Properties

Label 459.2.d.b.271.5
Level $459$
Weight $2$
Character 459.271
Analytic conductor $3.665$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(271,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.897122304.10
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 51x^{4} - 104x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.5
Root \(-1.30421 + 0.752986i\) of defining polynomial
Character \(\chi\) \(=\) 459.271
Dual form 459.2.d.b.271.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.50597 q^{2} +0.267949 q^{4} -1.73205i q^{5} -4.11439i q^{7} -2.60842 q^{8} -2.60842i q^{10} -2.00000i q^{11} -4.46410 q^{13} -6.19615i q^{14} -4.46410 q^{16} +(4.11439 - 0.267949i) q^{17} +7.19615 q^{19} -0.464102i q^{20} -3.01194i q^{22} +8.46410i q^{23} +2.00000 q^{25} -6.72281 q^{26} -1.10245i q^{28} +1.73205i q^{29} -6.02388i q^{31} -1.50597 q^{32} +(6.19615 - 0.403524i) q^{34} -7.12633 q^{35} -9.33123i q^{37} +10.8372 q^{38} +4.51791i q^{40} +6.66025i q^{41} +0.267949 q^{43} -0.535898i q^{44} +12.7467i q^{46} +9.33123 q^{47} -9.92820 q^{49} +3.01194 q^{50} -1.19615 q^{52} -1.90949 q^{53} -3.46410 q^{55} +10.7321i q^{56} +2.60842i q^{58} -7.12633 q^{59} -1.10245i q^{61} -9.07180i q^{62} +6.66025 q^{64} +7.73205i q^{65} +4.26795 q^{67} +(1.10245 - 0.0717968i) q^{68} -10.7321 q^{70} +5.53590i q^{71} -7.12633i q^{73} -14.0526i q^{74} +1.92820 q^{76} -8.22878 q^{77} +10.1383i q^{79} +7.73205i q^{80} +10.0302i q^{82} +(-0.464102 - 7.12633i) q^{85} +0.403524 q^{86} +5.21684i q^{88} -2.20489 q^{89} +18.3671i q^{91} +2.26795i q^{92} +14.0526 q^{94} -12.4641i q^{95} +13.1502i q^{97} -14.9516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} - 8 q^{13} - 8 q^{16} + 16 q^{19} + 16 q^{25} + 8 q^{34} + 16 q^{43} - 24 q^{49} + 32 q^{52} - 16 q^{64} + 48 q^{67} - 72 q^{70} - 40 q^{76} + 24 q^{85} - 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50597 1.06488 0.532441 0.846467i \(-0.321275\pi\)
0.532441 + 0.846467i \(0.321275\pi\)
\(3\) 0 0
\(4\) 0.267949 0.133975
\(5\) 1.73205i 0.774597i −0.921954 0.387298i \(-0.873408\pi\)
0.921954 0.387298i \(-0.126592\pi\)
\(6\) 0 0
\(7\) 4.11439i 1.55509i −0.628825 0.777547i \(-0.716464\pi\)
0.628825 0.777547i \(-0.283536\pi\)
\(8\) −2.60842 −0.922215
\(9\) 0 0
\(10\) 2.60842i 0.824854i
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) −4.46410 −1.23812 −0.619060 0.785344i \(-0.712486\pi\)
−0.619060 + 0.785344i \(0.712486\pi\)
\(14\) 6.19615i 1.65599i
\(15\) 0 0
\(16\) −4.46410 −1.11603
\(17\) 4.11439 0.267949i 0.997886 0.0649872i
\(18\) 0 0
\(19\) 7.19615 1.65091 0.825455 0.564467i \(-0.190918\pi\)
