Properties

Label 459.2.y.a.368.14
Level $459$
Weight $2$
Character 459.368
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(44,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([40, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.44"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 368.14
Character \(\chi\) \(=\) 459.368
Dual form 459.2.y.a.116.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.19811 - 0.289387i) q^{2} +(2.81610 - 0.754572i) q^{4} +(0.864950 + 1.75395i) q^{5} +(0.161377 + 0.0795822i) q^{7} +(1.87511 - 0.776696i) q^{8} +(2.40883 + 3.60506i) q^{10} +(2.43861 - 0.827795i) q^{11} +(-0.292855 - 1.09295i) q^{13} +(0.377754 + 0.128230i) q^{14} +(-1.15275 + 0.665543i) q^{16} +(4.05247 + 0.759899i) q^{17} +(-5.72485 - 2.37131i) q^{19} +(3.75926 + 4.28662i) q^{20} +(5.12077 - 2.52529i) q^{22} +(-2.32784 + 2.65439i) q^{23} +(0.715622 - 0.932617i) q^{25} +(-0.960014 - 2.31768i) q^{26} +(0.514504 + 0.102341i) q^{28} +(0.409431 - 6.24671i) q^{29} +(-1.63425 + 4.81435i) q^{31} +(-5.56167 + 4.26762i) q^{32} +(9.12770 + 0.497610i) q^{34} +0.351881i q^{35} +(-1.71395 - 8.61661i) q^{37} +(-13.2701 - 3.55571i) q^{38} +(2.98416 + 2.61704i) q^{40} +(-7.19745 + 0.471746i) q^{41} +(1.48672 + 1.14080i) q^{43} +(6.24273 - 4.17126i) q^{44} +(-4.34870 + 6.50829i) q^{46} +(-0.219953 + 0.820877i) q^{47} +(-4.24162 - 5.52779i) q^{49} +(1.30313 - 2.25709i) q^{50} +(-1.64942 - 2.85688i) q^{52} +(-4.44864 + 10.7400i) q^{53} +(3.56118 + 3.56118i) q^{55} +(0.364411 + 0.0238847i) q^{56} +(-0.907741 - 13.8494i) q^{58} +(-0.412757 + 3.13520i) q^{59} +(4.80101 - 9.73548i) q^{61} +(-2.19906 + 11.0554i) q^{62} +(-9.10774 + 9.10774i) q^{64} +(1.66367 - 1.45900i) q^{65} +(-9.11090 - 5.26018i) q^{67} +(11.9856 - 0.917931i) q^{68} +(0.101830 + 0.773473i) q^{70} +(12.6361 - 2.51348i) q^{71} +(8.59520 + 5.74313i) q^{73} +(-6.26099 - 18.4443i) q^{74} +(-17.9111 - 2.35804i) q^{76} +(0.459412 + 0.0604827i) q^{77} +(2.06175 + 6.07373i) q^{79} +(-2.16440 - 1.44621i) q^{80} +(-15.6843 + 3.11980i) q^{82} +(1.21897 + 9.25898i) q^{83} +(2.17237 + 7.76509i) q^{85} +(3.59810 + 2.07737i) q^{86} +(3.92971 - 3.44626i) q^{88} +(-10.2745 + 10.2745i) q^{89} +(0.0397194 - 0.199683i) q^{91} +(-4.55250 + 9.23155i) q^{92} +(-0.245931 + 1.86803i) q^{94} +(-0.792561 - 12.0921i) q^{95} +(2.64284 + 0.173221i) q^{97} +(-10.9232 - 10.9232i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19811 0.289387i 1.55430 0.204627i 0.696101 0.717944i \(-0.254917\pi\)
0.858199 + 0.513317i \(0.171583\pi\)
\(3\) 0 0
\(4\) 2.81610 0.754572i 1.40805 0.377286i
\(5\) 0.864950 + 1.75395i 0.386817 + 0.784388i 0.999985 0.00556511i \(-0.00177144\pi\)
−0.613167 + 0.789953i \(0.710105\pi\)
\(6\) 0 0
\(7\) 0.161377 + 0.0795822i 0.0609947 + 0.0300793i 0.472530 0.881314i \(-0.343341\pi\)
−0.411536 + 0.911394i \(0.635007\pi\)
\(8\) 1.87511 0.776696i 0.662952 0.274604i
\(9\) 0 0
\(10\) 2.40883 + 3.60506i 0.761738 + 1.14002i
\(11\) 2.43861 0.827795i 0.735267 0.249590i 0.0714080 0.997447i \(-0.477251\pi\)
0.663859 + 0.747858i \(0.268917\pi\)
\(12\) 0 0
\(13\) −0.292855 1.09295i −0.0812234 0.303130i 0.913349 0.407178i \(-0.133487\pi\)
−0.994572 + 0.104048i \(0.966820\pi\)
\(14\) 0.377754 + 0.128230i 0.100959 + 0.0342710i
\(15\) 0 0
\(16\) −1.15275 + 0.665543i −0.288188 + 0.166386i
\(17\) 4.05247 + 0.759899i 0.982870 + 0.184303i
\(18\) 0 0
\(19\) −5.72485 2.37131i −1.31337 0.544016i −0.387505 0.921868i \(-0.626663\pi\)
−0.925866 + 0.377852i \(0.876663\pi\)
\(20\) 3.75926 + 4.28662i 0.840597 + 0.958517i
\(21\) 0 0
\(22\) 5.12077 2.52529i 1.09175 0.538393i
\(23\) −2.32784 + 2.65439i −0.485388 + 0.553479i −0.941749 0.336316i \(-0.890819\pi\)
0.456361 + 0.889794i \(0.349152\pi\)
\(24\) 0 0
\(25\) 0.715622 0.932617i 0.143124 0.186523i
\(26\) −0.960014 2.31768i −0.188274 0.454534i
\(27\) 0 0
\(28\) 0.514504 + 0.102341i 0.0972320 + 0.0193407i
\(29\) 0.409431 6.24671i 0.0760294 1.15998i −0.773978 0.633213i \(-0.781736\pi\)
0.850007 0.526772i \(-0.176598\pi\)
\(30\) 0 0
\(31\) −1.63425 + 4.81435i −0.293521 + 0.864684i 0.695711 + 0.718322i \(0.255090\pi\)
−0.989231 + 0.146361i \(0.953244\pi\)
\(32\) −5.56167 + 4.26762i −0.983174 + 0.754416i
\(33\) 0 0
\(34\) 9.12770 + 0.497610i 1.56539 + 0.0853394i
\(35\) 0.351881i 0.0594787i
\(36\) 0 0
\(37\) −1.71395 8.61661i −0.281772 1.41656i −0.819324 0.573331i \(-0.805651\pi\)
0.537552 0.843230i \(-0.319349\pi\)
\(38\) −13.2701 3.55571i −2.15269 0.576812i
\(39\) 0 0
\(40\) 2.98416 + 2.61704i 0.471837 + 0.413790i
\(41\) −7.19745 + 0.471746i −1.12405 + 0.0736743i −0.616069 0.787693i \(-0.711276\pi\)
−0.507984 + 0.861367i \(0.669609\pi\)
\(42\) 0 0
\(43\) 1.48672 + 1.14080i 0.226722 + 0.173970i 0.715876 0.698227i \(-0.246028\pi\)
−0.489154 + 0.872198i \(0.662694\pi\)
\(44\) 6.24273 4.17126i 0.941126 0.628840i
\(45\) 0 0
\(46\) −4.34870 + 6.50829i −0.641181 + 0.959596i
\(47\) −0.219953 + 0.820877i −0.0320835 + 0.119737i −0.980110 0.198453i \(-0.936408\pi\)
0.948027 + 0.318190i \(0.103075\pi\)
\(48\) 0 0
\(49\) −4.24162 5.52779i −0.605946 0.789684i
\(50\) 1.30313 2.25709i 0.184290 0.319200i
\(51\) 0 0
\(52\) −1.64942 2.85688i −0.228733 0.396178i
\(53\) −4.44864 + 10.7400i −0.611068 + 1.47525i 0.250761 + 0.968049i \(0.419319\pi\)
−0.861829 + 0.507199i \(0.830681\pi\)
\(54\) 0 0
\(55\) 3.56118 + 3.56118i 0.480189 + 0.480189i
\(56\) 0.364411 + 0.0238847i 0.0486964 + 0.00319173i
\(57\) 0 0
\(58\) −0.907741 13.8494i −0.119192 1.81852i
\(59\) −0.412757 + 3.13520i −0.0537364 + 0.408169i 0.943344 + 0.331815i \(0.107661\pi\)
−0.997081 + 0.0763535i \(0.975672\pi\)
\(60\) 0 0
\(61\) 4.80101 9.73548i 0.614706 1.24650i −0.337581 0.941297i \(-0.609609\pi\)
0.952287 0.305204i \(-0.0987248\pi\)
\(62\) −2.19906 + 11.0554i −0.279281 + 1.40404i
\(63\) 0 0
\(64\) −9.10774 + 9.10774i −1.13847 + 1.13847i
\(65\) 1.66367 1.45900i 0.206353 0.180967i
\(66\) 0 0
\(67\) −9.11090 5.26018i −1.11307 0.642633i −0.173450 0.984843i \(-0.555492\pi\)
−0.939624 + 0.342209i \(0.888825\pi\)
\(68\) 11.9856 0.917931i 1.45346 0.111315i
\(69\) 0 0
\(70\) 0.101830 + 0.773473i 0.0121710 + 0.0924477i
\(71\) 12.6361 2.51348i 1.49963 0.298295i 0.624056 0.781380i \(-0.285484\pi\)
0.875574 + 0.483085i \(0.160484\pi\)
\(72\) 0 0
\(73\) 8.59520 + 5.74313i 1.00599 + 0.672182i 0.945377 0.325979i \(-0.105694\pi\)
0.0606148 + 0.998161i \(0.480694\pi\)
