Properties

Label 459.2.y.a.368.4
Level $459$
Weight $2$
Character 459.368
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(44,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([40, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.44"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 368.4
Character \(\chi\) \(=\) 459.368
Dual form 459.2.y.a.116.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73496 + 0.228412i) q^{2} +(1.02607 - 0.274934i) q^{4} +(-1.19800 - 2.42931i) q^{5} +(-1.42204 - 0.701273i) q^{7} +(1.51606 - 0.627973i) q^{8} +(2.63338 + 3.94113i) q^{10} +(2.75958 - 0.936750i) q^{11} +(-0.0154499 - 0.0576598i) q^{13} +(2.62737 + 0.891870i) q^{14} +(-4.32677 + 2.49806i) q^{16} +(-3.87687 + 1.40353i) q^{17} +(-1.06733 - 0.442104i) q^{19} +(-1.89714 - 2.16327i) q^{20} +(-4.57380 + 2.25555i) q^{22} +(-4.90225 + 5.58995i) q^{23} +(-1.42254 + 1.85389i) q^{25} +(0.0399752 + 0.0965087i) q^{26} +(-1.65192 - 0.328587i) q^{28} +(0.539809 - 8.23590i) q^{29} +(-0.835738 + 2.46201i) q^{31} +(4.33245 - 3.32441i) q^{32} +(6.40564 - 3.32059i) q^{34} +4.29471i q^{35} +(0.970339 + 4.87822i) q^{37} +(1.95277 + 0.523242i) q^{38} +(-3.34179 - 2.93067i) q^{40} +(-10.7925 + 0.707376i) q^{41} +(-7.37322 - 5.65767i) q^{43} +(2.57397 - 1.71987i) q^{44} +(7.22841 - 10.8181i) q^{46} +(0.0354488 - 0.132297i) q^{47} +(-2.73091 - 3.55900i) q^{49} +(2.04460 - 3.54135i) q^{50} +(-0.0317053 - 0.0549153i) q^{52} +(-3.58381 + 8.65209i) q^{53} +(-5.58164 - 5.58164i) q^{55} +(-2.59628 - 0.170169i) q^{56} +(0.944630 + 14.4123i) q^{58} +(-0.271422 + 2.06166i) q^{59} +(-3.05066 + 6.18613i) q^{61} +(0.887622 - 4.46238i) q^{62} +(0.308284 - 0.308284i) q^{64} +(-0.121565 + 0.106609i) q^{65} +(4.28070 + 2.47146i) q^{67} +(-3.59206 + 2.50600i) q^{68} +(-0.980963 - 7.45116i) q^{70} +(-6.84006 + 1.36057i) q^{71} +(-2.68314 - 1.79281i) q^{73} +(-2.79775 - 8.24189i) q^{74} +(-1.21671 - 0.160183i) q^{76} +(-4.58115 - 0.603120i) q^{77} +(-0.385543 - 1.13577i) q^{79} +(11.2521 + 7.51839i) q^{80} +(18.5629 - 3.69240i) q^{82} +(0.972852 + 7.38954i) q^{83} +(8.05411 + 7.73670i) q^{85} +(14.0845 + 8.13171i) q^{86} +(3.59543 - 3.15311i) q^{88} +(10.1512 - 10.1512i) q^{89} +(-0.0184649 + 0.0928292i) q^{91} +(-3.49318 + 7.08347i) q^{92} +(-0.0312842 + 0.237627i) q^{94} +(0.204661 + 3.12253i) q^{95} +(-12.5228 - 0.820787i) q^{97} +(5.55095 + 5.55095i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73496 + 0.228412i −1.22680 + 0.161512i −0.715947 0.698154i \(-0.754005\pi\)
−0.510856 + 0.859666i \(0.670672\pi\)
\(3\) 0 0
\(4\) 1.02607 0.274934i 0.513035 0.137467i
\(5\) −1.19800 2.42931i −0.535764 1.08642i −0.981536 0.191275i \(-0.938738\pi\)
0.445773 0.895146i \(-0.352929\pi\)
\(6\) 0 0
\(7\) −1.42204 0.701273i −0.537481 0.265056i 0.153226 0.988191i \(-0.451034\pi\)
−0.690707 + 0.723135i \(0.742700\pi\)
\(8\) 1.51606 0.627973i 0.536009 0.222022i
\(9\) 0 0
\(10\) 2.63338 + 3.94113i 0.832747 + 1.24629i
\(11\) 2.75958 0.936750i 0.832044 0.282441i 0.127266 0.991869i \(-0.459380\pi\)
0.704778 + 0.709428i \(0.251047\pi\)
\(12\) 0 0
\(13\) −0.0154499 0.0576598i −0.00428503 0.0159920i 0.963750 0.266806i \(-0.0859683\pi\)
−0.968035 + 0.250814i \(0.919302\pi\)
\(14\) 2.62737 + 0.891870i 0.702193 + 0.238362i
\(15\) 0 0
\(16\) −4.32677 + 2.49806i −1.08169 + 0.624515i
\(17\) −3.87687 + 1.40353i −0.940279 + 0.340405i
\(18\) 0 0
\(19\) −1.06733 0.442104i −0.244863 0.101426i 0.256877 0.966444i \(-0.417307\pi\)
−0.501740 + 0.865019i \(0.667307\pi\)
\(20\) −1.89714 2.16327i −0.424213 0.483722i
\(21\) 0 0
\(22\) −4.57380 + 2.25555i −0.975137 + 0.480884i
\(23\) −4.90225 + 5.58995i −1.02219 + 1.16558i −0.0361041 + 0.999348i \(0.511495\pi\)
−0.986086 + 0.166236i \(0.946839\pi\)
\(24\) 0 0
\(25\) −1.42254 + 1.85389i −0.284508 + 0.370778i
\(26\) 0.0399752 + 0.0965087i 0.00783978 + 0.0189269i
\(27\) 0 0
\(28\) −1.65192 0.328587i −0.312183 0.0620970i
\(29\) 0.539809 8.23590i 0.100240 1.52937i −0.590958 0.806703i \(-0.701250\pi\)
0.691198 0.722666i \(-0.257083\pi\)
\(30\) 0 0
\(31\) −0.835738 + 2.46201i −0.150103 + 0.442189i −0.995809 0.0914603i \(-0.970847\pi\)
0.845706 + 0.533650i \(0.179180\pi\)
\(32\) 4.33245 3.32441i 0.765876 0.587677i
\(33\) 0 0
\(34\) 6.40564 3.32059i 1.09856 0.569476i
\(35\) 4.29471i 0.725938i
\(36\) 0 0
\(37\) 0.970339 + 4.87822i 0.159523 + 0.801975i 0.974831 + 0.222947i \(0.0715677\pi\)
−0.815308 + 0.579028i \(0.803432\pi\)
\(38\) 1.95277 + 0.523242i 0.316780 + 0.0848810i
\(39\) 0 0
\(40\) −3.34179 2.93067i −0.528384 0.463380i
\(41\) −10.7925 + 0.707376i −1.68550 + 0.110474i −0.877771 0.479080i \(-0.840970\pi\)
−0.807729 + 0.589554i \(0.799304\pi\)
\(42\) 0 0
\(43\) −7.37322 5.65767i −1.12441 0.862787i −0.132680 0.991159i \(-0.542358\pi\)
−0.991726 + 0.128372i \(0.959025\pi\)
\(44\) 2.57397 1.71987i 0.388041 0.259281i
\(45\) 0 0
\(46\) 7.22841 10.8181i 1.06577 1.59504i
\(47\) 0.0354488 0.132297i 0.00517074 0.0192975i −0.963292 0.268455i \(-0.913487\pi\)
0.968463 + 0.249157i \(0.0801536\pi\)
\(48\) 0 0
\(49\) −2.73091 3.55900i −0.390131 0.508428i
\(50\) 2.04460 3.54135i 0.289150 0.500823i
\(51\) 0 0
\(52\) −0.0317053 0.0549153i −0.00439674 0.00761538i
\(53\) −3.58381 + 8.65209i −0.492275 + 1.18846i 0.461285 + 0.887252i \(0.347389\pi\)
−0.953560 + 0.301204i \(0.902611\pi\)
\(54\) 0 0
\(55\) −5.58164 5.58164i −0.752629 0.752629i
\(56\) −2.59628 0.170169i −0.346943 0.0227398i
\(57\) 0 0
\(58\) 0.944630 + 14.4123i 0.124036 + 1.89242i
\(59\) −0.271422 + 2.06166i −0.0353362 + 0.268405i 0.964652 + 0.263527i \(0.0848859\pi\)
−0.999988 + 0.00487761i \(0.998447\pi\)
\(60\) 0 0
\(61\) −3.05066 + 6.18613i −0.390597 + 0.792052i −1.00000 0.000808619i \(-0.999743\pi\)
0.609403 + 0.792861i \(0.291409\pi\)
\(62\) 0.887622 4.46238i 0.112728 0.566723i
\(63\) 0 0
\(64\) 0.308284 0.308284i 0.0385355 0.0385355i
\(65\) −0.121565 + 0.106609i −0.0150782 + 0.0132233i
\(66\) 0 0
\(67\) 4.28070 + 2.47146i 0.522970 + 0.301937i 0.738149 0.674638i \(-0.235700\pi\)
−0.215179 + 0.976575i \(0.569033\pi\)
\(68\) −3.59206 + 2.50600i −0.435601 + 0.303897i
\(69\) 0 0
\(70\) −0.980963 7.45116i −0.117248 0.890584i
\(71\) −6.84006 + 1.36057i −0.811766 + 0.161470i −0.583484 0.812125i \(-0.698311\pi\)
−0.228282 + 0.973595i \(0.573311\pi\)
\(72\) 0 0
\(73\) −2.68314 1.79281i −0.314037 0.209833i 0.388555 0.921425i \(-0.372974\pi\)
−0.702592 + 0.711592i \(0.747974\pi\)