0.825455 + 0.564467i \(0.190918\pi\)
\(20\) 0.464102i 0.103776i
\(21\) 0 0
\(22\) 3.01194i 0.642148i
\(23\) 8.46410i 1.76489i 0.470418 + 0.882444i \(0.344103\pi\)
−0.470418 + 0.882444i \(0.655897\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) −6.72281 −1.31845
\(27\) 0 0
\(28\) 1.10245i 0.208343i
\(29\) 1.73205i 0.321634i 0.986984 + 0.160817i \(0.0514129\pi\)
−0.986984 + 0.160817i \(0.948587\pi\)
\(30\) 0 0
\(31\) 6.02388i 1.08192i −0.841048 0.540961i \(-0.818061\pi\)
0.841048 0.540961i \(-0.181939\pi\)
\(32\) −1.50597 −0.266221
\(33\) 0 0
\(34\) 6.19615 0.403524i 1.06263 0.0692038i
\(35\) −7.12633 −1.20457
\(36\) 0 0
\(37\) 9.33123i 1.53404i −0.641621 0.767022i \(-0.721738\pi\)
0.641621 0.767022i \(-0.278262\pi\)
\(38\) 10.8372 1.75803
\(39\) 0 0
\(40\) 4.51791i 0.714345i
\(41\) 6.66025i 1.04016i 0.854118 + 0.520078i \(0.174097\pi\)
−0.854118 + 0.520078i \(0.825903\pi\)
\(42\) 0 0
\(43\) 0.267949 0.0408619 0.0204309 0.999791i \(-0.493496\pi\)
0.0204309 + 0.999791i \(0.493496\pi\)
\(44\) 0.535898i 0.0807897i
\(45\) 0 0
\(46\) 12.7467i 1.87940i
\(47\) 9.33123 1.36110 0.680550 0.732702i \(-0.261741\pi\)
0.680550 + 0.732702i \(0.261741\pi\)
\(48\) 0 0
\(49\) −9.92820 −1.41831
\(50\) 3.01194 0.425953
\(51\) 0 0
\(52\) −1.19615 −0.165876
\(53\) −1.90949 −0.262289 −0.131145 0.991363i \(-0.541865\pi\)
−0.131145 + 0.991363i \(0.541865\pi\)
\(54\) 0 0
\(55\) −3.46410 −0.467099
\(56\) 10.7321i 1.43413i
\(57\) 0 0
\(58\) 2.60842i 0.342502i
\(59\) −7.12633 −0.927769 −0.463885 0.885896i \(-0.653545\pi\)
−0.463885 + 0.885896i \(0.653545\pi\)
\(60\) 0 0
\(61\) 1.10245i 0.141154i −0.997506 0.0705770i \(-0.977516\pi\)
0.997506 0.0705770i \(-0.0224840\pi\)
\(62\) 9.07180i 1.15212i
\(63\) 0 0
\(64\) 6.66025 0.832532
\(65\) 7.73205i 0.959043i
\(66\) 0 0
\(67\) 4.26795 0.521413 0.260706 0.965418i \(-0.416045\pi\)
0.260706 + 0.965418i \(0.416045\pi\)
\(68\) 1.10245 0.0717968i 0.133691 0.00870664i
\(69\) 0 0
\(70\) −10.7321 −1.28273
\(71\) 5.53590i 0.656990i 0.944506 + 0.328495i \(0.106541\pi\)
−0.944506 + 0.328495i \(0.893459\pi\)
\(72\) 0 0
\(73\) 7.12633i 0.834074i −0.908889 0.417037i \(-0.863069\pi\)
0.908889 0.417037i \(-0.136931\pi\)
\(74\) 14.0526i 1.63358i
\(75\) 0 0
\(76\) 1.92820 0.221180
\(77\) −8.22878 −0.937756
\(78\) 0 0
\(79\) 10.1383i 1.14064i 0.821421 + 0.570322i \(0.193182\pi\)
−0.821421 + 0.570322i \(0.806818\pi\)
\(80\) 7.73205i 0.864470i
\(81\) 0 0
\(82\) 10.0302i 1.10764i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −0.464102 7.12633i −0.0503389 0.772959i
\(86\) 0.403524 0.0435131
\(87\) 0 0
\(88\) 5.21684i 0.556117i