\(74\) −6.26099 18.4443i −0.727825 2.14410i
\(75\) 0 0
\(76\) −17.9111 2.35804i −2.05454 0.270485i
\(77\) 0.459412 + 0.0604827i 0.0523549 + 0.00689265i
\(78\) 0 0
\(79\) 2.06175 + 6.07373i 0.231965 + 0.683348i 0.999122 + 0.0418883i \(0.0133374\pi\)
−0.767157 + 0.641459i \(0.778329\pi\)
\(80\) −2.16440 1.44621i −0.241987 0.161691i
\(81\) 0 0
\(82\) −15.6843 + 3.11980i −1.73204 + 0.344524i
\(83\) 1.21897 + 9.25898i 0.133799 + 1.01630i 0.918219 + 0.396074i \(0.129628\pi\)
−0.784419 + 0.620231i \(0.787039\pi\)
\(84\) 0 0
\(85\) 2.17237 + 7.76509i 0.235626 + 0.842243i
\(86\) 3.59810 + 2.07737i 0.387994 + 0.224008i
\(87\) 0 0
\(88\) 3.92971 3.44626i 0.418909 0.367373i
\(89\) −10.2745 + 10.2745i −1.08909 + 1.08909i −0.0934682 + 0.995622i \(0.529795\pi\)
−0.995622 + 0.0934682i \(0.970205\pi\)
\(90\) 0 0
\(91\) 0.0397194 0.199683i 0.00416373 0.0209325i
\(92\) −4.55250 + 9.23155i −0.474631 + 0.962456i
\(93\) 0 0
\(94\) −0.245931 + 1.86803i −0.0253658 + 0.192673i
\(95\) −0.792561 12.0921i −0.0813150 1.24063i
\(96\) 0 0
\(97\) 2.64284 + 0.173221i 0.268340 + 0.0175879i 0.198979 0.980004i \(-0.436237\pi\)
0.0693606 + 0.997592i \(0.477904\pi\)
\(98\) −10.9232 10.9232i −1.10341 1.10341i
\(99\) 0 0
\(100\) 1.31154 3.16633i 0.131154 0.316633i
\(101\) −1.04532 1.81054i −0.104013 0.180155i 0.809322 0.587366i \(-0.199835\pi\)
−0.913334 + 0.407210i \(0.866502\pi\)
\(102\) 0 0
\(103\) −1.50429 + 2.60551i −0.148222 + 0.256728i −0.930570 0.366113i \(-0.880688\pi\)
0.782348 + 0.622841i \(0.214022\pi\)
\(104\) −1.39803 1.82194i −0.137088 0.178656i
\(105\) 0 0
\(106\) −6.67060 + 24.8950i −0.647906 + 2.41802i
\(107\) 4.92541 7.37140i 0.476158 0.712620i −0.513177 0.858283i \(-0.671531\pi\)
0.989334 + 0.145663i \(0.0465314\pi\)
\(108\) 0 0
\(109\) 7.29495 4.87433i 0.698729 0.466876i −0.154783 0.987948i \(-0.549468\pi\)
0.853512 + 0.521073i \(0.174468\pi\)
\(110\) 8.85843 + 6.79731i 0.844618 + 0.648098i
\(111\) 0 0
\(112\) −0.238993 + 0.0156644i −0.0225827 + 0.00148015i
\(113\) −5.88634 5.16218i −0.553741 0.485617i 0.336139 0.941812i \(-0.390879\pi\)
−0.889880 + 0.456195i \(0.849212\pi\)
\(114\) 0 0
\(115\) −6.66912 1.78699i −0.621899 0.166637i
\(116\) −3.56059 17.9003i −0.330593 1.66200i
\(117\) 0 0
\(118\) 7.01098i 0.645413i
\(119\) 0.593501 + 0.445135i 0.0544061 + 0.0408055i
\(120\) 0 0
\(121\) −3.46534 + 2.65905i −0.315030 + 0.241731i
\(122\) 7.73583 22.7890i 0.700370 2.06322i
\(123\) 0 0
\(124\) −0.969444 + 14.7909i −0.0870587 + 1.32826i
\(125\) 11.8450 + 2.35611i 1.05945 + 0.210737i
\(126\) 0 0
\(127\) 0.494267 + 1.19327i 0.0438591 + 0.105885i 0.944291 0.329112i \(-0.106749\pi\)
−0.900432 + 0.434997i \(0.856749\pi\)
\(128\) −8.84894 + 11.5322i −0.782143 + 1.01931i
\(129\) 0 0
\(130\) 3.23472 3.68849i 0.283704 0.323502i
\(131\) −13.1067 + 6.46352i −1.14514 + 0.564720i −0.912999 0.407962i \(-0.866239\pi\)
−0.232140 + 0.972682i \(0.574573\pi\)
\(132\) 0 0
\(133\) −0.735144 0.838271i −0.0637451 0.0726873i
\(134\) −21.5490 8.92589i −1.86155 0.771080i
\(135\) 0 0
\(136\) 8.18905 1.72265i 0.702205 0.147716i
\(137\) 15.0426 8.68484i 1.28517 0.741996i 0.307385 0.951585i \(-0.400546\pi\)
0.977789 + 0.209589i \(0.0672127\pi\)
\(138\) 0 0
\(139\) 19.6370 + 6.66587i 1.66559 + 0.565392i 0.985787 0.168002i \(-0.0537314\pi\)
0.679804 + 0.733394i \(0.262065\pi\)
\(140\) 0.265519 + 0.990931i 0.0224405 + 0.0837490i
\(141\) 0 0
\(142\) 27.0482 9.18163i 2.26983 0.770505i
\(143\) −1.61890 2.42285i −0.135379 0.202609i
\(144\) 0 0
\(145\) 11.3105 4.68497i 0.939288 0.389066i
\(146\) 20.5552 + 10.1367i 1.70116 + 0.838919i
\(147\) 0 0
\(148\) −11.3285 22.9719i −0.931197 1.88828i
\(149\) 16.6569 4.46321i 1.36459 0.365640i 0.499089 0.866551i \(-0.333668\pi\)
0.865499 + 0.500911i \(0.167001\pi\)
\(150\) 0 0
\(151\) −15.8401 + 2.08539i −1.28905 + 0.169706i −0.743706 0.668507i \(-0.766934\pi\)
−0.545343 + 0.838213i \(0.683600\pi\)
\(152\) −12.5765 −1.02009
\(153\) 0 0
\(154\) 1.02734 0.0827856
\(155\) −9.85766 + 1.29779i −0.791786 + 0.104241i
\(156\) 0 0
\(157\) 11.2723 3.02040i 0.899625 0.241054i 0.220770 0.975326i \(-0.429143\pi\)
0.678855 + 0.734272i \(0.262476\pi\)
\(158\) 6.28962 + 12.7541i 0.500375 + 1.01466i
\(159\) 0 0
\(160\) −12.2957 6.06359i −0.972064 0.479369i
\(161\) −0.586901 + 0.243102i −0.0462543 + 0.0191592i
\(162\) 0 0
\(163\) −6.58170 9.85021i −0.515518 0.771528i 0.478806 0.877921i \(-0.341070\pi\)
−0.994324 + 0.106393i \(0.966070\pi\)
\(164\) −19.9128 + 6.75947i −1.55493 + 0.527826i
\(165\) 0 0
\(166\) 5.35885 + 19.9995i 0.415928 + 1.55226i
\(167\) 4.14842 + 1.40820i 0.321014 + 0.108970i 0.477295 0.878743i \(-0.341617\pi\)
−0.156281 + 0.987713i \(0.549951\pi\)
\(168\) 0 0
\(169\) 10.1496 5.85985i 0.780735 0.450757i
\(170\) 7.02222 + 16.4399i 0.538580 + 1.26088i
\(171\) 0 0
\(172\) 5.04756 + 2.09077i 0.384873 + 0.159420i
\(173\) 7.01864 + 8.00322i 0.533617 + 0.608474i 0.954343 0.298714i \(-0.0965578\pi\)
−0.420725 + 0.907188i \(0.638224\pi\)
\(174\) 0 0
\(175\) 0.189704 0.0935519i 0.0143403 0.00707186i
\(176\) −2.26018 + 2.57724i −0.170367 + 0.194267i
\(177\) 0 0
\(178\) −19.6111 + 25.5577i −1.46992 + 1.91563i
\(179\) 2.62459 + 6.33632i 0.196171 + 0.473599i 0.991103 0.133100i \(-0.0424932\pi\)
−0.794931 + 0.606699i \(0.792493\pi\)
\(180\) 0 0
\(181\) 3.12720 + 0.622039i 0.232443 + 0.0462358i 0.309937 0.950757i \(-0.399692\pi\)
−0.0774943 + 0.996993i \(0.524692\pi\)
\(182\) 0.0295221 0.450420i 0.00218832 0.0333873i
\(183\) 0 0
\(184\) −2.30330 + 6.78530i −0.169801 + 0.500219i
\(185\) 13.6306 10.4591i 1.00214 0.768969i
\(186\) 0 0
\(187\) 10.5114 1.50152i 0.768672 0.109802i
\(188\) 2.47764i 0.180701i
\(189\) 0 0
\(190\) −5.24144 26.3505i −0.380254 1.91167i
\(191\) −1.67016 0.447519i −0.120849 0.0323814i 0.197888 0.980225i \(-0.436592\pi\)
−0.318737 + 0.947843i \(0.603259\pi\)
\(192\) 0 0
\(193\) 0.801167 + 0.702605i 0.0576693 + 0.0505746i 0.687695 0.725999i \(-0.258622\pi\)
−0.630026 + 0.776574i \(0.716956\pi\)
\(194\) 5.85939 0.384044i 0.420679 0.0275728i
\(195\) 0 0
\(196\) −16.1159 12.3662i −1.15114 0.883300i
\(197\) 7.44534 4.97482i 0.530459 0.354441i −0.261317 0.965253i \(-0.584157\pi\)
0.791776 + 0.610812i \(0.209157\pi\)
\(198\) 0 0
\(199\) −9.78402 + 14.6428i −0.693571 + 1.03800i 0.302814 + 0.953050i \(0.402074\pi\)
−0.996385 + 0.0849521i \(0.972926\pi\)
\(200\) 0.617511 2.30458i 0.0436646 0.162958i
\(201\) 0 0