\(74\) −2.79775 8.24189i −0.325231 0.958101i
\(75\) 0 0
\(76\) −1.21671 0.160183i −0.139566 0.0183742i
\(77\) −4.58115 0.603120i −0.522070 0.0687319i
\(78\) 0 0
\(79\) −0.385543 1.13577i −0.0433769 0.127784i 0.923084 0.384599i \(-0.125660\pi\)
−0.966461 + 0.256815i \(0.917327\pi\)
\(80\) 11.2521 + 7.51839i 1.25802 + 0.840581i
\(81\) 0 0
\(82\) 18.5629 3.69240i 2.04993 0.407757i
\(83\) 0.972852 + 7.38954i 0.106784 + 0.811108i 0.958096 + 0.286447i \(0.0924744\pi\)
−0.851312 + 0.524660i \(0.824192\pi\)
\(84\) 0 0
\(85\) 8.05411 + 7.73670i 0.873591 + 0.839162i
\(86\) 14.0845 + 8.13171i 1.51878 + 0.876865i
\(87\) 0 0
\(88\) 3.59543 3.15311i 0.383275 0.336123i
\(89\) 10.1512 10.1512i 1.07602 1.07602i 0.0791578 0.996862i \(-0.474777\pi\)
0.996862 0.0791578i \(-0.0252231\pi\)
\(90\) 0 0
\(91\) −0.0184649 + 0.0928292i −0.00193565 + 0.00973115i
\(92\) −3.49318 + 7.08347i −0.364189 + 0.738503i
\(93\) 0 0
\(94\) −0.0312842 + 0.237627i −0.00322672 + 0.0245093i
\(95\) 0.204661 + 3.12253i 0.0209978 + 0.320365i
\(96\) 0 0
\(97\) −12.5228 0.820787i −1.27150 0.0833383i −0.585337 0.810790i \(-0.699038\pi\)
−0.686159 + 0.727452i \(0.740705\pi\)
\(98\) 5.55095 + 5.55095i 0.560731 + 0.560731i
\(99\) 0 0
\(100\) −0.949925 + 2.29332i −0.0949925 + 0.229332i
\(101\) 6.17752 + 10.6998i 0.614686 + 1.06467i 0.990439 + 0.137948i \(0.0440507\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(102\) 0 0
\(103\) 3.53868 6.12918i 0.348677 0.603926i −0.637338 0.770584i \(-0.719964\pi\)
0.986015 + 0.166659i \(0.0532978\pi\)
\(104\) −0.0596318 0.0777137i −0.00584738 0.00762046i
\(105\) 0 0
\(106\) 4.24154 15.8296i 0.411975 1.53751i
\(107\) 7.68188 11.4967i 0.742635 1.11143i −0.247166 0.968973i \(-0.579499\pi\)
0.989801 0.142459i \(-0.0455008\pi\)
\(108\) 0 0
\(109\) 7.20324 4.81305i 0.689946 0.461007i −0.160523 0.987032i \(-0.551318\pi\)
0.850469 + 0.526025i \(0.176318\pi\)
\(110\) 10.9589 + 8.40903i 1.04489 + 0.801769i
\(111\) 0 0
\(112\) 7.90466 0.518099i 0.746921 0.0489558i
\(113\) −10.3302 9.05932i −0.971781 0.852229i 0.0172626 0.999851i \(-0.494505\pi\)
−0.989044 + 0.147622i \(0.952838\pi\)
\(114\) 0 0
\(115\) 19.4526 + 5.21232i 1.81397 + 0.486051i
\(116\) −1.71045 8.59901i −0.158811 0.798398i
\(117\) 0 0
\(118\) 3.63889i 0.334987i
\(119\) 6.49732 + 0.722871i 0.595608 + 0.0662654i
\(120\) 0 0
\(121\) −1.98912 + 1.52631i −0.180829 + 0.138755i
\(122\) 3.87979 11.4295i 0.351260 1.03478i
\(123\) 0 0
\(124\) −0.180635 + 2.75596i −0.0162215 + 0.247493i
\(125\) −7.07513 1.40733i −0.632819 0.125876i
\(126\) 0 0
\(127\) 8.29944 + 20.0366i 0.736456 + 1.77796i 0.619754 + 0.784796i \(0.287232\pi\)
0.116703 + 0.993167i \(0.462768\pi\)
\(128\) −7.11326 + 9.27018i −0.628729 + 0.819376i
\(129\) 0 0
\(130\) 0.186559 0.212730i 0.0163623 0.0186577i
\(131\) 17.6229 8.69067i 1.53972 0.759308i 0.542965 0.839755i \(-0.317302\pi\)
0.996759 + 0.0804478i \(0.0256350\pi\)
\(132\) 0 0
\(133\) 1.20776 + 1.37718i 0.104726 + 0.119417i
\(134\) −7.99136 3.31013i −0.690348 0.285952i
\(135\) 0 0
\(136\) −4.99619 + 4.56240i −0.428420 + 0.391223i
\(137\) 0.365975 0.211296i 0.0312673 0.0180522i −0.484285 0.874910i \(-0.660920\pi\)
0.515552 + 0.856858i \(0.327587\pi\)
\(138\) 0 0
\(139\) 0.803025 + 0.272590i 0.0681117 + 0.0231208i 0.355287 0.934757i \(-0.384383\pi\)
−0.287176 + 0.957878i \(0.592716\pi\)
\(140\) 1.18076 + 4.40667i 0.0997927 + 0.372431i
\(141\) 0 0
\(142\) 11.5565 3.92290i 0.969798 0.329202i
\(143\) −0.0966481 0.144644i −0.00808212 0.0120957i
\(144\) 0 0
\(145\) −20.6543 + 8.55528i −1.71524 + 0.710477i
\(146\) 5.06464 + 2.49760i 0.419152 + 0.206703i
\(147\) 0 0
\(148\) 2.33683 + 4.73861i 0.192086 + 0.389512i
\(149\) 10.8874 2.91728i 0.891933 0.238993i 0.216384 0.976308i \(-0.430574\pi\)
0.675549 + 0.737315i \(0.263907\pi\)
\(150\) 0 0
\(151\) 1.15066 0.151488i 0.0936397 0.0123279i −0.0835607 0.996503i \(-0.526629\pi\)
0.177200 + 0.984175i \(0.443296\pi\)
\(152\) −1.89577 −0.153767
\(153\) 0 0
\(154\) 8.08588 0.651579
\(155\) 6.98220 0.919224i 0.560824 0.0738339i
\(156\) 0 0
\(157\) −11.7048 + 3.13630i −0.934146 + 0.250304i −0.693622 0.720339i \(-0.743986\pi\)
−0.240524 + 0.970643i \(0.577319\pi\)
\(158\) 0.928326 + 1.88246i 0.0738536 + 0.149760i
\(159\) 0 0
\(160\) −13.2663 6.54222i −1.04879 0.517208i
\(161\) 10.8913 4.51131i 0.858353 0.355541i
\(162\) 0 0
\(163\) −2.09236 3.13144i −0.163886 0.245273i 0.740433 0.672130i \(-0.234621\pi\)
−0.904319 + 0.426857i \(0.859621\pi\)
\(164\) −10.8793 + 3.69304i −0.849534 + 0.288378i
\(165\) 0 0
\(166\) −3.37572 12.5984i −0.262007 0.977823i
\(167\) −0.503975 0.171077i −0.0389988 0.0132383i 0.301872 0.953348i \(-0.402389\pi\)
−0.340871 + 0.940110i \(0.610722\pi\)
\(168\) 0 0
\(169\) 11.2552 6.49822i 0.865788 0.499863i
\(170\) −15.7407 11.5832i −1.20726 0.888392i
\(171\) 0 0
\(172\) −9.12092 3.77801i −0.695464 0.288071i
\(173\) −6.47250 7.38048i −0.492095 0.561127i 0.451482 0.892280i \(-0.350896\pi\)
−0.943577 + 0.331153i \(0.892562\pi\)
\(174\) 0 0
\(175\) 3.32299 1.63872i 0.251194 0.123875i
\(176\) −9.59999 + 10.9467i −0.723627 + 0.825138i
\(177\) 0 0
\(178\) −15.2932 + 19.9305i −1.14628 + 1.49385i
\(179\) −4.85593 11.7232i −0.362949 0.876236i −0.994866 0.101200i \(-0.967732\pi\)
0.631917 0.775036i \(-0.282268\pi\)
\(180\) 0 0
\(181\) −24.9297 4.95882i −1.85301 0.368586i −0.862503 0.506052i \(-0.831104\pi\)
−0.990507 + 0.137466i \(0.956104\pi\)
\(182\) 0.0108325 0.165273i 0.000802962 0.0122508i
\(183\) 0 0
\(184\) −3.92178 + 11.5532i −0.289117 + 0.851712i
\(185\) 10.6883 8.20139i 0.785816 0.602978i
\(186\) 0 0
\(187\) −9.38376 + 7.50480i −0.686209 + 0.548805i
\(188\) 0.145492i 0.0106111i
\(189\) 0 0
\(190\) −1.06830 5.37072i −0.0775029 0.389633i
\(191\) −8.97182 2.40399i −0.649178 0.173947i −0.0808210 0.996729i \(-0.525754\pi\)
−0.568357 + 0.822782i \(0.692421\pi\)
\(192\) 0 0
\(193\) 8.79713 + 7.71488i 0.633231 + 0.555329i 0.914645 0.404258i \(-0.132470\pi\)
−0.281414 + 0.959586i \(0.590803\pi\)
\(194\) 21.9140 1.43632i 1.57334 0.103122i
\(195\) 0 0
\(196\) −3.78060 2.90095i −0.270043 0.207211i
\(197\) −18.8701 + 12.6086i −1.34444 + 0.898328i −0.999192 0.0401830i \(-0.987206\pi\)
−0.345250 + 0.938511i \(0.612206\pi\)
\(198\) 0 0
\(199\) 13.3536 19.9851i 0.946611 1.41670i 0.0378986 0.999282i \(-0.487934\pi\)
0.908713 0.417422i \(-0.137066\pi\)
\(200\) −0.992464 + 3.70392i −0.0701778 + 0.261907i
\(201\) 0 0
\(202\) −13.1617 17.1527i −0.926055 1.20686i