\(89\) −2.20489 −0.233718 −0.116859 0.993148i \(-0.537283\pi\)
−0.116859 + 0.993148i \(0.537283\pi\)
\(90\) 0 0
\(91\) 18.3671i 1.92539i
\(92\) 2.26795i 0.236450i
\(93\) 0 0
\(94\) 14.0526 1.44941
\(95\) 12.4641i 1.27879i
\(96\) 0 0
\(97\) 13.1502i 1.33520i 0.744519 + 0.667601i \(0.232679\pi\)
−0.744519 + 0.667601i \(0.767321\pi\)
\(98\) −14.9516 −1.51034
\(99\) 0 0
\(100\) 0.535898 0.0535898
\(101\) 12.3432 1.22819 0.614096 0.789232i \(-0.289521\pi\)
0.614096 + 0.789232i \(0.289521\pi\)
\(102\) 0 0
\(103\) −6.80385 −0.670403 −0.335202 0.942146i \(-0.608804\pi\)
−0.335202 + 0.942146i \(0.608804\pi\)
\(104\) 11.6442 1.14181
\(105\) 0 0
\(106\) −2.87564 −0.279307
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) 13.1502i 1.25956i −0.776773 0.629781i \(-0.783145\pi\)
0.776773 0.629781i \(-0.216855\pi\)
\(110\) −5.21684 −0.497406
\(111\) 0 0
\(112\) 18.3671i 1.73552i
\(113\) 11.4641i 1.07845i −0.842161 0.539226i \(-0.818717\pi\)
0.842161 0.539226i \(-0.181283\pi\)
\(114\) 0 0
\(115\) 14.6603 1.36708
\(116\) 0.464102i 0.0430908i
\(117\) 0 0
\(118\) −10.7321 −0.987965
\(119\) −1.10245 16.9282i −0.101061 1.55181i
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 1.66025i 0.150312i
\(123\) 0 0
\(124\) 1.61410i 0.144950i
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) −10.9282 −0.969721 −0.484861 0.874591i \(-0.661130\pi\)
−0.484861 + 0.874591i \(0.661130\pi\)
\(128\) 13.0421 1.15277
\(129\) 0 0
\(130\) 11.6442i 1.02127i
\(131\) 1.00000i 0.0873704i 0.999045 + 0.0436852i \(0.0139099\pi\)
−0.999045 + 0.0436852i \(0.986090\pi\)
\(132\) 0 0
\(133\) 29.6078i 2.56732i
\(134\) 6.42741 0.555244
\(135\) 0 0
\(136\) −10.7321 + 0.698924i −0.920266 + 0.0599322i
\(137\) −2.20489 −0.188377 −0.0941884 0.995554i \(-0.530026\pi\)
−0.0941884 + 0.995554i \(0.530026\pi\)
\(138\) 0 0
\(139\) 16.4576i 1.39591i 0.716141 + 0.697956i \(0.245907\pi\)
−0.716141 + 0.697956i \(0.754093\pi\)
\(140\) −1.90949 −0.161382
\(141\) 0 0
\(142\) 8.33690i 0.699617i
\(143\) 8.92820i 0.746614i
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) 10.7321i 0.888191i
\(147\) 0 0
\(148\) 2.50029i 0.205523i
\(149\) 1.90949 0.156432 0.0782160 0.996936i \(-0.475078\pi\)
0.0782160 + 0.996936i \(0.475078\pi\)
\(150\) 0 0
\(151\) −1.73205 −0.140952 −0.0704761 0.997513i \(-0.522452\pi\)
−0.0704761 + 0.997513i \(0.522452\pi\)
\(152\) −18.7706 −1.52249
\(153\) 0 0
\(154\) −12.3923 −0.998600
\(155\) −10.4337 −0.838053
\(156\) 0 0
\(157\) 9.07180 0.724008 0.362004 0.932177i \(-0.382093\pi\)
0.362004 + 0.932177i \(0.382093\pi\)
\(158\) 15.2679i 1.21465i
\(159\) 0 0