\(202\) −2.82167 3.67727i −0.198532 0.258732i
\(203\) 0.563200 0.975490i 0.0395289 0.0684660i
\(204\) 0 0
\(205\) −7.05285 12.2159i −0.492592 0.853195i
\(206\) −2.55260 + 6.16252i −0.177848 + 0.429363i
\(207\) 0 0
\(208\) 1.06500 + 1.06500i 0.0738442 + 0.0738442i
\(209\) −15.9236 1.04369i −1.10146 0.0721935i
\(210\) 0 0
\(211\) 0.703329 + 10.7307i 0.0484192 + 0.738734i 0.951189 + 0.308609i \(0.0998636\pi\)
−0.902770 + 0.430124i \(0.858470\pi\)
\(212\) −4.42374 + 33.6016i −0.303824 + 2.30777i
\(213\) 0 0
\(214\) 8.69342 17.6285i 0.594270 1.20506i
\(215\) −0.714962 + 3.59436i −0.0487600 + 0.245133i
\(216\) 0 0
\(217\) −0.646868 + 0.646868i −0.0439122 + 0.0439122i
\(218\) 14.6245 12.8254i 0.990499 0.868644i
\(219\) 0 0
\(220\) 12.7158 + 7.34147i 0.857299 + 0.494962i
\(221\) −0.356256 4.65170i −0.0239644 0.312907i
\(222\) 0 0
\(223\) −2.11273 16.0478i −0.141479 1.07464i −0.903956 0.427625i \(-0.859350\pi\)
0.762477 0.647015i \(-0.223983\pi\)
\(224\) −1.23715 + 0.246085i −0.0826606 + 0.0164422i
\(225\) 0 0
\(226\) −14.4327 9.64363i −0.960050 0.641485i
\(227\) 2.08697 + 6.14800i 0.138517 + 0.408057i 0.993947 0.109861i \(-0.0350405\pi\)
−0.855430 + 0.517918i \(0.826707\pi\)
\(228\) 0 0
\(229\) 11.6792 + 1.53759i 0.771782 + 0.101607i 0.506124 0.862460i \(-0.331078\pi\)
0.265658 + 0.964067i \(0.414411\pi\)
\(230\) −15.1766 1.99804i −1.00072 0.131747i
\(231\) 0 0
\(232\) −4.08407 12.0313i −0.268132 0.789892i
\(233\) −6.04447 4.03878i −0.395986 0.264589i 0.341596 0.939847i \(-0.389033\pi\)
−0.737582 + 0.675257i \(0.764033\pi\)
\(234\) 0 0
\(235\) −1.63002 + 0.324231i −0.106331 + 0.0211505i
\(236\) 1.20337 + 9.14050i 0.0783327 + 0.594996i
\(237\) 0 0
\(238\) 1.43340 + 0.806705i 0.0929134 + 0.0522909i
\(239\) −10.7534 6.20850i −0.695582 0.401595i 0.110118 0.993919i \(-0.464877\pi\)
−0.805700 + 0.592324i \(0.798211\pi\)
\(240\) 0 0
\(241\) 1.29871 1.13894i 0.0836572 0.0733654i −0.616496 0.787358i \(-0.711448\pi\)
0.700153 + 0.713993i \(0.253115\pi\)
\(242\) −6.84770 + 6.84770i −0.440187 + 0.440187i
\(243\) 0 0
\(244\) 6.17400 31.0388i 0.395250 1.98706i
\(245\) 6.02665 12.2208i 0.385028 0.780760i
\(246\) 0 0
\(247\) −0.915173 + 6.95143i −0.0582311 + 0.442309i
\(248\) 0.674886 + 10.2968i 0.0428553 + 0.653845i
\(249\) 0 0
\(250\) 26.7184 + 1.75122i 1.68982 + 0.110757i
\(251\) −9.98125 9.98125i −0.630011 0.630011i 0.318060 0.948071i \(-0.396969\pi\)
−0.948071 + 0.318060i \(0.896969\pi\)
\(252\) 0 0
\(253\) −3.47939 + 8.39998i −0.218747 + 0.528102i
\(254\) 1.43177 + 2.47990i 0.0898372 + 0.155603i
\(255\) 0 0
\(256\) −3.23340 + 5.60042i −0.202088 + 0.350026i
\(257\) −13.2480 17.2651i −0.826387 1.07697i −0.995812 0.0914251i \(-0.970858\pi\)
0.169425 0.985543i \(-0.445809\pi\)
\(258\) 0 0
\(259\) 0.409137 1.52692i 0.0254225 0.0948782i
\(260\) 3.58414 5.36405i 0.222279 0.332664i
\(261\) 0 0
\(262\) −26.9396 + 18.0004i −1.66433 + 1.11207i
\(263\) 1.00443 + 0.770729i 0.0619360 + 0.0475252i 0.639265 0.768986i \(-0.279238\pi\)
−0.577329 + 0.816511i \(0.695905\pi\)
\(264\) 0 0
\(265\) −22.6852 + 1.48686i −1.39354 + 0.0913374i
\(266\) −1.85851 1.62987i −0.113953 0.0999339i
\(267\) 0 0
\(268\) −29.6264 7.93837i −1.80972 0.484913i
\(269\) 1.32171 + 6.64467i 0.0805859 + 0.405133i 0.999932 + 0.0116823i \(0.00371868\pi\)
−0.919346 + 0.393450i \(0.871281\pi\)
\(270\) 0 0
\(271\) 2.35757i 0.143212i 0.997433 + 0.0716060i \(0.0228124\pi\)
−0.997433 + 0.0716060i \(0.977188\pi\)
\(272\) −5.17725 + 1.82112i −0.313917 + 0.110422i
\(273\) 0 0
\(274\) 30.5520 23.4434i 1.84571 1.41627i
\(275\) 0.973104 2.86667i 0.0586804 0.172867i
\(276\) 0 0
\(277\) −1.23062 + 18.7756i −0.0739408 + 1.12812i 0.786170 + 0.618011i \(0.212061\pi\)
−0.860110 + 0.510108i \(0.829605\pi\)
\(278\) 45.0934 + 8.96964i 2.70452 + 0.537963i
\(279\) 0 0
\(280\) 0.273304 + 0.659815i 0.0163331 + 0.0394315i
\(281\) −11.9830 + 15.6166i −0.714848 + 0.931608i −0.999636 0.0269828i \(-0.991410\pi\)
0.284788 + 0.958590i \(0.408077\pi\)
\(282\) 0 0
\(283\) −10.0416 + 11.4502i −0.596909 + 0.680644i −0.968860 0.247608i \(-0.920355\pi\)
0.371951 + 0.928252i \(0.378689\pi\)
\(284\) 33.6879 16.6130i 1.99901 0.985803i
\(285\) 0 0
\(286\) −4.25966 4.85721i −0.251879 0.287213i
\(287\) −1.19904 0.496660i −0.0707773 0.0293169i
\(288\) 0 0
\(289\) 15.8451 + 6.15894i 0.932065 + 0.362291i
\(290\) 23.5060 13.5712i 1.38032 0.796929i
\(291\) 0 0
\(292\) 28.5385 + 9.68753i 1.67009 + 0.566920i
\(293\) 8.61931 + 32.1677i 0.503545 + 1.87926i 0.475628 + 0.879646i \(0.342221\pi\)
0.0279169 + 0.999610i \(0.491113\pi\)
\(294\) 0 0
\(295\) −5.85599 + 1.98784i −0.340949 + 0.115737i
\(296\) −9.90633 14.8259i −0.575794 0.861736i
\(297\) 0 0
\(298\) 35.3222 14.6309i 2.04616 0.847547i
\(299\) 3.58284 + 1.76686i 0.207201 + 0.102180i
\(300\) 0 0
\(301\) 0.149134 + 0.302415i 0.00859597 + 0.0174309i
\(302\) −34.2148 + 9.16783i −1.96884 + 0.527550i
\(303\) 0 0
\(304\) 8.17755 1.07660i 0.469015 0.0617470i
\(305\) 21.2281 1.21552
\(306\) 0 0
\(307\) 30.4740 1.73925 0.869623 0.493717i \(-0.164362\pi\)
0.869623 + 0.493717i \(0.164362\pi\)
\(308\) 1.33939 0.176334i 0.0763188 0.0100476i
\(309\) 0 0
\(310\) −21.2927 + 5.70536i −1.20934 + 0.324042i
\(311\) 10.9790 + 22.2632i 0.622561 + 1.26243i 0.948422 + 0.317012i \(0.102679\pi\)
−0.325860 + 0.945418i \(0.605654\pi\)
\(312\) 0 0
\(313\) −8.39428 4.13960i −0.474473 0.233984i 0.189299 0.981920i \(-0.439379\pi\)
−0.663771 + 0.747935i \(0.731045\pi\)
\(314\) 23.9037 9.90122i 1.34896 0.558758i
\(315\) 0 0
\(316\) 10.3892 + 15.5485i 0.584436 + 0.874670i
\(317\) 19.6083 6.65612i 1.10131 0.373845i 0.289154 0.957283i \(-0.406626\pi\)
0.812158 + 0.583437i \(0.198293\pi\)
\(318\) 0 0
\(319\) −4.17255 15.5722i −0.233618 0.871875i
\(320\) −23.8522 8.09674i −1.33338 0.452622i
\(321\) 0 0
\(322\) −1.21972 + 0.704208i −0.0679726 + 0.0392440i
\(323\) −21.3979 13.9600i −1.19061 0.776754i
\(324\) 0 0
\(325\) −1.22888 0.509018i −0.0681659 0.0282352i
\(326\) −17.3178 19.7472i −0.959146 1.09370i
\(327\) 0 0
\(328\) −13.1296 + 6.47481i −0.724961 + 0.357511i
\(329\) −0.100823 + 0.114966i −0.00555853 + 0.00633829i
\(330\) 0 0
\(331\) −5.08307 + 6.62438i −0.279391 + 0.364109i −0.911878 0.410462i \(-0.865367\pi\)
0.632487 + 0.774571i \(0.282034\pi\)
\(332\) 10.4193 + 25.1544i 0.571833 + 1.38053i
\(333\) 0 0
\(334\) 9.52621 + 1.89488i 0.521251 + 0.103683i
\(335\) 1.34560 20.5298i 0.0735177 1.12166i