\(203\) −6.54324 + 11.3332i −0.459246 + 0.795437i
\(204\) 0 0
\(205\) 14.6479 + 25.3708i 1.02305 + 1.77198i
\(206\) −4.73950 + 11.4422i −0.330217 + 0.797213i
\(207\) 0 0
\(208\) 0.210886 + 0.210886i 0.0146223 + 0.0146223i
\(209\) −3.35953 0.220195i −0.232384 0.0152312i
\(210\) 0 0
\(211\) −1.57208 23.9852i −0.108226 1.65121i −0.614557 0.788873i \(-0.710665\pi\)
0.506331 0.862340i \(-0.331002\pi\)
\(212\) −1.29848 + 9.86296i −0.0891802 + 0.677391i
\(213\) 0 0
\(214\) −10.7018 + 21.7010i −0.731558 + 1.48345i
\(215\) −4.91110 + 24.6898i −0.334934 + 1.68383i
\(216\) 0 0
\(217\) 2.91499 2.91499i 0.197883 0.197883i
\(218\) −11.3980 + 9.99577i −0.771970 + 0.676999i
\(219\) 0 0
\(220\) −7.26174 4.19257i −0.489586 0.282663i
\(221\) 0.140824 + 0.201855i 0.00947287 + 0.0135783i
\(222\) 0 0
\(223\) −0.882741 6.70508i −0.0591127 0.449006i −0.995249 0.0973670i \(-0.968958\pi\)
0.936136 0.351639i \(-0.114375\pi\)
\(224\) −8.49223 + 1.68921i −0.567411 + 0.112865i
\(225\) 0 0
\(226\) 19.9917 + 13.3580i 1.32983 + 0.888564i
\(227\) −8.58329 25.2856i −0.569693 1.67826i −0.723636 0.690182i \(-0.757531\pi\)
0.153943 0.988080i \(-0.450803\pi\)
\(228\) 0 0
\(229\) −6.76991 0.891276i −0.447368 0.0588972i −0.0965234 0.995331i \(-0.530772\pi\)
−0.350845 + 0.936434i \(0.614106\pi\)
\(230\) −34.9402 4.59996i −2.30389 0.303312i
\(231\) 0 0
\(232\) −4.35354 12.8251i −0.285824 0.842010i
\(233\) −0.901442 0.602324i −0.0590554 0.0394596i 0.525692 0.850675i \(-0.323806\pi\)
−0.584747 + 0.811215i \(0.698806\pi\)
\(234\) 0 0
\(235\) −0.363858 + 0.0723759i −0.0237355 + 0.00472128i
\(236\) 0.288323 + 2.19003i 0.0187682 + 0.142559i
\(237\) 0 0
\(238\) −11.4377 + 0.229913i −0.741397 + 0.0149031i
\(239\) 2.06984 + 1.19502i 0.133887 + 0.0772995i 0.565447 0.824784i \(-0.308704\pi\)
−0.431561 + 0.902084i \(0.642037\pi\)
\(240\) 0 0
\(241\) −2.18057 + 1.91231i −0.140463 + 0.123183i −0.726694 0.686961i \(-0.758944\pi\)
0.586231 + 0.810144i \(0.300611\pi\)
\(242\) 3.10242 3.10242i 0.199431 0.199431i
\(243\) 0 0
\(244\) −1.42941 + 7.18612i −0.0915085 + 0.460044i
\(245\) −5.37427 + 10.8979i −0.343349 + 0.696244i
\(246\) 0 0
\(247\) −0.00900144 + 0.0683727i −0.000572748 + 0.00435045i
\(248\) 0.279043 + 4.25737i 0.0177193 + 0.270344i
\(249\) 0 0
\(250\) 12.5965 + 0.825620i 0.796675 + 0.0522168i
\(251\) −5.69148 5.69148i −0.359243 0.359243i 0.504291 0.863534i \(-0.331754\pi\)
−0.863534 + 0.504291i \(0.831754\pi\)
\(252\) 0 0
\(253\) −8.29176 + 20.0181i −0.521298 + 1.25853i
\(254\) −18.9758 32.8671i −1.19065 2.06226i
\(255\) 0 0
\(256\) 9.78783 16.9530i 0.611739 1.05956i
\(257\) −4.32173 5.63218i −0.269582 0.351326i 0.638870 0.769314i \(-0.279402\pi\)
−0.908452 + 0.417988i \(0.862735\pi\)
\(258\) 0 0
\(259\) 2.04110 7.61750i 0.126828 0.473329i
\(260\) −0.0954232 + 0.142811i −0.00591790 + 0.00885676i
\(261\) 0 0
\(262\) −28.5901 + 19.1033i −1.76630 + 1.18020i
\(263\) 4.47813 + 3.43619i 0.276133 + 0.211885i 0.737539 0.675305i \(-0.235988\pi\)
−0.461405 + 0.887189i \(0.652655\pi\)
\(264\) 0 0
\(265\) 25.3121 1.65904i 1.55491 0.101914i
\(266\) −2.40998 2.11349i −0.147765 0.129587i
\(267\) 0 0
\(268\) 5.07178 + 1.35898i 0.309808 + 0.0830129i
\(269\) 1.22383 + 6.15259i 0.0746180 + 0.375130i 0.999992 0.00392470i \(-0.00124927\pi\)
−0.925374 + 0.379055i \(0.876249\pi\)
\(270\) 0 0
\(271\) 16.0106i 0.972576i −0.873799 0.486288i \(-0.838351\pi\)
0.873799 0.486288i \(-0.161649\pi\)
\(272\) 13.2682 15.7574i 0.804504 0.955432i
\(273\) 0 0
\(274\) −0.586690 + 0.450183i −0.0354432 + 0.0271966i
\(275\) −2.18897 + 6.44851i −0.132000 + 0.388860i
\(276\) 0 0
\(277\) −0.190047 + 2.89956i −0.0114188 + 0.174218i 0.988340 + 0.152262i \(0.0486559\pi\)
−0.999759 + 0.0219554i \(0.993011\pi\)
\(278\) −1.45548 0.289513i −0.0872939 0.0173638i
\(279\) 0 0
\(280\) 2.69696 + 6.51104i 0.161174 + 0.389109i
\(281\) 2.72194 3.54730i 0.162377 0.211614i −0.705077 0.709130i \(-0.749088\pi\)
0.867455 + 0.497516i \(0.165754\pi\)
\(282\) 0 0
\(283\) −0.776633 + 0.885580i −0.0461660 + 0.0526422i −0.774462 0.632621i \(-0.781979\pi\)
0.728296 + 0.685263i \(0.240313\pi\)
\(284\) −6.64431 + 3.27661i −0.394267 + 0.194431i
\(285\) 0 0
\(286\) 0.200719 + 0.228876i 0.0118688 + 0.0135337i
\(287\) 15.8434 + 6.56255i 0.935206 + 0.387375i
\(288\) 0 0
\(289\) 13.0602 10.8826i 0.768249 0.640152i
\(290\) 33.8802 19.5608i 1.98952 1.14865i
\(291\) 0 0
\(292\) −3.24599 1.10186i −0.189957 0.0644818i
\(293\) −6.45324 24.0838i −0.377002 1.40699i −0.850397 0.526141i \(-0.823638\pi\)
0.473395 0.880850i \(-0.343028\pi\)
\(294\) 0 0
\(295\) 5.33358 1.81051i 0.310533 0.105412i
\(296\) 4.53449 + 6.78634i 0.263562 + 0.394448i
\(297\) 0 0
\(298\) −18.2229 + 7.54819i −1.05563 + 0.437255i
\(299\) 0.398055 + 0.196299i 0.0230201 + 0.0113523i
\(300\) 0 0
\(301\) 6.51745 + 13.2161i 0.375660 + 0.761762i
\(302\) −1.96176 + 0.525651i −0.112886 + 0.0302478i
\(303\) 0 0
\(304\) 5.72251 0.753383i 0.328208 0.0432095i
\(305\) 18.6827 1.06977
\(306\) 0 0
\(307\) −5.12708 −0.292618 −0.146309 0.989239i \(-0.546739\pi\)
−0.146309 + 0.989239i \(0.546739\pi\)
\(308\) −4.86639 + 0.640673i −0.277288 + 0.0365057i
\(309\) 0 0
\(310\) −11.9039 + 3.18964i −0.676095 + 0.181159i
\(311\) 5.66806 + 11.4937i 0.321406 + 0.651748i 0.996279 0.0861867i \(-0.0274681\pi\)
−0.674873 + 0.737934i \(0.735801\pi\)
\(312\) 0 0
\(313\) −15.1705 7.48129i −0.857490 0.422867i −0.0402672 0.999189i \(-0.512821\pi\)
−0.817223 + 0.576322i \(0.804488\pi\)
\(314\) 19.5910 8.11488i 1.10559 0.457949i
\(315\) 0 0
\(316\) −0.707856 1.05938i −0.0398200 0.0595949i
\(317\) 1.72745 0.586389i 0.0970231 0.0329349i −0.272506 0.962154i \(-0.587852\pi\)
0.369529 + 0.929219i \(0.379519\pi\)
\(318\) 0 0
\(319\) −6.22534 23.2333i −0.348552 1.30081i
\(320\) −1.11824 0.379593i −0.0625118 0.0212199i
\(321\) 0 0
\(322\) −17.8655 + 10.3147i −0.995606 + 0.574813i
\(323\) 4.75842 + 0.215948i 0.264765 + 0.0120157i
\(324\) 0 0
\(325\) 0.128873 + 0.0533809i 0.00714859 + 0.00296104i
\(326\) 4.34542 + 4.95500i 0.240671 + 0.274432i
\(327\) 0 0
\(328\) −15.9178 + 7.84981i −0.878915 + 0.433433i
\(329\) −0.143186 + 0.163272i −0.00789409 + 0.00900148i
\(330\) 0 0
\(331\) −0.0970129 + 0.126430i −0.00533231 + 0.00694920i −0.796012 0.605281i \(-0.793061\pi\)
0.790680 + 0.612230i \(0.209727\pi\)
\(332\) 3.02985 + 7.31471i 0.166285 + 0.401447i
\(333\) 0 0
\(334\) 0.913454 + 0.181697i 0.0499820 + 0.00994203i
