 + 0.0445805i
\(995\) 4.59919 + 5.99378i 0.145804 + 0.190016i
\(996\) 0 0
\(997\) −18.0484 20.5803i −0.571600 0.651784i 0.391738 0.920077i \(-0.371874\pi\)
−0.963338 + 0.268292i \(0.913541\pi\)
\(998\) 3.81188 2.54702i 0.120663 0.0806244i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.422.7 256
3.2 odd 2 153.2.s.a.14.10 yes 256
9.2 odd 6 inner 459.2.y.a.116.7 256
9.7 even 3 153.2.s.a.65.10 yes 256
17.11 odd 16 inner 459.2.y.a.368.7 256
51.11 even 16 153.2.s.a.113.10 yes 256
153.11 even 48 inner 459.2.y.a.62.7 256
153.79 odd 48 153.2.s.a.11.10 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.10 256 153.79 odd 48
153.2.s.a.14.10 yes 256 3.2 odd 2
153.2.s.a.65.10 yes 256 9.7 even 3
153.2.s.a.113.10 yes 256 51.11 even 16
459.2.y.a.62.7 256 153.11 even 48 inner
459.2.y.a.116.7 256 9.2 odd 6 inner
459.2.y.a.368.7 256 17.11 odd 16 inner
459.2.y.a.422.7 256 1.1 even 1 trivial