\(336\) 0 0
\(337\) 9.04236 26.6379i 0.492569 1.45106i −0.362224 0.932091i \(-0.617982\pi\)
0.854793 0.518970i \(-0.173684\pi\)
\(338\) 20.6141 15.8177i 1.12126 0.860372i
\(339\) 0 0
\(340\) 11.9769 + 20.2281i 0.649540 + 1.09702i
\(341\) 13.0931i 0.709033i
\(342\) 0 0
\(343\) −0.490307 2.46494i −0.0264741 0.133094i
\(344\) 3.67382 + 0.984396i 0.198079 + 0.0530751i
\(345\) 0 0
\(346\) 17.7438 + 15.5609i 0.953911 + 0.836558i
\(347\) −20.4266 + 1.33883i −1.09656 + 0.0718721i −0.602924 0.797799i \(-0.705998\pi\)
−0.493632 + 0.869671i \(0.664331\pi\)
\(348\) 0 0
\(349\) 3.01429 + 2.31295i 0.161351 + 0.123809i 0.686281 0.727336i \(-0.259242\pi\)
−0.524930 + 0.851145i \(0.675909\pi\)
\(350\) 0.389919 0.260536i 0.0208420 0.0139262i
\(351\) 0 0
\(352\) −10.0300 + 15.0110i −0.534601 + 0.800087i
\(353\) −0.702285 + 2.62096i −0.0373789 + 0.139500i −0.982094 0.188393i \(-0.939672\pi\)
0.944715 + 0.327893i \(0.106339\pi\)
\(354\) 0 0
\(355\) 15.3381 + 19.9890i 0.814062 + 1.06091i
\(356\) −21.1811 + 36.6867i −1.12260 + 1.94439i
\(357\) 0 0
\(358\) 7.60279 + 13.1684i 0.401820 + 0.695973i
\(359\) 9.40229 22.6991i 0.496234 1.19802i −0.455263 0.890357i \(-0.650455\pi\)
0.951497 0.307658i \(-0.0995453\pi\)
\(360\) 0 0
\(361\) 13.7158 + 13.7158i 0.721883 + 0.721883i
\(362\) 7.05395 + 0.462340i 0.370747 + 0.0243001i
\(363\) 0 0
\(364\) −0.0388213 0.592298i −0.00203479 0.0310449i
\(365\) −2.63871 + 20.0430i −0.138117 + 1.04910i
\(366\) 0 0
\(367\) −1.53717 + 3.11708i −0.0802397 + 0.162710i −0.933295 0.359110i \(-0.883080\pi\)
0.853055 + 0.521820i \(0.174747\pi\)
\(368\) 0.916814 4.60914i 0.0477922 0.240268i
\(369\) 0 0
\(370\) 26.9348 26.9348i 1.40027 1.40027i
\(371\) −1.57262 + 1.37915i −0.0816463 + 0.0716018i
\(372\) 0 0
\(373\) −26.9296 15.5478i −1.39436 0.805035i −0.400567 0.916267i \(-0.631187\pi\)
−0.993794 + 0.111232i \(0.964520\pi\)
\(374\) 22.6708 6.34239i 1.17228 0.327957i
\(375\) 0 0
\(376\) 0.225135 + 1.71007i 0.0116105 + 0.0881902i
\(377\) −6.94725 + 1.38189i −0.357802 + 0.0711711i
\(378\) 0 0
\(379\) −21.4947 14.3623i −1.10411 0.737740i −0.136610 0.990625i \(-0.543621\pi\)
−0.967496 + 0.252885i \(0.918621\pi\)
\(380\) −11.3563 33.4546i −0.582567 1.71619i
\(381\) 0 0
\(382\) −3.80071 0.500374i −0.194461 0.0256013i
\(383\) 2.08664 + 0.274712i 0.106622 + 0.0140371i 0.183649 0.982992i \(-0.441209\pi\)
−0.0770261 + 0.997029i \(0.524542\pi\)
\(384\) 0 0
\(385\) 0.291285 + 0.858098i 0.0148453 + 0.0437327i
\(386\) 1.96438 + 1.31256i 0.0999843 + 0.0668074i
\(387\) 0 0
\(388\) 7.57321 1.50640i 0.384471 0.0764761i
\(389\) −0.136798 1.03908i −0.00693592 0.0526836i 0.987627 0.156822i \(-0.0501249\pi\)
−0.994563 + 0.104138i \(0.966792\pi\)
\(390\) 0 0
\(391\) −11.4506 + 8.98793i −0.579080 + 0.454539i
\(392\) −12.2469 7.07076i −0.618563 0.357128i
\(393\) 0 0
\(394\) 14.9260 13.0898i 0.751963 0.659454i
\(395\) −8.86967 + 8.86967i −0.446282 + 0.446282i
\(396\) 0 0
\(397\) −2.28690 + 11.4970i −0.114776 + 0.577020i 0.880003 + 0.474969i \(0.157541\pi\)
−0.994779 + 0.102051i \(0.967459\pi\)
\(398\) −17.2689 + 35.0179i −0.865613 + 1.75529i
\(399\) 0 0
\(400\) −0.204240 + 1.55135i −0.0102120 + 0.0775677i
\(401\) 0.554616 + 8.46180i 0.0276962 + 0.422562i 0.989083 + 0.147361i \(0.0470779\pi\)
−0.961387 + 0.275201i \(0.911255\pi\)
\(402\) 0 0
\(403\) 5.74045 + 0.376249i 0.285952 + 0.0187423i
\(404\) −4.30989 4.30989i −0.214425 0.214425i
\(405\) 0 0
\(406\) 0.955682 2.30722i 0.0474297 0.114505i
\(407\) −11.3124 19.5937i −0.560736 0.971224i
\(408\) 0 0
\(409\) −17.0137 + 29.4686i −0.841274 + 1.45713i 0.0475435 + 0.998869i \(0.484861\pi\)
−0.888818 + 0.458261i \(0.848473\pi\)
\(410\) −19.0381 24.8109i −0.940223 1.22532i
\(411\) 0 0
\(412\) −2.27019 + 8.47247i −0.111844 + 0.417408i
\(413\) −0.316116 + 0.473101i −0.0155550 + 0.0232798i
\(414\) 0 0
\(415\) −15.1854 + 10.1466i −0.745422 + 0.498075i
\(416\) 6.29306 + 4.82884i 0.308543 + 0.236753i
\(417\) 0 0
\(418\) −35.3039 + 2.31394i −1.72677 + 0.113179i
\(419\) −8.42903 7.39206i −0.411785 0.361126i 0.428248 0.903661i \(-0.359131\pi\)
−0.840033 + 0.542536i \(0.817464\pi\)
\(420\) 0 0
\(421\) −32.7112 8.76493i −1.59424 0.427176i −0.650946 0.759124i \(-0.725628\pi\)
−0.943298 + 0.331948i \(0.892294\pi\)
\(422\) 4.65133 + 23.3838i 0.226423 + 1.13831i
\(423\) 0 0
\(424\) 23.5939i 1.14582i
\(425\) 3.60874 3.23561i 0.175049 0.156950i
\(426\) 0 0
\(427\) 1.54954 1.18901i 0.0749876 0.0575400i
\(428\) 8.30820 24.4752i 0.401592 1.18305i
\(429\) 0 0
\(430\) −0.531406 + 8.10770i −0.0256267 + 0.390988i
\(431\) −7.57077 1.50592i −0.364671 0.0725376i 0.00935382 0.999956i \(-0.497023\pi\)
−0.374025 + 0.927419i \(0.622023\pi\)
\(432\) 0 0
\(433\) −9.03116 21.8032i −0.434010 1.04779i −0.977982 0.208689i \(-0.933080\pi\)
0.543972 0.839103i \(-0.316920\pi\)
\(434\) −1.23469 + 1.60908i −0.0592671 + 0.0772384i
\(435\) 0 0
\(436\) 16.8653 19.2312i 0.807700 0.921005i
\(437\) 19.6209 9.67596i 0.938596 0.462864i
\(438\) 0 0
\(439\) −0.220862 0.251845i −0.0105412 0.0120199i 0.746545 0.665335i \(-0.231711\pi\)
−0.757086 + 0.653315i \(0.773378\pi\)
\(440\) 9.44356 + 3.91165i 0.450204 + 0.186481i
\(441\) 0 0
\(442\) −2.12923 10.1219i −0.101277 0.481447i
\(443\) 0.140494 0.0811141i 0.00667506 0.00385385i −0.496659 0.867946i \(-0.665440\pi\)
0.503334 + 0.864092i \(0.332107\pi\)
\(444\) 0 0
\(445\) −26.9077 9.13394i −1.27555 0.432990i
\(446\) −9.28804 34.6635i −0.439802 1.64136i
\(447\) 0 0
\(448\) −2.19459 + 0.744964i −0.103685 + 0.0351962i
\(449\) −7.85643 11.7580i −0.370768 0.554893i 0.598431 0.801175i \(-0.295791\pi\)
−0.969198 + 0.246282i \(0.920791\pi\)
\(450\) 0 0
\(451\) −17.1612 + 7.10841i −0.808090 + 0.334722i
\(452\) −20.4718 10.0956i −0.962911 0.474855i
\(453\) 0 0
\(454\) 6.36654 + 12.9101i 0.298796 + 0.605899i
\(455\) 0.384588 0.103050i 0.0180298 0.00483106i
\(456\) 0 0
\(457\) −17.4023 + 2.29106i −0.814045 + 0.107171i −0.526042 0.850459i \(-0.676325\pi\)
−0.288003 + 0.957630i \(0.592991\pi\)
\(458\) 26.1171 1.22037
\(459\) 0 0
\(460\) −20.1293 −0.938534
\(461\) −17.5825 + 2.31478i −0.818900 + 0.107810i −0.528325 0.849042i \(-0.677180\pi\)
−0.290575 + 0.956852i \(0.593846\pi\)
\(462\) 0 0
\(463\) 18.1457 4.86211i 0.843300 0.225962i 0.188792 0.982017i \(-0.439543\pi\)
0.654508 + 0.756056i \(0.272876\pi\)
\(464\) 3.68548 + 7.47341i 0.171094 + 0.346944i
\(465\) 0 0