\(335\) 0.875659 13.3600i 0.0478424 0.729933i
\(336\) 0 0
\(337\) 1.32080 3.89096i 0.0719487 0.211954i −0.905007 0.425397i \(-0.860134\pi\)
0.976956 + 0.213443i \(0.0684678\pi\)
\(338\) −18.0431 + 13.8450i −0.981418 + 0.753068i
\(339\) 0 0
\(340\) 10.3912 + 5.72403i 0.563540 + 0.310429i
\(341\) 7.57697i 0.410316i
\(342\) 0 0
\(343\) 3.55293 + 17.8618i 0.191840 + 0.964445i
\(344\) −14.7311 3.94719i −0.794249 0.212818i
\(345\) 0 0
\(346\) 12.9153 + 11.3264i 0.694333 + 0.608914i
\(347\) 12.3796 0.811402i 0.664572 0.0435584i 0.270616 0.962687i \(-0.412773\pi\)
0.393956 + 0.919129i \(0.371106\pi\)
\(348\) 0 0
\(349\) 15.5355 + 11.9208i 0.831595 + 0.638105i 0.934253 0.356612i \(-0.116068\pi\)
−0.102658 + 0.994717i \(0.532735\pi\)
\(350\) −5.39096 + 3.60212i −0.288159 + 0.192541i
\(351\) 0 0
\(352\) 8.84159 13.2324i 0.471258 0.705288i
\(353\) −9.11017 + 33.9996i −0.484885 + 1.80962i 0.0956908 + 0.995411i \(0.469494\pi\)
−0.580576 + 0.814206i \(0.697173\pi\)
\(354\) 0 0
\(355\) 11.4997 + 14.9867i 0.610340 + 0.795410i
\(356\) 7.62488 13.2067i 0.404118 0.699953i
\(357\) 0 0
\(358\) 11.1026 + 19.2302i 0.586790 + 1.01635i
\(359\) 4.36840 10.5462i 0.230555 0.556609i −0.765688 0.643212i \(-0.777601\pi\)
0.996243 + 0.0866031i \(0.0276012\pi\)
\(360\) 0 0
\(361\) −12.4913 12.4913i −0.657436 0.657436i
\(362\) 44.3847 + 2.90913i 2.33281 + 0.152900i
\(363\) 0 0
\(364\) 0.00657570 + 0.100326i 0.000344660 + 0.00525850i
\(365\) −1.14090 + 8.66597i −0.0597173 + 0.453598i
\(366\) 0 0
\(367\) −4.23405 + 8.58579i −0.221015 + 0.448175i −0.978935 0.204173i \(-0.934549\pi\)
0.757919 + 0.652348i \(0.226216\pi\)
\(368\) 7.24688 36.4325i 0.377770 1.89918i
\(369\) 0 0
\(370\) −16.6704 + 16.6704i −0.866654 + 0.866654i
\(371\) 11.1638 9.79039i 0.579596 0.508292i
\(372\) 0 0
\(373\) 14.4471 + 8.34104i 0.748043 + 0.431883i 0.824986 0.565153i \(-0.191183\pi\)
−0.0769434 + 0.997035i \(0.524516\pi\)
\(374\) 14.5663 15.1639i 0.753205 0.784107i
\(375\) 0 0
\(376\) −0.0293363 0.222831i −0.00151290 0.0114916i
\(377\) −0.483221 + 0.0961186i −0.0248871 + 0.00495036i
\(378\) 0 0
\(379\) 16.8002 + 11.2256i 0.862970 + 0.576618i 0.906391 0.422439i \(-0.138826\pi\)
−0.0434215 + 0.999057i \(0.513826\pi\)
\(380\) 1.06849 + 3.14766i 0.0548123 + 0.161472i
\(381\) 0 0
\(382\) 16.1149 + 2.12156i 0.824509 + 0.108549i
\(383\) 1.74146 + 0.229268i 0.0889845 + 0.0117150i 0.174887 0.984589i \(-0.444044\pi\)
−0.0859025 + 0.996304i \(0.527377\pi\)
\(384\) 0 0
\(385\) 4.02307 + 11.8516i 0.205035 + 0.604012i
\(386\) −17.0249 11.3756i −0.866542 0.579005i
\(387\) 0 0
\(388\) −13.0749 + 2.60076i −0.663778 + 0.132034i
\(389\) 1.50614 + 11.4403i 0.0763643 + 0.580045i 0.986259 + 0.165206i \(0.0528288\pi\)
−0.909895 + 0.414839i \(0.863838\pi\)
\(390\) 0 0
\(391\) 11.1597 28.5519i 0.564373 1.44393i
\(392\) −6.37519 3.68072i −0.321996 0.185904i
\(393\) 0 0
\(394\) 29.8590 26.1857i 1.50428 1.31921i
\(395\) −2.29726 + 2.29726i −0.115588 + 0.115588i
\(396\) 0 0
\(397\) 2.52247 12.6813i 0.126599 0.636457i −0.864424 0.502764i \(-0.832316\pi\)
0.991023 0.133693i \(-0.0426836\pi\)
\(398\) −18.6031 + 37.7235i −0.932492 + 1.89091i
\(399\) 0 0
\(400\) 1.52387 11.5749i 0.0761934 0.578747i
\(401\) 2.29851 + 35.0685i 0.114782 + 1.75124i 0.535947 + 0.844252i \(0.319955\pi\)
−0.421165 + 0.906984i \(0.638379\pi\)
\(402\) 0 0
\(403\) 0.154871 + 0.0101508i 0.00771467 + 0.000505646i
\(404\) 9.28030 + 9.28030i 0.461712 + 0.461712i
\(405\) 0 0
\(406\) 8.76363 21.1573i 0.434932 1.05002i
\(407\) 7.24740 + 12.5529i 0.359240 + 0.622223i
\(408\) 0 0
\(409\) −2.34951 + 4.06948i −0.116176 + 0.201223i −0.918249 0.396003i \(-0.870397\pi\)
0.802073 + 0.597226i \(0.203730\pi\)
\(410\) −31.2085 40.6717i −1.54128 2.00863i
\(411\) 0 0
\(412\) 1.94581 7.26186i 0.0958632 0.357766i
\(413\) 1.83176 2.74142i 0.0901349 0.134896i
\(414\) 0 0
\(415\) 16.7860 11.2161i 0.823994 0.550575i
\(416\) −0.258621 0.198447i −0.0126799 0.00972964i
\(417\) 0 0
\(418\) 5.87895 0.385327i 0.287549 0.0188470i
\(419\) 1.50546 + 1.32025i 0.0735466 + 0.0644987i 0.695330 0.718691i \(-0.255258\pi\)
−0.621783 + 0.783189i \(0.713592\pi\)
\(420\) 0 0
\(421\) −13.3323 3.57239i −0.649778 0.174108i −0.0811497 0.996702i \(-0.525859\pi\)
−0.568629 + 0.822594i \(0.692526\pi\)
\(422\) 8.20601 + 41.2544i 0.399462 + 2.00823i
\(423\) 0 0
\(424\) 15.3676i 0.746319i
\(425\) 2.91301 9.18385i 0.141302 0.445482i
\(426\) 0 0
\(427\) 8.67632 6.65758i 0.419877 0.322183i
\(428\) 4.72129 13.9085i 0.228212 0.672291i
\(429\) 0 0
\(430\) 2.88113 43.9576i 0.138941 2.11982i
\(431\) 19.9058 + 3.95950i 0.958827 + 0.190722i 0.649609 0.760269i \(-0.274933\pi\)
0.309218 + 0.950991i \(0.399933\pi\)
\(432\) 0 0
\(433\) −9.44212 22.7953i −0.453759 1.09547i −0.970882 0.239560i \(-0.922997\pi\)
0.517122 0.855912i \(-0.327003\pi\)
\(434\) −4.39158 + 5.72322i −0.210803 + 0.274723i
\(435\) 0 0
\(436\) 6.06775 6.91895i 0.290593 0.331357i
\(437\) 7.70368 3.79903i 0.368517 0.181732i
\(438\) 0 0
\(439\) −8.45940 9.64610i −0.403745 0.460383i 0.513861 0.857873i \(-0.328215\pi\)
−0.917606 + 0.397490i \(0.869881\pi\)
\(440\) −11.9672 4.95699i −0.570516 0.236315i
\(441\) 0 0
\(442\) −0.290431 0.318045i −0.0138144 0.0151279i
\(443\) 18.7164 10.8059i 0.889241 0.513404i 0.0155470 0.999879i \(-0.495051\pi\)
0.873694 + 0.486475i \(0.161718\pi\)
\(444\) 0 0
\(445\) −36.8214 12.4992i −1.74550 0.592519i
\(446\) 3.06304 + 11.4314i 0.145039 + 0.541294i
\(447\) 0 0
\(448\) −0.654584 + 0.222201i −0.0309262 + 0.0104980i
\(449\) −11.8403 17.7202i −0.558778 0.836270i 0.439294 0.898343i \(-0.355229\pi\)
−0.998072 + 0.0620736i \(0.980229\pi\)
\(450\) 0 0
\(451\) −29.1200 + 12.0619i −1.37121 + 0.567973i
\(452\) −13.0902 6.45537i −0.615711 0.303635i
\(453\) 0 0
\(454\) 20.6672 + 41.9090i 0.969960 + 1.96688i
\(455\) 0.247632 0.0663528i 0.0116092 0.00311067i
\(456\) 0 0
\(457\) 14.0614 1.85122i 0.657765 0.0865964i 0.205747 0.978605i \(-0.434038\pi\)
0.452018 + 0.892009i \(0.350704\pi\)
\(458\) 11.9491 0.558346
\(459\) 0 0
\(460\) 21.3928 0.997445
\(461\) −27.1781 + 3.57807i −1.26581 + 0.166647i −0.733376 0.679823i \(-0.762057\pi\)
−0.532436 + 0.846470i \(0.678723\pi\)
\(462\) 0 0
\(463\) 4.10532 1.10002i 0.190790 0.0511221i −0.162159 0.986765i \(-0.551846\pi\)
0.352949 + 0.935643i \(0.385179\pi\)
\(464\) 18.2382 + 36.9833i 0.846685 + 1.71691i
\(465\) 0 0
\(466\) 1.70154 + 0.839109i 0.0788225 + 0.0388710i