\(160\) 2.60842i 0.206214i
\(161\) 34.8246 2.74456
\(162\) 0 0
\(163\) 6.02388i 0.471827i −0.971774 0.235914i \(-0.924192\pi\)
0.971774 0.235914i \(-0.0758082\pi\)
\(164\) 1.78461i 0.139355i
\(165\) 0 0
\(166\) 0 0
\(167\) 6.92820i 0.536120i −0.963402 0.268060i \(-0.913617\pi\)
0.963402 0.268060i \(-0.0863826\pi\)
\(168\) 0 0
\(169\) 6.92820 0.532939
\(170\) −0.698924 10.7321i −0.0536050 0.823111i
\(171\) 0 0
\(172\) 0.0717968 0.00547445
\(173\) 14.9282i 1.13497i 0.823384 + 0.567485i \(0.192084\pi\)
−0.823384 + 0.567485i \(0.807916\pi\)
\(174\) 0 0
\(175\) 8.22878i 0.622037i
\(176\) 8.92820i 0.672989i
\(177\) 0 0
\(178\) −3.32051 −0.248883
\(179\) 6.02388 0.450246 0.225123 0.974330i \(-0.427722\pi\)
0.225123 + 0.974330i \(0.427722\pi\)
\(180\) 0 0
\(181\) 6.02388i 0.447752i 0.974618 + 0.223876i \(0.0718710\pi\)
−0.974618 + 0.223876i \(0.928129\pi\)
\(182\) 27.6603i 2.05031i
\(183\) 0 0
\(184\) 22.0779i 1.62761i
\(185\) −16.1622 −1.18827
\(186\) 0 0
\(187\) −0.535898 8.22878i −0.0391888 0.601748i
\(188\) 2.50029 0.182353
\(189\) 0 0
\(190\) 18.7706i 1.36176i
\(191\) −22.4814 −1.62670 −0.813350 0.581775i \(-0.802359\pi\)
−0.813350 + 0.581775i \(0.802359\pi\)
\(192\) 0 0
\(193\) 10.4337i 0.751032i −0.926816 0.375516i \(-0.877465\pi\)
0.926816 0.375516i \(-0.122535\pi\)
\(194\) 19.8038i 1.42183i
\(195\) 0 0
\(196\) −2.66025 −0.190018
\(197\) 16.6603i 1.18699i −0.804836 0.593497i \(-0.797747\pi\)
0.804836 0.593497i \(-0.202253\pi\)
\(198\) 0 0
\(199\) 20.2765i 1.43737i 0.695338 + 0.718683i \(0.255255\pi\)
−0.695338 + 0.718683i \(0.744745\pi\)
\(200\) −5.21684 −0.368886
\(201\) 0 0
\(202\) 18.5885 1.30788
\(203\) 7.12633 0.500170
\(204\) 0 0
\(205\) 11.5359 0.805702
\(206\) −10.2464 −0.713900
\(207\) 0 0
\(208\) 19.9282 1.38177
\(209\) 14.3923i 0.995537i
\(210\) 0 0
\(211\) 0.295400i 0.0203362i 0.999948 + 0.0101681i \(0.00323666\pi\)
−0.999948 + 0.0101681i \(0.996763\pi\)
\(212\) −0.511648 −0.0351401
\(213\) 0 0
\(214\) 4.51791i 0.308838i
\(215\) 0.464102i 0.0316515i
\(216\) 0 0
\(217\) −24.7846 −1.68249
\(218\) 19.8038i 1.34129i
\(219\) 0 0
\(220\) −0.928203 −0.0625794
\(221\) −18.3671 + 1.19615i −1.23550 + 0.0804619i
\(222\) 0 0
\(223\) 7.58846 0.508161 0.254080 0.967183i \(-0.418227\pi\)
0.254080 + 0.967183i \(0.418227\pi\)
\(224\) 6.19615i 0.413998i
\(225\) 0 0
\(226\) 17.2646i 1.14842i
\(227\) 17.7846i 1.18041i 0.807255 + 0.590203i \(0.200952\pi\)
−0.807255 + 0.590203i \(0.799048\pi\)
\(228\) 0 0
\(229\) 5.39230 0.356334 0.178167 0.984000i \(-0.442983\pi\)
0.178167 + 0.984000i \(0.442983\pi\)
\(230\) 22.0779 1.45577
\(231\) 0 0