\(466\) −14.4552 7.12851i −0.669623 0.330222i
\(467\) −24.8403 + 10.2892i −1.14947 + 0.476127i −0.874357 0.485284i \(-0.838716\pi\)
−0.275116 + 0.961411i \(0.588716\pi\)
\(468\) 0 0
\(469\) −1.05167 1.57394i −0.0485617 0.0726777i
\(470\) −3.48914 + 1.18440i −0.160942 + 0.0546325i
\(471\) 0 0
\(472\) 1.66114 + 6.19944i 0.0764600 + 0.285352i
\(473\) 4.56987 + 1.55126i 0.210123 + 0.0713270i
\(474\) 0 0
\(475\) −6.30835 + 3.64213i −0.289447 + 0.167112i
\(476\) 2.00724 + 0.805706i 0.0920019 + 0.0369295i
\(477\) 0 0
\(478\) −25.4339 10.5351i −1.16332 0.481863i
\(479\) −7.85185 8.95332i −0.358760 0.409088i 0.544101 0.839020i \(-0.316871\pi\)
−0.902861 + 0.429932i \(0.858538\pi\)
\(480\) 0 0
\(481\) −8.91559 + 4.39668i −0.406516 + 0.200471i
\(482\) 2.52512 2.87934i 0.115016 0.131150i
\(483\) 0 0
\(484\) −7.75229 + 10.1030i −0.352377 + 0.459226i
\(485\) 1.98210 + 4.78522i 0.0900027 + 0.217286i
\(486\) 0 0
\(487\) −15.6673 3.11643i −0.709955 0.141219i −0.173113 0.984902i \(-0.555383\pi\)
−0.536842 + 0.843683i \(0.680383\pi\)
\(488\) 1.44091 21.9840i 0.0652269 0.995171i
\(489\) 0 0
\(490\) 9.71070 28.6068i 0.438685 1.29232i
\(491\) −8.05433 + 6.18031i −0.363487 + 0.278913i −0.774316 0.632799i \(-0.781906\pi\)
0.410829 + 0.911712i \(0.365239\pi\)
\(492\) 0 0
\(493\) 6.40608 25.0035i 0.288515 1.12610i
\(494\) 15.5449i 0.699396i
\(495\) 0 0
\(496\) −1.32027 6.63743i −0.0592818 0.298029i
\(497\) 2.23920 + 0.599992i 0.100442 + 0.0269133i
\(498\) 0 0
\(499\) 9.25912 + 8.12003i 0.414495 + 0.363502i 0.841048 0.540960i \(-0.181939\pi\)
−0.426553 + 0.904462i \(0.640272\pi\)
\(500\) 35.1345 2.30283i 1.57126 0.102986i
\(501\) 0 0
\(502\) −24.8283 19.0515i −1.10814 0.850308i
\(503\) −16.6358 + 11.1157i −0.741753 + 0.495623i −0.868116 0.496361i \(-0.834669\pi\)
0.126364 + 0.991984i \(0.459669\pi\)
\(504\) 0 0
\(505\) 2.27144 3.39945i 0.101078 0.151274i
\(506\) −5.21724 + 19.4710i −0.231934 + 0.865591i
\(507\) 0 0
\(508\) 2.29231 + 2.98739i 0.101705 + 0.132544i
\(509\) 10.4673 18.1299i 0.463956 0.803596i −0.535198 0.844727i \(-0.679763\pi\)
0.999154 + 0.0411314i \(0.0130962\pi\)
\(510\) 0 0
\(511\) 0.930014 + 1.61083i 0.0411414 + 0.0712590i
\(512\) 5.63865 13.6129i 0.249196 0.601611i
\(513\) 0 0
\(514\) −34.1169 34.1169i −1.50483 1.50483i
\(515\) −5.87106 0.384809i −0.258710 0.0169567i
\(516\) 0 0
\(517\) 0.143138 + 2.18387i 0.00629522 + 0.0960465i
\(518\) 0.457458 3.47474i 0.0200996 0.152671i
\(519\) 0 0
\(520\) 1.98637 4.02795i 0.0871080 0.176637i
\(521\) −3.88666 + 19.5396i −0.170278 + 0.856044i 0.797322 + 0.603554i \(0.206249\pi\)
−0.967600 + 0.252490i \(0.918751\pi\)
\(522\) 0 0
\(523\) 14.6139 14.6139i 0.639022 0.639022i −0.311292 0.950314i \(-0.600762\pi\)
0.950314 + 0.311292i \(0.100762\pi\)
\(524\) −32.0326 + 28.0919i −1.39935 + 1.22720i
\(525\) 0 0
\(526\) 2.43090 + 1.40348i 0.105992 + 0.0611946i
\(527\) −10.2812 + 18.2682i −0.447856 + 0.795775i
\(528\) 0 0
\(529\) 1.37514 + 10.4452i 0.0597888 + 0.454141i
\(530\) −49.4343 + 9.83309i −2.14729 + 0.427122i
\(531\) 0 0
\(532\) −2.70277 1.80594i −0.117180 0.0782972i
\(533\) 2.62340 + 7.72830i 0.113632 + 0.334750i
\(534\) 0 0
\(535\) 17.1893 + 2.26301i 0.743157 + 0.0978385i
\(536\) −21.1695 2.78702i −0.914384 0.120381i
\(537\) 0 0
\(538\) 4.82814 + 14.2232i 0.208156 + 0.613208i
\(539\) −14.9195 9.96890i −0.642629 0.429391i
\(540\) 0 0
\(541\) 33.0365 6.57136i 1.42035 0.282525i 0.575619 0.817718i \(-0.304761\pi\)
0.844730 + 0.535193i \(0.179761\pi\)
\(542\) 0.682249 + 5.18220i 0.0293051 + 0.222594i
\(543\) 0 0
\(544\) −25.7815 + 13.0681i −1.10537 + 0.560291i
\(545\) 14.8591 + 8.57889i 0.636492 + 0.367479i
\(546\) 0 0
\(547\) −22.9071 + 20.0890i −0.979438 + 0.858944i −0.990010 0.141000i \(-0.954968\pi\)
0.0105719 + 0.999944i \(0.496635\pi\)
\(548\) 35.8081 35.8081i 1.52965 1.52965i
\(549\) 0 0
\(550\) 1.30941 6.58287i 0.0558336 0.280695i
\(551\) −17.1568 + 34.7906i −0.730905 + 1.48213i
\(552\) 0 0
\(553\) −0.150642 + 1.14424i −0.00640594 + 0.0486579i
\(554\) 2.72838 + 41.6271i 0.115918 + 1.76856i
\(555\) 0 0
\(556\) 60.3297 + 3.95422i 2.55855 + 0.167696i
\(557\) −13.7661 13.7661i −0.583287 0.583287i 0.352518 0.935805i \(-0.385325\pi\)
−0.935805 + 0.352518i \(0.885325\pi\)
\(558\) 0 0
\(559\) 0.811444 1.95900i 0.0343204 0.0828568i
\(560\) −0.234192 0.405632i −0.00989640 0.0171411i
\(561\) 0 0
\(562\) −21.8208 + 37.7947i −0.920455 + 1.59428i
\(563\) −6.21454 8.09895i −0.261912 0.341330i 0.643823 0.765174i \(-0.277347\pi\)
−0.905735 + 0.423844i \(0.860680\pi\)
\(564\) 0 0
\(565\) 3.96280 14.7894i 0.166716 0.622193i
\(566\) −18.7589 + 28.0747i −0.788497 + 1.18007i
\(567\) 0 0
\(568\) 21.7419 14.5275i 0.912269 0.609559i
\(569\) −18.6620 14.3199i −0.782353 0.600321i 0.138441 0.990371i \(-0.455791\pi\)
−0.920794 + 0.390050i \(0.872458\pi\)
\(570\) 0 0
\(571\) 6.45258 0.422924i 0.270032 0.0176988i 0.0702143 0.997532i \(-0.477632\pi\)
0.199818 + 0.979833i \(0.435965\pi\)
\(572\) −6.38719 5.60142i −0.267062 0.234207i
\(573\) 0 0
\(574\) −2.77936 0.744727i −0.116008 0.0310843i
\(575\) 0.809677 + 4.07052i 0.0337659 + 0.169752i
\(576\) 0 0
\(577\) 18.2911i 0.761468i −0.924685 0.380734i \(-0.875671\pi\)
0.924685 0.380734i \(-0.124329\pi\)
\(578\) 36.6116 + 8.95268i 1.52284 + 0.372383i
\(579\) 0 0
\(580\) 28.3164 21.7279i 1.17577 0.902204i
\(581\) −0.540137 + 1.59119i −0.0224087 + 0.0660138i
\(582\) 0 0
\(583\) −1.95799 + 29.8731i −0.0810915 + 1.23722i
\(584\) 20.5776 + 4.09314i 0.851508 + 0.169375i
\(585\) 0 0
\(586\) 28.2551 + 68.2139i 1.16721 + 2.81789i
\(587\) 15.0635 19.6311i 0.621736 0.810262i −0.371245 0.928535i \(-0.621069\pi\)
0.992981 + 0.118273i \(0.0377358\pi\)
\(588\) 0 0
\(589\) 20.7722 23.6861i 0.855903 0.975970i
\(590\) −12.2969 + 6.06414i −0.506254 + 0.249657i
\(591\) 0 0
\(592\) 7.71048 + 8.79212i 0.316899 + 0.361354i
\(593\) 12.7576 + 5.28436i 0.523890 + 0.217003i 0.628925 0.777466i \(-0.283495\pi\)
−0.105034 + 0.994469i \(0.533495\pi\)
\(594\) 0 0
\(595\) −0.267394 + 1.42599i −0.0109621 + 0.0584598i
\(596\) 43.5397 25.1377i 1.78346 1.02968i
\(597\) 0 0
\(598\) 8.38679 + 2.84693i 0.342961 + 0.116420i
\(599\) 2.34742 + 8.76070i 0.0959130 + 0.357952i 0.997156 0.0753612i \(-0.0240110\pi\)
−0.901243 + 0.433313i \(0.857344\pi\)
\(600\) 0 0
\(601\) 6.20233 2.10541i 0.252998 0.0858813i −0.192059 0.981383i \(-0.561517\pi\)
0.445057 + 0.895502i \(0.353183\pi\)