\(467\) −17.7184 + 7.33920i −0.819910 + 0.339618i −0.752900 0.658135i \(-0.771346\pi\)
−0.0670094 + 0.997752i \(0.521346\pi\)
\(468\) 0 0
\(469\) −4.35416 6.51645i −0.201056 0.300902i
\(470\) 0.614748 0.208679i 0.0283562 0.00962564i
\(471\) 0 0
\(472\) 0.883173 + 3.29605i 0.0406513 + 0.151713i
\(473\) −25.6468 8.70592i −1.17924 0.400298i
\(474\) 0 0
\(475\) 2.33793 1.34981i 0.107272 0.0619334i
\(476\) 6.86544 1.04462i 0.314677 0.0478802i
\(477\) 0 0
\(478\) −3.86405 1.60054i −0.176737 0.0732071i
\(479\) −5.51358 6.28703i −0.251922 0.287262i 0.612032 0.790833i \(-0.290352\pi\)
−0.863954 + 0.503571i \(0.832019\pi\)
\(480\) 0 0
\(481\) 0.266286 0.131318i 0.0121416 0.00598757i
\(482\) 3.34641 3.81585i 0.152425 0.173807i
\(483\) 0 0
\(484\) −1.62134 + 2.11297i −0.0736974 + 0.0960443i
\(485\) 13.0084 + 31.4051i 0.590681 + 1.42603i
\(486\) 0 0
\(487\) −0.136538 0.0271590i −0.00618712 0.00123069i 0.191996 0.981396i \(-0.438504\pi\)
−0.198183 + 0.980165i \(0.563504\pi\)
\(488\) −0.740266 + 11.2943i −0.0335103 + 0.511268i
\(489\) 0 0
\(490\) 6.83493 20.1351i 0.308771 0.909609i
\(491\) 19.5906 15.0324i 0.884110 0.678401i −0.0634481 0.997985i \(-0.520210\pi\)
0.947558 + 0.319584i \(0.103543\pi\)
\(492\) 0 0
\(493\) 9.46654 + 32.6871i 0.426351 + 1.47215i
\(494\) 0.120680i 0.00542966i
\(495\) 0 0
\(496\) −2.53419 12.7403i −0.113789 0.572054i
\(497\) 10.6810 + 2.86196i 0.479107 + 0.128376i
\(498\) 0 0
\(499\) −22.4043 19.6481i −1.00296 0.879569i −0.0102282 0.999948i \(-0.503256\pi\)
−0.992728 + 0.120379i \(0.961589\pi\)
\(500\) −7.64650 + 0.501178i −0.341962 + 0.0224134i
\(501\) 0 0
\(502\) 11.1745 + 8.57451i 0.498743 + 0.382699i
\(503\) 36.3824 24.3099i 1.62221 1.08393i 0.688897 0.724859i \(-0.258095\pi\)
0.933312 0.359067i \(-0.116905\pi\)
\(504\) 0 0
\(505\) 18.5924 27.8255i 0.827351 1.23822i
\(506\) 9.81351 36.6245i 0.436264 1.62816i
\(507\) 0 0
\(508\) 14.0246 + 18.2772i 0.622239 + 0.810918i
\(509\) −16.9628 + 29.3804i −0.751861 + 1.30226i 0.195059 + 0.980792i \(0.437510\pi\)
−0.946920 + 0.321470i \(0.895823\pi\)
\(510\) 0 0
\(511\) 2.55828 + 4.43106i 0.113171 + 0.196019i
\(512\) −4.16608 + 10.0578i −0.184116 + 0.444496i
\(513\) 0 0
\(514\) 8.78449 + 8.78449i 0.387467 + 0.387467i
\(515\) −19.1290 1.25378i −0.842926 0.0552483i
\(516\) 0 0
\(517\) −0.0261053 0.398290i −0.00114811 0.0175168i
\(518\) −1.80131 + 13.6823i −0.0791449 + 0.601165i
\(519\) 0 0
\(520\) −0.117352 + 0.237966i −0.00514621 + 0.0104355i
\(521\) −2.83039 + 14.2293i −0.124002 + 0.623399i 0.867936 + 0.496675i \(0.165446\pi\)
−0.991938 + 0.126723i \(0.959554\pi\)
\(522\) 0 0
\(523\) −20.3511 + 20.3511i −0.889890 + 0.889890i −0.994512 0.104622i \(-0.966637\pi\)
0.104622 + 0.994512i \(0.466637\pi\)
\(524\) 15.6930 13.7624i 0.685552 0.601213i
\(525\) 0 0
\(526\) −8.55426 4.93880i −0.372983 0.215342i
\(527\) −0.215443 10.7179i −0.00938486 0.466877i
\(528\) 0 0
\(529\) −4.21333 32.0034i −0.183188 1.39145i
\(530\) −43.5365 + 8.65995i −1.89111 + 0.376164i
\(531\) 0 0
\(532\) 1.61788 + 1.08103i 0.0701438 + 0.0468686i
\(533\) 0.207530 + 0.611363i 0.00898911 + 0.0264811i
\(534\) 0 0
\(535\) −37.1321 4.88853i −1.60536 0.211350i
\(536\) 8.04181 + 1.05872i 0.347353 + 0.0457299i
\(537\) 0 0
\(538\) −3.52862 10.3950i −0.152129 0.448159i
\(539\) −10.8701 7.26314i −0.468207 0.312846i
\(540\) 0 0
\(541\) −4.10266 + 0.816069i −0.176387 + 0.0350856i −0.282493 0.959269i \(-0.591162\pi\)
0.106106 + 0.994355i \(0.466162\pi\)
\(542\) 3.65702 + 27.7778i 0.157082 + 1.19316i
\(543\) 0 0
\(544\) −12.1304 + 18.9690i −0.520089 + 0.813289i
\(545\) −20.3219 11.7329i −0.870496 0.502581i
\(546\) 0 0
\(547\) 30.7552 26.9716i 1.31500 1.15322i 0.337725 0.941245i \(-0.390343\pi\)
0.977274 0.211979i \(-0.0679907\pi\)
\(548\) 0.317423 0.317423i 0.0135596 0.0135596i
\(549\) 0 0
\(550\) 2.32487 11.6879i 0.0991328 0.498374i
\(551\) −4.21728 + 8.55180i −0.179662 + 0.364319i
\(552\) 0 0
\(553\) −0.248229 + 1.88548i −0.0105558 + 0.0801790i
\(554\) −0.332570 5.07404i −0.0141295 0.215575i
\(555\) 0 0
\(556\) 0.898903 + 0.0589172i 0.0381220 + 0.00249865i
\(557\) −4.82152 4.82152i −0.204294 0.204294i 0.597543 0.801837i \(-0.296144\pi\)
−0.801837 + 0.597543i \(0.796144\pi\)
\(558\) 0 0
\(559\) −0.212305 + 0.512549i −0.00897954 + 0.0216785i
\(560\) −10.7284 18.5822i −0.453360 0.785242i
\(561\) 0 0
\(562\) −3.91222 + 6.77616i −0.165027 + 0.285835i
\(563\) 20.5528 + 26.7849i 0.866196 + 1.12885i 0.990624 + 0.136619i \(0.0436237\pi\)
−0.124428 + 0.992229i \(0.539710\pi\)
\(564\) 0 0
\(565\) −9.63233 + 35.9483i −0.405235 + 1.51236i
\(566\) 1.14515 1.71384i 0.0481343 0.0720380i
\(567\) 0 0
\(568\) −9.51555 + 6.35809i −0.399264 + 0.266780i
\(569\) 6.61491 + 5.07580i 0.277312 + 0.212789i 0.738048 0.674749i \(-0.235748\pi\)
−0.460736 + 0.887537i \(0.652415\pi\)
\(570\) 0 0
\(571\) −10.2497 + 0.671801i −0.428937 + 0.0281140i −0.278343 0.960482i \(-0.589785\pi\)
−0.150594 + 0.988596i \(0.548119\pi\)
\(572\) −0.138935 0.121843i −0.00580917 0.00509451i
\(573\) 0 0
\(574\) −28.9866 7.76695i −1.20988 0.324186i
\(575\) −3.38949 17.0401i −0.141352 0.710623i
\(576\) 0 0
\(577\) 4.76545i 0.198388i −0.995068 0.0991942i \(-0.968373\pi\)
0.995068 0.0991942i \(-0.0316265\pi\)
\(578\) −20.1733 + 21.8640i −0.839098 + 0.909421i
\(579\) 0 0
\(580\) −18.8406 + 14.4569i −0.782312 + 0.600289i
\(581\) 3.79865 11.1905i 0.157595 0.464259i
\(582\) 0 0
\(583\) −1.78496 + 27.2332i −0.0739255 + 1.12789i
\(584\) −5.19364 1.03308i −0.214914 0.0427491i
\(585\) 0 0
\(586\) 16.6972 + 40.3105i 0.689753 + 1.66521i
\(587\) 2.79948 3.64835i 0.115547 0.150584i −0.731999 0.681306i \(-0.761412\pi\)
0.847546 + 0.530722i \(0.178079\pi\)
\(588\) 0 0
\(589\) 1.98047 2.25830i 0.0816040 0.0930516i
\(590\) −8.84001 + 4.35941i −0.363937 + 0.179474i
\(591\) 0 0
\(592\) −16.3845 18.6830i −0.673400 0.767866i
\(593\) −22.8624 9.46991i −0.938846 0.388883i −0.139818 0.990177i \(-0.544652\pi\)
−0.799027 + 0.601295i \(0.794652\pi\)
\(594\) 0 0
\(595\) −6.02774 16.6500i −0.247113 0.682584i
\(596\) 10.3692 5.98666i 0.424739 0.245223i
\(597\) 0 0
\(598\) −0.735447 0.249651i −0.0300747 0.0102090i
\(599\) 4.05692 + 15.1406i 0.165761 + 0.618629i 0.997942 + 0.0641245i \(0.0204255\pi\)
−0.832181 + 0.554504i \(0.812908\pi\)
\(600\) 0 0
\(601\) −3.00197 + 1.01903i −0.122453 + 0.0415672i −0.381993 0.924165i \(-0.624762\pi\)
0.259540 + 0.965732i \(0.416429\pi\)
\(602\) −14.3262 21.4407i −0.583894 0.873859i