\(232\) 4.51791i 0.296616i
\(233\) 22.6603i 1.48452i 0.670111 + 0.742261i \(0.266247\pi\)
−0.670111 + 0.742261i \(0.733753\pi\)
\(234\) 0 0
\(235\) 16.1622i 1.05430i
\(236\) −1.90949 −0.124298
\(237\) 0 0
\(238\) −1.66025 25.4934i −0.107618 1.65249i
\(239\) 27.4029 1.77255 0.886273 0.463164i \(-0.153286\pi\)
0.886273 + 0.463164i \(0.153286\pi\)
\(240\) 0 0
\(241\) 8.22878i 0.530062i 0.964240 + 0.265031i \(0.0853822\pi\)
−0.964240 + 0.265031i \(0.914618\pi\)
\(242\) 10.5418 0.677652
\(243\) 0 0
\(244\) 0.295400i 0.0189110i
\(245\) 17.1962i 1.09862i
\(246\) 0 0
\(247\) −32.1244 −2.04402
\(248\) 15.7128i 0.997765i
\(249\) 0 0
\(250\) 18.2589i 1.15480i
\(251\) 10.4337 0.658568 0.329284 0.944231i \(-0.393193\pi\)
0.329284 + 0.944231i \(0.393193\pi\)
\(252\) 0 0
\(253\) 16.9282 1.06427
\(254\) −16.4576 −1.03264
\(255\) 0 0
\(256\) 6.32051 0.395032
\(257\) 7.93338 0.494871 0.247435 0.968904i \(-0.420412\pi\)
0.247435 + 0.968904i \(0.420412\pi\)
\(258\) 0 0
\(259\) −38.3923 −2.38558
\(260\) 2.07180i 0.128487i
\(261\) 0 0
\(262\) 1.50597i 0.0930392i
\(263\) −14.2527 −0.878857 −0.439428 0.898278i \(-0.644819\pi\)
−0.439428 + 0.898278i \(0.644819\pi\)
\(264\) 0 0
\(265\) 3.30734i 0.203168i
\(266\) 44.5885i 2.73389i
\(267\) 0 0
\(268\) 1.14359 0.0698561
\(269\) 17.3205i 1.05605i −0.849229 0.528025i \(-0.822933\pi\)
0.849229 0.528025i \(-0.177067\pi\)
\(270\) 0 0
\(271\) −12.0000 −0.728948 −0.364474 0.931214i \(-0.618751\pi\)
−0.364474 + 0.931214i \(0.618751\pi\)
\(272\) −18.3671 + 1.19615i −1.11367 + 0.0725274i
\(273\) 0 0
\(274\) −3.32051 −0.200599
\(275\) 4.00000i 0.241209i
\(276\) 0 0
\(277\) 11.5361i 0.693138i −0.938024 0.346569i \(-0.887347\pi\)
0.938024 0.346569i \(-0.112653\pi\)
\(278\) 24.7846i 1.48648i
\(279\) 0 0
\(280\) 18.5885 1.11087
\(281\) 4.11439 0.245444 0.122722 0.992441i \(-0.460838\pi\)
0.122722 + 0.992441i \(0.460838\pi\)
\(282\) 0 0
\(283\) 7.93338i 0.471590i 0.971803 + 0.235795i \(0.0757695\pi\)
−0.971803 + 0.235795i \(0.924231\pi\)
\(284\) 1.48334i 0.0880200i
\(285\) 0 0
\(286\) 13.4456i 0.795056i
\(287\) 27.4029 1.61754
\(288\) 0 0
\(289\) 16.8564 2.20489i 0.991553 0.129700i
\(290\) 4.51791 0.265301
\(291\) 0 0
\(292\) 1.90949i 0.111745i
\(293\) −28.8007 −1.68256 −0.841278 0.540602i \(-0.818196\pi\)
−0.841278 + 0.540602i \(0.818196\pi\)
\(294\) 0 0
\(295\) 12.3432i 0.718647i
\(296\) 24.3397i 1.41472i
\(297\) 0 0
\(298\) 2.87564 0.166582
\(299\) 37.7846i 2.18514i
\(300\) 0 0
\(301\) 1.10245i 0.0635440i
\(302\) −2.60842 −0.150098
\(303\) 0 0
\(304\) −32.1244 −1.84246
\(305\) −1.90949 −0.109337
\(306\) 0 0