\(602\) 0.415329 + 0.621584i 0.0169275 + 0.0253339i
\(603\) 0 0
\(604\) −43.0337 + 17.8251i −1.75102 + 0.725295i
\(605\) −7.66116 3.77807i −0.311471 0.153600i
\(606\) 0 0
\(607\) −8.97229 18.1940i −0.364174 0.738472i 0.635253 0.772304i \(-0.280896\pi\)
−0.999428 + 0.0338318i \(0.989229\pi\)
\(608\) 41.9596 11.2430i 1.70169 0.455965i
\(609\) 0 0
\(610\) 46.6618 6.14315i 1.88928 0.248729i
\(611\) 0.961592 0.0389019
\(612\) 0 0
\(613\) 29.3144 1.18400 0.591998 0.805939i \(-0.298339\pi\)
0.591998 + 0.805939i \(0.298339\pi\)
\(614\) 66.9854 8.81879i 2.70331 0.355897i
\(615\) 0 0
\(616\) 0.908425 0.243412i 0.0366015 0.00980734i
\(617\) −7.32525 14.8541i −0.294903 0.598005i 0.698112 0.715988i \(-0.254024\pi\)
−0.993016 + 0.117983i \(0.962357\pi\)
\(618\) 0 0
\(619\) 35.3429 + 17.4292i 1.42055 + 0.700538i 0.980332 0.197353i \(-0.0632345\pi\)
0.440218 + 0.897891i \(0.354901\pi\)
\(620\) −26.7809 + 11.0930i −1.07555 + 0.445506i
\(621\) 0 0
\(622\) 30.5757 + 45.7598i 1.22597 + 1.83480i
\(623\) −2.47572 + 0.840395i −0.0991878 + 0.0336697i
\(624\) 0 0
\(625\) 4.59156 + 17.1359i 0.183662 + 0.685437i
\(626\) −19.6495 6.67011i −0.785353 0.266591i
\(627\) 0 0
\(628\) 29.4647 17.0115i 1.17577 0.678832i
\(629\) −0.397986 36.2210i −0.0158687 1.44423i
\(630\) 0 0
\(631\) −29.7616 12.3276i −1.18479 0.490756i −0.298735 0.954336i \(-0.596565\pi\)
−0.886055 + 0.463580i \(0.846565\pi\)
\(632\) 8.58346 + 9.78756i 0.341432 + 0.389328i
\(633\) 0 0
\(634\) 41.1751 20.3053i 1.63527 0.806426i
\(635\) −1.66541 + 1.89903i −0.0660896 + 0.0753608i
\(636\) 0 0
\(637\) −4.79942 + 6.25472i −0.190160 + 0.247821i
\(638\) −13.6781 33.0219i −0.541522 1.30735i
\(639\) 0 0
\(640\) −27.8807 5.54581i −1.10208 0.219217i
\(641\) −2.55496 + 38.9812i −0.100915 + 1.53966i 0.584430 + 0.811444i \(0.301318\pi\)
−0.685345 + 0.728219i \(0.740348\pi\)
\(642\) 0 0
\(643\) 7.24768 21.3510i 0.285821 0.842000i −0.705285 0.708924i \(-0.749181\pi\)
0.991106 0.133077i \(-0.0424857\pi\)
\(644\) −1.46933 + 1.12746i −0.0578999 + 0.0444281i
\(645\) 0 0
\(646\) −51.0747 24.4934i −2.00951 0.963678i
\(647\) 16.3636i 0.643321i 0.946855 + 0.321661i \(0.104241\pi\)
−0.946855 + 0.321661i \(0.895759\pi\)
\(648\) 0 0
\(649\) 1.58875 + 7.98720i 0.0623640 + 0.313525i
\(650\) −2.84851 0.763257i −0.111728 0.0299374i
\(651\) 0 0
\(652\) −25.9674 22.7728i −1.01696 0.891852i
\(653\) 11.0667 0.725348i 0.433072 0.0283851i 0.152692 0.988274i \(-0.451206\pi\)
0.280381 + 0.959889i \(0.409539\pi\)
\(654\) 0 0
\(655\) −22.6733 17.3978i −0.885919 0.679790i
\(656\) 7.98292 5.33401i 0.311681 0.208258i
\(657\) 0 0
\(658\) −0.188350 + 0.281885i −0.00734263 + 0.0109890i
\(659\) −8.98545 + 33.5342i −0.350023 + 1.30631i 0.536609 + 0.843831i \(0.319705\pi\)
−0.886633 + 0.462474i \(0.846962\pi\)
\(660\) 0 0
\(661\) −1.21720 1.58629i −0.0473437 0.0616995i 0.769081 0.639151i \(-0.220714\pi\)
−0.816425 + 0.577451i \(0.804047\pi\)
\(662\) −9.25614 + 16.0321i −0.359750 + 0.623106i
\(663\) 0 0
\(664\) 9.47711 + 16.4148i 0.367783 + 0.637019i
\(665\) 0.834418 2.01446i 0.0323574 0.0781176i
\(666\) 0 0
\(667\) 15.6281 + 15.6281i 0.605123 + 0.605123i
\(668\) 12.7450 + 0.835348i 0.493117 + 0.0323206i
\(669\) 0 0
\(670\) −2.98329 45.5162i −0.115255 1.75845i
\(671\) 3.64878 27.7153i 0.140860 1.06994i
\(672\) 0 0
\(673\) −0.285317 + 0.578565i −0.0109981 + 0.0223020i −0.902302 0.431103i \(-0.858124\pi\)
0.891304 + 0.453406i \(0.149791\pi\)
\(674\) 12.1675 61.1699i 0.468673 2.35618i
\(675\) 0 0
\(676\) 24.1605 24.1605i 0.929249 0.929249i
\(677\) 14.0720 12.3408i 0.540831 0.474296i −0.344806 0.938674i \(-0.612055\pi\)
0.885637 + 0.464378i \(0.153722\pi\)
\(678\) 0 0
\(679\) 0.412708 + 0.238277i 0.0158383 + 0.00914423i
\(680\) 10.1045 + 12.8731i 0.387492 + 0.493662i
\(681\) 0 0
\(682\) 3.78898 + 28.7802i 0.145088 + 1.10205i
\(683\) 11.2368 2.23513i 0.429962 0.0855248i 0.0246352 0.999697i \(-0.492158\pi\)
0.405327 + 0.914172i \(0.367158\pi\)
\(684\) 0 0
\(685\) 28.2438 + 18.8719i 1.07914 + 0.721059i
\(686\) −1.79107 5.27633i −0.0683835 0.201451i
\(687\) 0 0
\(688\) −2.47307 0.325586i −0.0942849 0.0124128i
\(689\) 13.0411 + 1.71689i 0.496825 + 0.0654083i
\(690\) 0 0
\(691\) −15.9052 46.8552i −0.605063 1.78246i −0.622513 0.782609i \(-0.713888\pi\)
0.0174504 0.999848i \(-0.494445\pi\)
\(692\) 25.8042 + 17.2418i 0.980928 + 0.655435i
\(693\) 0 0
\(694\) −44.5125 + 8.85408i −1.68967 + 0.336096i
\(695\) 5.29347 + 40.2079i 0.200793 + 1.52517i
\(696\) 0 0
\(697\) −29.5259 3.55760i −1.11837 0.134754i
\(698\) 7.29509 + 4.21182i 0.276123 + 0.159420i
\(699\) 0 0
\(700\) 0.463635 0.406597i 0.0175238 0.0153679i
\(701\) 34.6398 34.6398i 1.30833 1.30833i 0.385706 0.922622i \(-0.373958\pi\)
0.922622 0.385706i \(-0.126042\pi\)
\(702\) 0 0
\(703\) −10.6205 + 53.3931i −0.400561 + 2.01376i
\(704\) −14.6708 + 29.7495i −0.552928 + 1.12123i
\(705\) 0 0
\(706\) −0.785229 + 5.96441i −0.0295525 + 0.224473i
\(707\) −0.0246029 0.375368i −0.000925287 0.0141171i
\(708\) 0 0
\(709\) 29.7155 + 1.94766i 1.11599 + 0.0731458i 0.612216 0.790690i \(-0.290278\pi\)
0.503773 + 0.863836i \(0.331945\pi\)
\(710\) 39.4994 + 39.4994i 1.48239 + 1.48239i
\(711\) 0 0
\(712\) −11.2856 + 27.2459i −0.422946 + 1.02108i
\(713\) −8.97490 15.5450i −0.336113 0.582164i
\(714\) 0 0
\(715\) 2.84928 4.93510i 0.106557 0.184562i
\(716\) 12.1723 + 15.8633i 0.454901 + 0.592838i
\(717\) 0 0
\(718\) 14.0985 52.6162i 0.526150 1.96362i
\(719\) 11.7055 17.5185i 0.436541 0.653330i −0.546342 0.837562i \(-0.683980\pi\)
0.982883 + 0.184233i \(0.0589800\pi\)
\(720\) 0 0
\(721\) −0.450110 + 0.300754i −0.0167630 + 0.0112007i
\(722\) 34.1180 + 26.1796i 1.26974 + 0.974305i
\(723\) 0 0
\(724\) 9.27588 0.607973i 0.344735 0.0225952i
\(725\) −5.53279 4.85212i −0.205483 0.180203i
\(726\) 0 0
\(727\) 38.7252 + 10.3764i 1.43624 + 0.384838i 0.891214 0.453583i \(-0.149854\pi\)
0.545022 + 0.838421i \(0.316521\pi\)
\(728\) −0.0806147 0.405278i −0.00298778 0.0150206i
\(729\) 0 0
\(730\) 44.8204i 1.65888i
\(731\) 5.15799 + 5.75281i 0.190775 + 0.212776i
\(732\) 0 0
\(733\) −17.6990 + 13.5809i −0.653728 + 0.501623i −0.881557 0.472078i \(-0.843504\pi\)
0.227829 + 0.973701i \(0.426837\pi\)
\(734\) −2.47683 + 7.29652i −0.0914216 + 0.269319i
\(735\) 0 0
\(736\) 1.61874 24.6972i 0.0596675 0.910350i
\(737\) −26.5722 5.28555i −0.978801 0.194696i
\(738\) 0 0