\(603\) 0 0
\(604\) 1.13901 0.471794i 0.0463457 0.0191970i
\(605\) 6.09085 + 3.00368i 0.247628 + 0.122117i
\(606\) 0 0
\(607\) −10.2835 20.8528i −0.417393 0.846389i −0.999447 0.0332394i \(-0.989418\pi\)
0.582054 0.813150i \(-0.302249\pi\)
\(608\) −6.09390 + 1.63286i −0.247140 + 0.0662211i
\(609\) 0 0
\(610\) −32.4138 + 4.26736i −1.31240 + 0.172780i
\(611\) −0.00817589 −0.000330761
\(612\) 0 0
\(613\) −7.68237 −0.310288 −0.155144 0.987892i \(-0.549584\pi\)
−0.155144 + 0.987892i \(0.549584\pi\)
\(614\) 8.89529 1.17109i 0.358985 0.0472612i
\(615\) 0 0
\(616\) −7.32405 + 1.96247i −0.295094 + 0.0790703i
\(617\) −9.74308 19.7570i −0.392241 0.795387i −0.999999 0.00126452i \(-0.999597\pi\)
0.607758 0.794122i \(-0.292069\pi\)
\(618\) 0 0
\(619\) 15.7721 + 7.77793i 0.633934 + 0.312621i 0.730713 0.682684i \(-0.239188\pi\)
−0.0967798 + 0.995306i \(0.530854\pi\)
\(620\) 6.91149 2.86283i 0.277572 0.114974i
\(621\) 0 0
\(622\) −12.4592 18.6465i −0.499567 0.747655i
\(623\) −21.5541 + 7.31662i −0.863546 + 0.293134i
\(624\) 0 0
\(625\) 8.08120 + 30.1594i 0.323248 + 1.20638i
\(626\) 28.0291 + 9.51461i 1.12027 + 0.380280i
\(627\) 0 0
\(628\) −11.1477 + 6.43611i −0.444841 + 0.256829i
\(629\) −10.6086 17.5503i −0.422992 0.699778i
\(630\) 0 0
\(631\) 33.4430 + 13.8525i 1.33134 + 0.551460i 0.931038 0.364922i \(-0.118904\pi\)
0.400305 + 0.916382i \(0.368904\pi\)
\(632\) −1.29774 1.47979i −0.0516214 0.0588629i
\(633\) 0 0
\(634\) −2.86312 + 1.41193i −0.113709 + 0.0560750i
\(635\) 38.7325 44.1659i 1.53705 1.75267i
\(636\) 0 0
\(637\) −0.163019 + 0.212450i −0.00645904 + 0.00841758i
\(638\) 16.1075 + 38.8869i 0.637701 + 1.53955i
\(639\) 0 0
\(640\) 31.0419 + 6.17461i 1.22704 + 0.244073i
\(641\) 1.42453 21.7341i 0.0562656 0.858447i −0.872694 0.488267i \(-0.837629\pi\)
0.928960 0.370180i \(-0.120704\pi\)
\(642\) 0 0
\(643\) −8.48429 + 24.9939i −0.334588 + 0.985663i 0.641281 + 0.767306i \(0.278403\pi\)
−0.975869 + 0.218357i \(0.929930\pi\)
\(644\) 9.93489 7.62331i 0.391489 0.300400i
\(645\) 0 0
\(646\) −8.30500 + 0.712218i −0.326756 + 0.0280219i
\(647\) 8.74993i 0.343995i −0.985097 0.171998i \(-0.944978\pi\)
0.985097 0.171998i \(-0.0550221\pi\)
\(648\) 0 0
\(649\) 1.18225 + 5.94356i 0.0464073 + 0.233305i
\(650\) −0.235783 0.0631777i −0.00924815 0.00247803i
\(651\) 0 0
\(652\) −3.00784 2.63781i −0.117796 0.103305i
\(653\) 12.4054 0.813095i 0.485462 0.0318189i 0.179292 0.983796i \(-0.442619\pi\)
0.306170 + 0.951977i \(0.400952\pi\)
\(654\) 0 0
\(655\) −42.2247 32.4002i −1.64986 1.26598i
\(656\) 44.9295 30.0209i 1.75420 1.17212i
\(657\) 0 0
\(658\) 0.211129 0.315976i 0.00823065 0.0123180i
\(659\) −6.73100 + 25.1204i −0.262202 + 0.978553i 0.701738 + 0.712435i \(0.252408\pi\)
−0.963941 + 0.266118i \(0.914259\pi\)
\(660\) 0 0
\(661\) 20.2785 + 26.4275i 0.788742 + 1.02791i 0.998739 + 0.0502068i \(0.0159880\pi\)
−0.209997 + 0.977702i \(0.567345\pi\)
\(662\) 0.139436 0.241510i 0.00541932 0.00938654i
\(663\) 0 0
\(664\) 6.11534 + 10.5921i 0.237321 + 0.411052i
\(665\) 1.89871 4.58389i 0.0736287 0.177756i
\(666\) 0 0
\(667\) 43.3920 + 43.3920i 1.68014 + 1.68014i
\(668\) −0.564148 0.0369762i −0.0218276 0.00143065i
\(669\) 0 0
\(670\) 1.53234 + 23.3791i 0.0591996 + 0.903212i
\(671\) −2.62368 + 19.9288i −0.101286 + 0.769343i
\(672\) 0 0
\(673\) 1.72440 3.49675i 0.0664709 0.134790i −0.861102 0.508433i \(-0.830225\pi\)
0.927572 + 0.373643i \(0.121892\pi\)
\(674\) −1.40280 + 7.05236i −0.0540339 + 0.271647i
\(675\) 0 0
\(676\) 9.76208 9.76208i 0.375464 0.375464i
\(677\) −5.77320 + 5.06296i −0.221882 + 0.194585i −0.763069 0.646317i \(-0.776308\pi\)
0.541187 + 0.840902i \(0.317975\pi\)
\(678\) 0 0
\(679\) 17.2323 + 9.94908i 0.661316 + 0.381811i
\(680\) 17.0690 + 6.67154i 0.654565 + 0.255842i
\(681\) 0 0
\(682\) −1.73067 13.1458i −0.0662709 0.503377i
\(683\) −24.0653 + 4.78690i −0.920835 + 0.183165i −0.632676 0.774417i \(-0.718043\pi\)
−0.288159 + 0.957582i \(0.593043\pi\)
\(684\) 0 0
\(685\) −0.951743 0.635934i −0.0363642 0.0242978i
\(686\) −10.2440 30.1780i −0.391119 1.15220i
\(687\) 0 0
\(688\) 46.0354 + 6.06068i 1.75508 + 0.231061i
\(689\) 0.554248 + 0.0729681i 0.0211152 + 0.00277986i
\(690\) 0 0
\(691\) −7.12811 20.9987i −0.271166 0.798829i −0.994154 0.107969i \(-0.965565\pi\)
0.722988 0.690860i \(-0.242768\pi\)
\(692\) −8.67038 5.79337i −0.329599 0.220231i
\(693\) 0 0
\(694\) −21.2928 + 4.23540i −0.808264 + 0.160774i
\(695\) −0.299820 2.27736i −0.0113728 0.0863853i
\(696\) 0 0
\(697\) 40.8482 17.8899i 1.54723 0.677629i
\(698\) −29.6763 17.1336i −1.12326 0.648517i
\(699\) 0 0
\(700\) 2.95908 2.59504i 0.111843 0.0980833i
\(701\) 15.9461 15.9461i 0.602276 0.602276i −0.338640 0.940916i \(-0.609967\pi\)
0.940916 + 0.338640i \(0.109967\pi\)
\(702\) 0 0
\(703\) 1.12101 5.63568i 0.0422796 0.212554i
\(704\) 0.561949 1.13952i 0.0211792 0.0429472i
\(705\) 0 0
\(706\) 8.03987 61.0689i 0.302585 2.29836i
\(707\) −1.28122 19.5476i −0.0481852 0.735165i
\(708\) 0 0
\(709\) −36.6046 2.39919i −1.37471 0.0901036i −0.639945 0.768421i \(-0.721043\pi\)
−0.734769 + 0.678317i \(0.762710\pi\)
\(710\) −23.3747 23.3747i −0.877235 0.877235i
\(711\) 0 0
\(712\) 9.01512 21.7644i 0.337856 0.815656i
\(713\) −9.66548 16.7411i −0.361975 0.626959i
\(714\) 0 0
\(715\) −0.235601 + 0.408073i −0.00881097 + 0.0152610i
\(716\) −8.20564 10.6938i −0.306659 0.399646i
\(717\) 0 0
\(718\) −5.17011 + 19.2951i −0.192947 + 0.720088i
\(719\) −9.54937 + 14.2916i −0.356131 + 0.532988i −0.965671 0.259767i \(-0.916354\pi\)
0.609540 + 0.792755i \(0.291354\pi\)
\(720\) 0 0
\(721\) −9.33037 + 6.23436i −0.347481 + 0.232180i
\(722\) 24.5251 + 18.8187i 0.912728 + 0.700361i
\(723\) 0 0
\(724\) −26.9429 + 1.76593i −1.00133 + 0.0656304i
\(725\) 14.5005 + 12.7166i 0.538536 + 0.472284i
\(726\) 0 0
\(727\) 6.85734 + 1.83742i 0.254325 + 0.0681461i 0.383729 0.923446i \(-0.374640\pi\)
−0.129404 + 0.991592i \(0.541306\pi\)
\(728\) 0.0303004 + 0.152330i 0.00112301 + 0.00564574i
\(729\) 0 0
\(730\) 15.2957i 0.566120i
\(731\) 36.5257 + 11.5855i 1.35095 + 0.428507i
\(732\) 0 0
\(733\) −13.3482 + 10.2424i −0.493027 + 0.378313i −0.825142 0.564926i \(-0.808905\pi\)
0.332114 + 0.943239i \(0.392238\pi\)
\(734\) 5.38481 15.8631i 0.198757 0.585519i
\(735\) 0 0
\(736\) −2.65551 + 40.5152i −0.0978833 + 1.49341i
\(737\) 14.1281 + 2.81024i 0.520414 + 0.103517i
\(738\) 0 0
\(739\) 9.59552 + 23.1656i 0.352977 + 0.852162i 0.996250 + 0.0865247i \(0.0275761\pi\)