\(307\) 21.5885 1.23212 0.616059 0.787700i \(-0.288728\pi\)
0.616059 + 0.787700i \(0.288728\pi\)
\(308\) −2.20489 −0.125636
\(309\) 0 0
\(310\) −15.7128 −0.892428
\(311\) 33.7128i 1.91168i 0.293890 + 0.955839i \(0.405050\pi\)
−0.293890 + 0.955839i \(0.594950\pi\)
\(312\) 0 0
\(313\) 20.2765i 1.14610i −0.819521 0.573049i \(-0.805760\pi\)
0.819521 0.573049i \(-0.194240\pi\)
\(314\) 13.6619 0.770984
\(315\) 0 0
\(316\) 2.71654i 0.152817i
\(317\) 11.5885i 0.650873i −0.945564 0.325436i \(-0.894489\pi\)
0.945564 0.325436i \(-0.105511\pi\)
\(318\) 0 0
\(319\) 3.46410 0.193952
\(320\) 11.5359i 0.644876i
\(321\) 0 0
\(322\) 52.4449 2.92264
\(323\) 29.6078 1.92820i 1.64742 0.107288i
\(324\) 0 0
\(325\) −8.92820 −0.495248
\(326\) 9.07180i 0.502440i
\(327\) 0 0
\(328\) 17.3727i 0.959249i
\(329\) 38.3923i 2.11664i
\(330\) 0 0
\(331\) 22.1244 1.21606 0.608032 0.793912i \(-0.291959\pi\)
0.608032 + 0.793912i \(0.291959\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 10.4337i 0.570905i
\(335\) 7.39230i 0.403885i
\(336\) 0 0
\(337\) 2.71654i 0.147979i −0.997259 0.0739897i \(-0.976427\pi\)
0.997259 0.0739897i \(-0.0235732\pi\)
\(338\) 10.4337 0.567517
\(339\) 0 0
\(340\) −0.124356 1.90949i −0.00674413 0.103557i
\(341\) −12.0478 −0.652423
\(342\) 0 0
\(343\) 12.0478i 0.650518i
\(344\) −0.698924 −0.0376834
\(345\) 0 0
\(346\) 22.4814i 1.20861i
\(347\) 0.856406i 0.0459743i −0.999736 0.0229872i \(-0.992682\pi\)
0.999736 0.0229872i \(-0.00731768\pi\)
\(348\) 0 0
\(349\) −17.2487 −0.923302 −0.461651 0.887062i \(-0.652743\pi\)
−0.461651 + 0.887062i \(0.652743\pi\)
\(350\) 12.3923i 0.662397i
\(351\) 0 0
\(352\) 3.01194i 0.160537i
\(353\) −14.2527 −0.758593 −0.379296 0.925275i \(-0.623834\pi\)
−0.379296 + 0.925275i \(0.623834\pi\)
\(354\) 0 0
\(355\) 9.58846 0.508902
\(356\) −0.590800 −0.0313123
\(357\) 0 0
\(358\) 9.07180 0.479459
\(359\) −27.4029 −1.44627 −0.723134 0.690707i \(-0.757299\pi\)
−0.723134 + 0.690707i \(0.757299\pi\)
\(360\) 0 0
\(361\) 32.7846 1.72551
\(362\) 9.07180i 0.476803i
\(363\) 0 0
\(364\) 4.92144i 0.257953i
\(365\) −12.3432 −0.646071
\(366\) 0 0
\(367\) 22.7768i 1.18894i 0.804117 + 0.594471i \(0.202638\pi\)
−0.804117 + 0.594471i \(0.797362\pi\)
\(368\) 37.7846i 1.96966i
\(369\) 0 0
\(370\) −24.3397 −1.26536
\(371\) 7.85641i 0.407884i
\(372\) 0 0
\(373\) −19.2487 −0.996660 −0.498330 0.866987i \(-0.666053\pi\)
−0.498330 + 0.866987i \(0.666053\pi\)
\(374\) −0.807048 12.3923i −0.0417314 0.640791i
\(375\) 0 0
\(376\) −24.3397 −1.25523
\(377\) 7.73205i 0.398221i
\(378\) 0 0
\(379\) 34.8246i 1.78882i 0.447248 + 0.894410i \(0.352404\pi\)
−0.447248 + 0.894410i \(0.647596\pi\)