\(739\) −14.4782 34.9535i −0.532590 1.28579i −0.929803 0.368059i \(-0.880023\pi\)
0.397213 0.917727i \(-0.369977\pi\)
\(740\) 30.4929 39.7391i 1.12094 1.46084i
\(741\) 0 0
\(742\) −3.05768 + 3.48662i −0.112251 + 0.127998i
\(743\) −9.54668 + 4.70790i −0.350234 + 0.172716i −0.608893 0.793252i \(-0.708386\pi\)
0.258659 + 0.965969i \(0.416719\pi\)
\(744\) 0 0
\(745\) 22.2356 + 25.3549i 0.814650 + 0.928931i
\(746\) −63.6936 26.3828i −2.33199 0.965941i
\(747\) 0 0
\(748\) 28.4682 12.1601i 1.04090 0.444616i
\(749\) 1.38148 0.797598i 0.0504782 0.0291436i
\(750\) 0 0
\(751\) 38.2405 + 12.9809i 1.39542 + 0.473680i 0.915033 0.403378i \(-0.132164\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(752\) −0.292777 1.09266i −0.0106765 0.0398451i
\(753\) 0 0
\(754\) −14.8709 + 5.04800i −0.541567 + 0.183837i
\(755\) −17.3585 25.9789i −0.631742 0.945469i
\(756\) 0 0
\(757\) −19.5481 + 8.09711i −0.710489 + 0.294294i −0.708507 0.705704i \(-0.750631\pi\)
−0.00198230 + 0.999998i \(0.500631\pi\)
\(758\) −51.4039 25.3496i −1.86707 0.920739i
\(759\) 0 0
\(760\) −10.8781 22.0585i −0.394589 0.800147i
\(761\) 6.79443 1.82056i 0.246298 0.0659953i −0.133558 0.991041i \(-0.542640\pi\)
0.379856 + 0.925046i \(0.375974\pi\)
\(762\) 0 0
\(763\) 1.56514 0.206055i 0.0566620 0.00745970i
\(764\) −5.04104 −0.182378
\(765\) 0 0
\(766\) 4.66617 0.168596
\(767\) 3.54750 0.467037i 0.128093 0.0168637i
\(768\) 0 0
\(769\) −13.2740 + 3.55676i −0.478673 + 0.128260i −0.490085 0.871675i \(-0.663034\pi\)
0.0114118 + 0.999935i \(0.496367\pi\)
\(770\) 0.888599 + 1.80190i 0.0320229 + 0.0649360i
\(771\) 0 0
\(772\) 2.78633 + 1.37407i 0.100282 + 0.0494538i
\(773\) 0.300425 0.124440i 0.0108055 0.00447580i −0.377274 0.926102i \(-0.623139\pi\)
0.388080 + 0.921626i \(0.373139\pi\)
\(774\) 0 0
\(775\) 3.32044 + 4.96939i 0.119274 + 0.178506i
\(776\) 5.09016 1.72788i 0.182726 0.0620271i
\(777\) 0 0
\(778\) −0.601394 2.24443i −0.0215610 0.0804668i
\(779\) 42.3230 + 14.3667i 1.51638 + 0.514741i
\(780\) 0 0
\(781\) 28.7338 16.5895i 1.02818 0.593618i
\(782\) −22.5687 + 23.0701i −0.807054 + 0.824986i
\(783\) 0 0
\(784\) 8.56852 + 3.54920i 0.306019 + 0.126757i
\(785\) 15.0476 + 17.1585i 0.537071 + 0.612412i
\(786\) 0 0
\(787\) 25.8447 12.7452i 0.921264 0.454317i 0.0811346 0.996703i \(-0.474146\pi\)
0.840129 + 0.542386i \(0.182479\pi\)
\(788\) 17.2130 19.6276i 0.613187 0.699205i
\(789\) 0 0
\(790\) −16.9298 + 22.0633i −0.602334 + 0.784977i
\(791\) −0.539101 1.30150i −0.0191682 0.0462762i
\(792\) 0 0
\(793\) −12.0464 2.39618i −0.427780 0.0850908i
\(794\) −1.69978 + 25.9336i −0.0603228 + 0.920349i
\(795\) 0 0
\(796\) −16.5037 + 48.6184i −0.584959 + 1.72323i
\(797\) 7.65465 5.87362i 0.271142 0.208054i −0.464237 0.885711i \(-0.653671\pi\)
0.735378 + 0.677657i \(0.237005\pi\)
\(798\) 0 0
\(799\) −1.51514 + 3.15944i −0.0536018 + 0.111773i
\(800\) 8.24091i 0.291360i
\(801\) 0 0
\(802\) 3.66784 + 18.4395i 0.129516 + 0.651121i
\(803\) 25.7144 + 6.89016i 0.907442 + 0.243148i
\(804\) 0 0
\(805\) −0.934029 0.819121i −0.0329202 0.0288702i
\(806\) 12.7270 0.834174i 0.448291 0.0293825i
\(807\) 0 0
\(808\) −3.36632 2.58307i −0.118427 0.0908721i
\(809\) 7.78611 5.20251i 0.273745 0.182911i −0.411119 0.911582i \(-0.634862\pi\)
0.684864 + 0.728671i \(0.259862\pi\)
\(810\) 0 0
\(811\) −15.7832 + 23.6213i −0.554225 + 0.829456i −0.997767 0.0667978i \(-0.978722\pi\)
0.443542 + 0.896254i \(0.353722\pi\)
\(812\) 0.849949 3.17205i 0.0298274 0.111317i
\(813\) 0 0
\(814\) −30.5361 39.7955i −1.07029 1.39483i
\(815\) 11.5839 20.0639i 0.405766 0.702807i
\(816\) 0 0
\(817\) −5.80605 10.0564i −0.203128 0.351828i
\(818\) −28.8702 + 69.6989i −1.00942 + 2.43696i
\(819\) 0 0
\(820\) −29.0793 29.0793i −1.01549 1.01549i
\(821\) 32.1567 + 2.10766i 1.12228 + 0.0735579i 0.615221 0.788355i \(-0.289067\pi\)
0.507056 + 0.861913i \(0.330734\pi\)
\(822\) 0 0
\(823\) −0.751231 11.4616i −0.0261863 0.399525i −0.990752 0.135684i \(-0.956677\pi\)
0.964566 0.263842i \(-0.0849897\pi\)
\(824\) −0.797023 + 6.05399i −0.0277656 + 0.210901i
\(825\) 0 0
\(826\) −0.557949 + 1.13141i −0.0194135 + 0.0393667i
\(827\) −5.08115 + 25.5447i −0.176689 + 0.888275i 0.786116 + 0.618079i \(0.212089\pi\)
−0.962805 + 0.270196i \(0.912911\pi\)
\(828\) 0 0
\(829\) 5.16068 5.16068i 0.179238 0.179238i −0.611786 0.791023i \(-0.709549\pi\)
0.791023 + 0.611786i \(0.209549\pi\)
\(830\) −30.4429 + 26.6977i −1.05669 + 0.926691i
\(831\) 0 0
\(832\) 12.6216 + 7.28706i 0.437574 + 0.252634i
\(833\) −12.9885 25.6244i −0.450025 0.887834i
\(834\) 0 0
\(835\) 1.11827 + 8.49413i 0.0386994 + 0.293951i
\(836\) −45.6300 + 9.07637i −1.57815 + 0.313913i
\(837\) 0 0
\(838\) −20.6671 13.8093i −0.713934 0.477035i
\(839\) −1.48606 4.37779i −0.0513045 0.151138i 0.918258 0.395983i \(-0.129596\pi\)
−0.969562 + 0.244845i \(0.921263\pi\)
\(840\) 0 0
\(841\) −10.1018 1.32993i −0.348339 0.0458597i
\(842\) −74.4392 9.80011i −2.56535 0.337734i
\(843\) 0 0
\(844\) 10.0777 + 29.6881i 0.346890 + 1.02191i
\(845\) 19.0567 + 12.7333i 0.655571 + 0.438038i
\(846\) 0 0
\(847\) −0.770837 + 0.153329i −0.0264863 + 0.00526845i
\(848\) −2.01972 15.3413i −0.0693575 0.526822i
\(849\) 0 0
\(850\) 6.99606 8.15654i 0.239963 0.279767i
\(851\) 26.8616 + 15.5086i 0.920805 + 0.531627i
\(852\) 0 0
\(853\) 18.8057 16.4922i 0.643895 0.564681i −0.273889 0.961761i \(-0.588310\pi\)
0.917784 + 0.397081i \(0.129977\pi\)
\(854\) 3.06199 3.06199i 0.104779 0.104779i
\(855\) 0 0
\(856\) 3.51035 17.6477i 0.119981 0.603187i
\(857\) 2.78614 5.64973i 0.0951727 0.192991i −0.844080 0.536217i \(-0.819853\pi\)
0.939253 + 0.343226i \(0.111520\pi\)
\(858\) 0 0
\(859\) 4.78059 36.3122i 0.163112 1.23896i −0.692530 0.721389i \(-0.743504\pi\)
0.855642 0.517568i \(-0.173163\pi\)
\(860\) 0.698795 + 10.6616i 0.0238287 + 0.363556i
\(861\) 0 0
\(862\) −17.0772 1.11930i −0.581651 0.0381234i
\(863\) 33.6934 + 33.6934i 1.14694 + 1.14694i 0.987152 + 0.159784i \(0.0510798\pi\)
0.159784 + 0.987152i \(0.448920\pi\)
\(864\) 0 0
\(865\) −7.96644 + 19.2327i −0.270867 + 0.653931i
\(866\) −26.1610 45.3123i −0.888989 1.53977i
\(867\) 0 0
\(868\) −1.33354 + 2.30975i −0.0452631 + 0.0783981i
\(869\) 10.0556 + 13.1047i 0.341113 + 0.444547i
\(870\) 0 0
\(871\) −3.08094 + 11.4982i −0.104394 + 0.389603i
\(872\) 9.89296 14.8059i 0.335018 0.501390i
\(873\) 0 0
\(874\) 40.3289 26.9469i 1.36414 0.911492i
\(875\) 1.72400 + 1.32287i 0.0582818 + 0.0447212i
\(876\) 0 0