−0.643273 + 0.765637i \(0.722424\pi\)
\(740\) 8.71205 11.3538i 0.320261 0.417373i
\(741\) 0 0
\(742\) −17.1325 + 19.5359i −0.628955 + 0.717186i
\(743\) −19.8209 + 9.77456i −0.727157 + 0.358594i −0.767895 0.640576i \(-0.778696\pi\)
0.0407383 + 0.999170i \(0.487029\pi\)
\(744\) 0 0
\(745\) −20.1302 22.9541i −0.737512 0.840972i
\(746\) −26.9704 11.1715i −0.987456 0.409018i
\(747\) 0 0
\(748\) −7.56506 + 10.2804i −0.276606 + 0.375887i
\(749\) −18.9863 + 10.9617i −0.693744 + 0.400533i
\(750\) 0 0
\(751\) 37.4892 + 12.7259i 1.36800 + 0.464374i 0.906290 0.422657i \(-0.138903\pi\)
0.461711 + 0.887031i \(0.347236\pi\)
\(752\) 0.177107 + 0.660971i 0.00645842 + 0.0241031i
\(753\) 0 0
\(754\) 0.816415 0.277135i 0.0297321 0.0100927i
\(755\) −1.74651 2.61384i −0.0635621 0.0951274i
\(756\) 0 0
\(757\) 48.2630 19.9912i 1.75415 0.726592i 0.756815 0.653630i \(-0.226755\pi\)
0.997335 0.0729628i \(-0.0232454\pi\)
\(758\) −31.7118 15.6385i −1.15183 0.568017i
\(759\) 0 0
\(760\) 2.27114 + 4.60543i 0.0823831 + 0.167056i
\(761\) 21.4694 5.75270i 0.778264 0.208535i 0.152245 0.988343i \(-0.451350\pi\)
0.626019 + 0.779807i \(0.284683\pi\)
\(762\) 0 0
\(763\) −13.6186 + 1.79292i −0.493025 + 0.0649080i
\(764\) −9.86665 −0.356963
\(765\) 0 0
\(766\) −3.07374 −0.111059
\(767\) 0.123068 0.0162022i 0.00444374 0.000585029i
\(768\) 0 0
\(769\) 12.8921 3.45443i 0.464901 0.124570i −0.0187621 0.999824i \(-0.505973\pi\)
0.483664 + 0.875254i \(0.339306\pi\)
\(770\) −9.68692 19.6431i −0.349092 0.707889i
\(771\) 0 0
\(772\) 11.1475 + 5.49736i 0.401209 + 0.197854i
\(773\) −14.7654 + 6.11601i −0.531073 + 0.219978i −0.632073 0.774909i \(-0.717796\pi\)
0.101000 + 0.994886i \(0.467796\pi\)
\(774\) 0 0
\(775\) −3.37541 5.05166i −0.121248 0.181461i
\(776\) −19.5008 + 6.61961i −0.700036 + 0.237630i
\(777\) 0 0
\(778\) −5.22619 19.5044i −0.187368 0.699267i
\(779\) 11.8319 + 4.01639i 0.423922 + 0.143902i
\(780\) 0 0
\(781\) −17.6012 + 10.1620i −0.629819 + 0.363626i
\(782\) −12.8401 + 52.0855i −0.459162 + 1.86257i
\(783\) 0 0
\(784\) 20.7066 + 8.57697i 0.739522 + 0.306320i
\(785\) 21.6415 + 24.6774i 0.772417 + 0.880773i
\(786\) 0 0
\(787\) −38.0440 + 18.7612i −1.35612 + 0.668766i −0.967557 0.252654i \(-0.918697\pi\)
−0.388567 + 0.921420i \(0.627030\pi\)
\(788\) −15.8955 + 18.1254i −0.566255 + 0.645690i
\(789\) 0 0
\(790\) 3.46094 4.51039i 0.123135 0.160472i
\(791\) 8.33687 + 20.1270i 0.296425 + 0.715634i
\(792\) 0 0
\(793\) 0.403823 + 0.0803255i 0.0143402 + 0.00285244i
\(794\) −1.47983 + 22.5778i −0.0525170 + 0.801255i
\(795\) 0 0
\(796\) 8.20713 24.1774i 0.290894 0.856946i
\(797\) −22.8595 + 17.5407i −0.809727 + 0.621325i −0.928389 0.371610i \(-0.878806\pi\)
0.118662 + 0.992935i \(0.462139\pi\)
\(798\) 0 0
\(799\) 0.0482517 + 0.562651i 0.00170702 + 0.0199052i
\(800\) 12.7610i 0.451168i
\(801\) 0 0
\(802\) −11.9979 60.3175i −0.423660 2.12988i
\(803\) −9.08374 2.43398i −0.320558 0.0858933i
\(804\) 0 0
\(805\) −24.0072 21.0537i −0.846142 0.742047i
\(806\) −0.271014 + 0.0177632i −0.00954605 + 0.000625681i
\(807\) 0 0
\(808\) 16.0847 + 12.3422i 0.565857 + 0.434197i
\(809\) 20.5769 13.7490i 0.723444 0.483390i −0.138520 0.990360i \(-0.544234\pi\)
0.861964 + 0.506970i \(0.169234\pi\)
\(810\) 0 0
\(811\) −24.5341 + 36.7178i −0.861507 + 1.28934i 0.0943601 + 0.995538i \(0.469920\pi\)
−0.955867 + 0.293799i \(0.905080\pi\)
\(812\) −3.59793 + 13.4276i −0.126262 + 0.471218i
\(813\) 0 0
\(814\) −15.4412 20.1234i −0.541213 0.705323i
\(815\) −5.10058 + 8.83447i −0.178666 + 0.309458i
\(816\) 0 0
\(817\) 5.36841 + 9.29836i 0.187817 + 0.325308i
\(818\) 3.14680 7.59704i 0.110025 0.265624i
\(819\) 0 0
\(820\) 22.0050 + 22.0050i 0.768449 + 0.768449i
\(821\) −50.6515 3.31987i −1.76775 0.115864i −0.853519 0.521061i \(-0.825536\pi\)
−0.914230 + 0.405197i \(0.867203\pi\)
\(822\) 0 0
\(823\) 1.88308 + 28.7302i 0.0656399 + 1.00147i 0.895946 + 0.444163i \(0.146499\pi\)
−0.830306 + 0.557308i \(0.811834\pi\)
\(824\) 1.51590 11.5144i 0.0528089 0.401123i
\(825\) 0 0
\(826\) −2.55186 + 5.17465i −0.0887905 + 0.180049i
\(827\) −2.52147 + 12.6763i −0.0876800 + 0.440797i 0.911861 + 0.410499i \(0.134646\pi\)
−0.999541 + 0.0302977i \(0.990354\pi\)
\(828\) 0 0
\(829\) 6.58216 6.58216i 0.228608 0.228608i −0.583503 0.812111i \(-0.698318\pi\)
0.812111 + 0.583503i \(0.198318\pi\)
\(830\) −26.5612 + 23.2936i −0.921954 + 0.808532i
\(831\) 0 0
\(832\) −0.0225386 0.0130127i −0.000781384 0.000451132i
\(833\) 15.5825 + 9.96485i 0.539903 + 0.345262i
\(834\) 0 0
\(835\) 0.188166 + 1.42926i 0.00651176 + 0.0494617i
\(836\) −3.50765 + 0.697715i −0.121315 + 0.0241310i
\(837\) 0 0
\(838\) −2.91348 1.94673i −0.100645 0.0672485i
\(839\) −1.65670 4.88049i −0.0571958 0.168493i 0.914577 0.404411i \(-0.132524\pi\)
−0.971773 + 0.235918i \(0.924190\pi\)
\(840\) 0 0
\(841\) −38.7867 5.10637i −1.33747 0.176082i
\(842\) 23.9471 + 3.15269i 0.825271 + 0.108649i
\(843\) 0 0
\(844\) −8.20743 24.1783i −0.282511 0.832251i
\(845\) −29.2700 19.5576i −1.00692 0.672802i
\(846\) 0 0
\(847\) 3.89897 0.775553i 0.133970 0.0266483i
\(848\) −6.10712 46.3882i −0.209719 1.59298i
\(849\) 0 0
\(850\) −2.95626 + 16.5990i −0.101399 + 0.569341i
\(851\) −32.0258 18.4901i −1.09783 0.633834i
\(852\) 0 0
\(853\) 24.7501 21.7053i 0.847428 0.743174i −0.120951 0.992658i \(-0.538594\pi\)
0.968379 + 0.249484i \(0.0802611\pi\)
\(854\) −13.5324 + 13.5324i −0.463070 + 0.463070i
\(855\) 0 0
\(856\) 4.42655 22.2538i 0.151296 0.760619i
\(857\) 6.19656 12.5654i 0.211671 0.429225i −0.764982 0.644052i \(-0.777252\pi\)
0.976652 + 0.214827i \(0.0689187\pi\)
\(858\) 0 0
\(859\) −2.15156 + 16.3428i −0.0734104 + 0.557608i 0.914731 + 0.404063i \(0.132402\pi\)
−0.988142 + 0.153545i \(0.950931\pi\)
\(860\) 1.74894 + 26.6837i 0.0596383 + 0.909905i
\(861\) 0 0
\(862\) −35.4401 2.32287i −1.20710 0.0791172i
\(863\) −15.8984 15.8984i −0.541189 0.541189i 0.382688 0.923878i \(-0.374998\pi\)
−0.923878 + 0.382688i \(0.874998\pi\)
\(864\) 0 0
\(865\) −10.1754 + 24.5656i −0.345974 + 0.835255i
\(866\) 21.5884 + 37.3923i 0.733605 + 1.27064i
\(867\) 0 0
\(868\) 2.18955 3.79241i 0.0743182 0.128723i
\(869\) −2.12787 2.77309i −0.0721830 0.0940708i
\(870\) 0 0
\(871\) 0.0763677 0.285008i 0.00258762 0.00965713i
\(872\) 7.89809 11.8203i 0.267463 0.400287i
\(873\) 0 0
\(874\) −12.4978 + 8.35079i −0.422746 + 0.282470i
\(875\) 9.07420 + 6.96288i 0.306764 + 0.235388i
\(876\) 0 0
\(877\) 9.03011 0.591864i 0.304925 0.0199858i 0.0878273 0.996136i \(-0.472008\pi\)
0.217098 + 0.976150i \(0.430341\pi\)
\(878\) 16.8800 + 14.8034i 0.569673 + 0.499590i
\(879\) 0 0
\(880\) 38.0938 + 10.2072i 1.28414 + 0.344085i
\(881\) −7.06742 35.5303i −0.238107 1.19705i −0.896041 0.443971i \(-0.853569\pi\)
0.657934 0.753076i \(-0.271431\pi\)
\(882\) 0 0
\(883\) 27.9322i 0.939993i −0.882668 0.469997i \(-0.844255\pi\)
0.882668 0.469997i \(-0.155745\pi\)
\(884\) 0.199993 + 0.168400i 0.00672648 + 0.00566390i
\(885\) 0 0
\(886\) −30.0040 + 23.0229i −1.00800 + 0.773468i
\(887\) 10.7714 31.7314i 0.361667 1.06544i −0.602038 0.798467i \(-0.705644\pi\)
0.963705 0.266969i \(-0.0860222\pi\)
\(888\) 0 0
\(889\) 2.24900 34.3131i 0.0754290 1.15082i
\(890\) 66.7388 + 13.2752i 2.23709 + 0.444985i
\(891\) 0 0
\(892\) −2.74921 6.63718i −0.0920504 0.222229i
\(893\) −0.0963247 + 0.125533i −0.00322338 + 0.00420079i
\(894\) 0 0
\(895\) −22.6620 + 25.8411i −0.757507 + 0.863772i
\(896\) 16.6163 8.19423i 0.555110 0.273750i
\(897\) 0 0
\(898\) 24.5900 + 28.0395i 0.820578 + 0.935689i
\(899\) 19.8257 + 8.21207i 0.661224 + 0.273888i
\(900\) 0 0
\(901\) 1.75053 38.5730i 0.0583187 1.28505i
\(902\) 47.7670 27.5783i 1.59047 0.918257i
\(903\) 0 0
\(904\) −21.3502 7.24742i −0.710097 0.241045i
\(905\) 17.8193 + 66.5027i 0.592335 + 2.21062i
\(906\) 0 0
\(907\) −13.3178 + 4.52080i −0.442211 + 0.150111i −0.533660 0.845699i \(-0.679184\pi\)
0.0914483 + 0.995810i \(0.470850\pi\)
\(908\) −15.7589 23.5849i −0.522978 0.782692i
\(909\) 0 0
\(910\) −0.414477 + 0.171682i −0.0137398 + 0.00569120i
\(911\) −22.9359 11.3107i −0.759899 0.374741i 0.0206898 0.999786i \(-0.493414\pi\)
−0.780588 + 0.625045i \(0.785080\pi\)
\(912\) 0 0
\(913\) 9.60682 + 19.4807i 0.317939 + 0.644717i
\(914\) −23.9732 + 6.42359i −0.792962 + 0.212473i
\(915\) 0 0
\(916\) −7.19144 + 0.946771i −0.237612 + 0.0312822i
\(917\) −31.1551 −1.02883
\(918\) 0 0
\(919\) −59.7459 −1.97083 −0.985417 0.170156i \(-0.945573\pi\)
−0.985417 + 0.170156i \(0.945573\pi\)
\(920\) 32.7646 4.31354i 1.08022 0.142213i
\(921\) 0 0
\(922\) 46.3358 12.4156i 1.52599 0.408887i
\(923\) 0.184129 + 0.373376i 0.00606067 + 0.0122898i
\(924\) 0 0
\(925\) −10.4240 5.14056i −0.342740 0.169021i
\(926\) −6.87131 + 2.84619i −0.225805 + 0.0935317i
\(927\) 0 0
\(928\) −25.0408 37.4762i −0.822004 1.23022i
\(929\) 23.6629 8.03247i 0.776354 0.263537i 0.0949870 0.995479i \(-0.469719\pi\)
0.681367 + 0.731942i \(0.261386\pi\)
\(930\) 0 0
\(931\) 1.34135 + 5.00598i 0.0439610 + 0.164065i
\(932\) −1.09054 0.370189i −0.0357219 0.0121259i
\(933\) 0 0
\(934\) 29.0644 16.7803i 0.951016 0.549069i
\(935\) 29.4733 + 13.8053i 0.963880 + 0.451482i
\(936\) 0 0
\(937\) −26.8876 11.1372i −0.878381 0.363837i −0.102512 0.994732i \(-0.532688\pi\)
−0.775869 + 0.630894i \(0.782688\pi\)
\(938\) 9.04273 + 10.3113i 0.295256 + 0.336675i
\(939\) 0 0
\(940\) −0.353445 + 0.174300i −0.0115281 + 0.00568503i
\(941\) 18.3308 20.9022i 0.597566 0.681394i −0.371432 0.928460i \(-0.621133\pi\)
0.968999 + 0.247066i \(0.0794666\pi\)
\(942\) 0 0
\(943\) 48.9532 63.7971i 1.59414 2.07752i
\(944\) −3.97577 9.59835i −0.129400 0.312400i
\(945\) 0 0
\(946\) 46.4848 + 9.24639i 1.51135 + 0.300626i
\(947\) 1.88439 28.7503i 0.0612346 0.934259i −0.851149 0.524924i \(-0.824094\pi\)
0.912384 0.409336i \(-0.134239\pi\)
\(948\) 0 0
\(949\) −0.0619192 + 0.182408i −0.00200998 + 0.00592121i
\(950\) −3.74791 + 2.87588i −0.121598 + 0.0933057i
\(951\) 0 0
\(952\) 10.3043 2.98423i 0.333964 0.0967194i
\(953\) 8.00428i 0.259284i 0.991561 + 0.129642i \(0.0413828\pi\)
−0.991561 + 0.129642i \(0.958617\pi\)
\(954\) 0 0
\(955\) 4.90823 + 24.6754i 0.158827 + 0.798476i
\(956\) 2.45235 + 0.657105i 0.0793147 + 0.0212523i
\(957\) 0 0
\(958\) 11.0019 + 9.64839i 0.355455 + 0.311725i
\(959\) −0.668607 + 0.0438228i −0.0215904 + 0.00141511i
\(960\) 0 0
\(961\) 19.2309 + 14.7564i 0.620353 + 0.476014i
\(962\) −0.432001 + 0.288654i −0.0139283 + 0.00930658i
\(963\) 0 0
\(964\) −1.71166 + 2.56168i −0.0551287 + 0.0825060i
\(965\) 8.20284 30.6134i 0.264059 0.985481i
\(966\) 0 0
\(967\) −17.1874 22.3990i −0.552708 0.720303i 0.430541 0.902571i \(-0.358323\pi\)
−0.983249 + 0.182268i \(0.941656\pi\)
\(968\) −2.05715 + 3.56309i −0.0661193 + 0.114522i
\(969\) 0 0
\(970\) −29.7424 51.5153i −0.954971 1.65406i
\(971\) −22.6404 + 54.6588i −0.726565 + 1.75408i −0.0728496 + 0.997343i \(0.523209\pi\)
−0.653716 + 0.756740i \(0.726791\pi\)
\(972\) 0 0
\(973\) −0.950774 0.950774i −0.0304804 0.0304804i
\(974\) 0.243091 + 0.0159330i 0.00778915 + 0.000510528i
\(975\) 0 0
\(976\) −2.25382 34.3867i −0.0721431 1.10069i
\(977\) −1.00991 + 7.67102i −0.0323098 + 0.245418i −0.999977 0.00681378i \(-0.997831\pi\)
0.967667 + 0.252231i \(0.0811644\pi\)
\(978\) 0 0
\(979\) 18.5038 37.5220i 0.591384 1.19921i
\(980\) −2.51815 + 12.6596i −0.0804394 + 0.404396i
\(981\) 0 0
\(982\) −30.5553 + 30.5553i −0.975059 + 0.975059i
\(983\) 16.0891 14.1098i 0.513163 0.450032i −0.363181 0.931719i \(-0.618309\pi\)
0.876343 + 0.481687i \(0.159976\pi\)
\(984\) 0 0
\(985\) 53.2368 + 30.7363i 1.69627 + 0.979340i
\(986\) −23.8902 54.5487i −0.760820 1.73718i
\(987\) 0 0
\(988\) 0.00956192 + 0.0726300i 0.000304205 + 0.00231067i
\(989\) 67.7715 13.4806i 2.15501 0.428658i
\(990\) 0 0
\(991\) 20.4059 + 13.6348i 0.648216 + 0.433124i 0.835732 0.549138i \(-0.185044\pi\)
−0.187516 + 0.982261i \(0.560044\pi\)
\(992\) 4.56391 + 13.4448i 0.144904 + 0.426874i
\(993\) 0 0
\(994\) −19.1848 2.52573i −0.608505 0.0801112i
\(995\) −64.5476 8.49786i −2.04630 0.269400i
\(996\) 0 0
\(997\) 9.54455 + 28.1173i 0.302279 + 0.890485i 0.986864 + 0.161552i \(0.0516500\pi\)
−0.684585 + 0.728933i \(0.740017\pi\)
\(998\) 43.3585 + 28.9713i 1.37249 + 0.917069i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.368.4 256
3.2 odd 2 153.2.s.a.113.13 yes 256
9.2 odd 6 inner 459.2.y.a.62.4 256
9.7 even 3 153.2.s.a.11.13 256
17.14 odd 16 inner 459.2.y.a.422.4 256
51.14 even 16 153.2.s.a.14.13 yes 256
153.65 even 48 inner 459.2.y.a.116.4 256
153.133 odd 48 153.2.s.a.65.13 yes 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.13 256 9.7 even 3
153.2.s.a.14.13 yes 256 51.14 even 16
153.2.s.a.65.13 yes 256 153.133 odd 48
153.2.s.a.113.13 yes 256 3.2 odd 2
459.2.y.a.62.4 256 9.2 odd 6 inner
459.2.y.a.116.4 256 153.65 even 48 inner
459.2.y.a.368.4 256 1.1 even 1 trivial
459.2.y.a.422.4 256 17.14 odd 16 inner