\(877\) 10.9320 0.716523i 0.369148 0.0241953i 0.120300 0.992738i \(-0.461614\pi\)
0.248849 + 0.968542i \(0.419948\pi\)
\(878\) −0.558361 0.489670i −0.0188438 0.0165255i
\(879\) 0 0
\(880\) −6.47528 1.73505i −0.218282 0.0584884i
\(881\) 2.51851 + 12.6614i 0.0848506 + 0.426573i 0.999739 + 0.0228649i \(0.00727877\pi\)
−0.914888 + 0.403708i \(0.867721\pi\)
\(882\) 0 0
\(883\) 57.1259i 1.92244i −0.275781 0.961220i \(-0.588937\pi\)
0.275781 0.961220i \(-0.411063\pi\)
\(884\) −4.51329 12.8308i −0.151798 0.431547i
\(885\) 0 0
\(886\) 0.285348 0.218955i 0.00958645 0.00735594i
\(887\) 11.6789 34.4050i 0.392139 1.15521i −0.554298 0.832318i \(-0.687013\pi\)
0.946437 0.322887i \(-0.104653\pi\)
\(888\) 0 0
\(889\) −0.0151995 + 0.231900i −0.000509776 + 0.00777768i
\(890\) −61.7895 12.2907i −2.07119 0.411985i
\(891\) 0 0
\(892\) −18.0589 43.5980i −0.604656 1.45977i
\(893\) 3.20575 4.17782i 0.107276 0.139805i
\(894\) 0 0
\(895\) −8.84342 + 10.0840i −0.295603 + 0.337071i
\(896\) −2.34577 + 1.15680i −0.0783666 + 0.0386461i
\(897\) 0 0
\(898\) −20.6719 23.5718i −0.689830 0.786601i
\(899\) 29.4048 + 12.1798i 0.980703 + 0.406221i
\(900\) 0 0
\(901\) −26.1893 + 40.1429i −0.872492 + 1.33736i
\(902\) −35.6652 + 20.5913i −1.18752 + 0.685616i
\(903\) 0 0
\(904\) −15.0470 5.10777i −0.500456 0.169882i
\(905\) 1.61385 + 6.02297i 0.0536462 + 0.200210i
\(906\) 0 0
\(907\) −2.45193 + 0.832316i −0.0814148 + 0.0276366i −0.361850 0.932236i \(-0.617855\pi\)
0.280435 + 0.959873i \(0.409521\pi\)
\(908\) 10.5162 + 15.7386i 0.348993 + 0.522305i
\(909\) 0 0
\(910\) 0.815547 0.337810i 0.0270351 0.0111983i
\(911\) −40.9359 20.1873i −1.35627 0.668836i −0.388679 0.921373i \(-0.627068\pi\)
−0.967587 + 0.252537i \(0.918735\pi\)
\(912\) 0 0
\(913\) 10.6371 + 21.5699i 0.352037 + 0.713861i
\(914\) −37.5892 + 10.0720i −1.24334 + 0.333152i
\(915\) 0 0
\(916\) 34.0500 4.48276i 1.12504 0.148115i
\(917\) −2.62950 −0.0868337
\(918\) 0 0
\(919\) 12.2132 0.402876 0.201438 0.979501i \(-0.435439\pi\)
0.201438 + 0.979501i \(0.435439\pi\)
\(920\) −13.8933 + 1.82909i −0.458048 + 0.0603032i
\(921\) 0 0
\(922\) −37.9785 + 10.1763i −1.25075 + 0.335139i
\(923\) −6.44766 13.0746i −0.212227 0.430354i
\(924\) 0 0
\(925\) −9.26253 4.56778i −0.304550 0.150188i
\(926\) 38.4791 15.9386i 1.26450 0.523774i
\(927\) 0 0
\(928\) 24.3815 + 36.4894i 0.800361 + 1.19782i
\(929\) −51.9532 + 17.6357i −1.70453 + 0.578610i −0.992358 0.123394i \(-0.960622\pi\)
−0.712173 + 0.702004i \(0.752289\pi\)
\(930\) 0 0
\(931\) 11.1745 + 41.7040i 0.366231 + 1.36679i
\(932\) −20.0694 6.81263i −0.657394 0.223155i
\(933\) 0 0
\(934\) −51.6243 + 29.8053i −1.68920 + 0.975258i
\(935\) 11.7255 + 17.1377i 0.383463 + 0.560464i
\(936\) 0 0
\(937\) −42.4638 17.5891i −1.38723 0.574610i −0.440826 0.897593i \(-0.645314\pi\)
−0.946405 + 0.322983i \(0.895314\pi\)
\(938\) −2.76717 3.15535i −0.0903512 0.103026i
\(939\) 0 0
\(940\) −4.34565 + 2.14304i −0.141739 + 0.0698981i
\(941\) −31.2184 + 35.5977i −1.01769 + 1.16045i −0.0307223 + 0.999528i \(0.509781\pi\)
−0.986967 + 0.160924i \(0.948553\pi\)
\(942\) 0 0
\(943\) 15.5023 20.2030i 0.504824 0.657900i
\(944\) −1.61080 3.88883i −0.0524272 0.126571i
\(945\) 0 0
\(946\) 10.4940 + 2.08738i 0.341189 + 0.0678667i
\(947\) 1.64772 25.1394i 0.0535438 0.816920i −0.883658 0.468133i \(-0.844927\pi\)
0.937202 0.348787i \(-0.113406\pi\)
\(948\) 0 0
\(949\) 3.75981 11.0760i 0.122048 0.359543i
\(950\) −12.8125 + 9.83136i −0.415692 + 0.318972i
\(951\) 0 0
\(952\) 1.45861 + 0.373708i 0.0472740 + 0.0121119i
\(953\) 8.03487i 0.260275i −0.991496 0.130138i \(-0.958458\pi\)
0.991496 0.130138i \(-0.0415419\pi\)
\(954\) 0 0
\(955\) −0.659685 3.31646i −0.0213469 0.107318i
\(956\) −34.9675 9.36952i −1.13093 0.303032i
\(957\) 0 0
\(958\) −19.8502 17.4082i −0.641332 0.562433i
\(959\) 3.11868 0.204409i 0.100707 0.00660072i
\(960\) 0 0
\(961\) 4.08673 + 3.13586i 0.131830 + 0.101157i
\(962\) −18.3251 + 12.2445i −0.590825 + 0.394777i
\(963\) 0 0
\(964\) 2.79789 4.18733i 0.0901138 0.134865i
\(965\) −0.539361 + 2.01292i −0.0173626 + 0.0647982i
\(966\) 0 0
\(967\) −17.9863 23.4401i −0.578399 0.753784i 0.408914 0.912573i \(-0.365908\pi\)
−0.987313 + 0.158789i \(0.949241\pi\)
\(968\) −4.43262 + 7.67752i −0.142470 + 0.246765i
\(969\) 0 0
\(970\) 5.74167 + 9.94486i 0.184354 + 0.319310i
\(971\) 4.64743 11.2199i 0.149143 0.360064i −0.831597 0.555379i \(-0.812573\pi\)
0.980740 + 0.195316i \(0.0625731\pi\)
\(972\) 0 0
\(973\) 2.63848 + 2.63848i 0.0845856 + 0.0845856i
\(974\) −35.3404 2.31633i −1.13238 0.0742201i
\(975\) 0 0
\(976\) 0.944999 + 14.4179i 0.0302487 + 0.461506i
\(977\) −4.32703 + 32.8670i −0.138434 + 1.05151i 0.771345 + 0.636417i \(0.219584\pi\)
−0.909779 + 0.415093i \(0.863749\pi\)
\(978\) 0 0
\(979\) −16.5502 + 33.5605i −0.528947 + 1.07260i
\(980\) 7.75015 38.9626i 0.247569 1.24462i
\(981\) 0 0
\(982\) −15.9158 + 15.9158i −0.507894 + 0.507894i
\(983\) 29.7343 26.0762i 0.948376 0.831703i −0.0374805 0.999297i \(-0.511933\pi\)
0.985856 + 0.167594i \(0.0535999\pi\)
\(984\) 0 0
\(985\) 15.1654 + 8.75575i 0.483210 + 0.278981i
\(986\) 6.84559 56.8143i 0.218008 1.80934i
\(987\) 0 0
\(988\) 2.66813 + 20.2665i 0.0848846 + 0.644763i
\(989\) −6.48896 + 1.29074i −0.206337 + 0.0410430i
\(990\) 0 0
\(991\) −39.0754 26.1093i −1.24127 0.829390i −0.250924 0.968007i \(-0.580734\pi\)
−0.990346 + 0.138616i \(0.955734\pi\)
\(992\) −11.4567 33.7502i −0.363749 1.07157i
\(993\) 0 0
\(994\) 5.09565 + 0.670854i 0.161624 + 0.0212782i
\(995\) −34.1454 4.49532i −1.08248 0.142511i
\(996\) 0 0
\(997\) −7.65963 22.5645i −0.242583 0.714626i −0.998220 0.0596357i \(-0.981006\pi\)
0.755637 0.654990i \(-0.227327\pi\)
\(998\) 22.7024 + 15.1693i 0.718632 + 0.480175i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.368.14 256
3.2 odd 2 153.2.s.a.113.3 yes 256
9.2 odd 6 inner 459.2.y.a.62.14 256
9.7 even 3 153.2.s.a.11.3 256
17.14 odd 16 inner 459.2.y.a.422.14 256
51.14 even 16 153.2.s.a.14.3 yes 256
153.65 even 48 inner 459.2.y.a.116.14 256
153.133 odd 48 153.2.s.a.65.3 yes 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.3 256 9.7 even 3
153.2.s.a.14.3 yes 256 51.14 even 16
153.2.s.a.65.3 yes 256 153.133 odd 48
153.2.s.a.113.3 yes 256 3.2 odd 2
459.2.y.a.62.14 256 9.2 odd 6 inner
459.2.y.a.116.14 256 153.65 even 48 inner
459.2.y.a.368.14 256 1.1 even 1 trivial
459.2.y.a.422.14 256 17.14 odd 16 inner