\(380\) 3.33975i 0.171325i
\(381\) 0 0
\(382\) −33.8564 −1.73224
\(383\) −20.2765 −1.03608 −0.518042 0.855355i \(-0.673339\pi\)
−0.518042 + 0.855355i \(0.673339\pi\)
\(384\) 0 0
\(385\) 14.2527i 0.726383i
\(386\) 15.7128i 0.799761i
\(387\) 0 0
\(388\) 3.52359i 0.178883i
\(389\) −10.4337 −0.529008 −0.264504 0.964385i \(-0.585208\pi\)
−0.264504 + 0.964385i \(0.585208\pi\)
\(390\) 0 0
\(391\) 2.26795 + 34.8246i 0.114695 + 1.76116i
\(392\) 25.8969 1.30799
\(393\) 0 0
\(394\) 25.0899i 1.26401i
\(395\) 17.5600 0.883540
\(396\) 0 0
\(397\) 2.20489i 0.110660i 0.998468 + 0.0553302i \(0.0176212\pi\)
−0.998468 + 0.0553302i \(0.982379\pi\)
\(398\) 30.5359i 1.53063i
\(399\) 0 0
\(400\) −8.92820 −0.446410
\(401\) 13.0526i 0.651814i 0.945402 + 0.325907i \(0.105670\pi\)
−0.945402 + 0.325907i \(0.894330\pi\)
\(402\) 0 0
\(403\) 26.8912i 1.33955i
\(404\) 3.30734 0.164546
\(405\) 0 0
\(406\) 10.7321 0.532623
\(407\) −18.6625 −0.925063
\(408\) 0 0
\(409\) −4.07180 −0.201337 −0.100669 0.994920i \(-0.532098\pi\)
−0.100669 + 0.994920i \(0.532098\pi\)
\(410\) 17.3727 0.857978
\(411\) 0 0
\(412\) −1.82309 −0.0898170
\(413\) 29.3205i 1.44277i
\(414\) 0 0
\(415\) 0 0
\(416\) 6.72281 0.329613
\(417\) 0 0
\(418\) 21.6744i 1.06013i
\(419\) 6.07180i 0.296627i 0.988940 + 0.148313i \(0.0473844\pi\)
−0.988940 + 0.148313i \(0.952616\pi\)
\(420\) 0 0
\(421\) −4.00000 −0.194948 −0.0974740 0.995238i \(-0.531076\pi\)
−0.0974740 + 0.995238i \(0.531076\pi\)
\(422\) 0.444864i 0.0216556i
\(423\) 0 0
\(424\) 4.98076 0.241887
\(425\) 8.22878 0.535898i 0.399154 0.0259949i
\(426\) 0 0
\(427\) −4.53590 −0.219508
\(428\) 0.803848i 0.0388554i
\(429\) 0 0
\(430\) 0.698924i 0.0337051i
\(431\) 27.3923i 1.31944i −0.751511 0.659720i \(-0.770675\pi\)
0.751511 0.659720i \(-0.229325\pi\)
\(432\) 0 0
\(433\) −17.0000 −0.816968 −0.408484 0.912766i \(-0.633942\pi\)
−0.408484 + 0.912766i \(0.633942\pi\)
\(434\) −37.3249 −1.79165
\(435\) 0 0
\(436\) 3.52359i 0.168749i
\(437\) 60.9090i 2.91367i
\(438\) 0 0
\(439\) 8.52418i 0.406837i 0.979092 + 0.203418i \(0.0652052\pi\)
−0.979092 + 0.203418i \(0.934795\pi\)
\(440\) 9.03583 0.430766
\(441\) 0 0
\(442\) −27.6603 + 1.80137i −1.31566 + 0.0856825i
\(443\) 5.51224 0.261894 0.130947 0.991389i \(-0.458198\pi\)
0.130947 + 0.991389i \(0.458198\pi\)
\(444\) 0 0
\(445\) 3.81899i 0.181037i
\(446\) 11.4280 0.541131
\(447\) 0 0
\(448\) 27.4029i 1.29466i
\(449\) 13.0718i 0.616896i 0.951241 + 0.308448i \(0.0998096\pi\)
−0.951241 + 0.308448i \(0.900190\pi\)
\(450\) 0 0
\(451\) 13.3205 0.627238
\(452\) 3.07180i 0.144485i
\(453\) 0 0
\(454\) 26.7831i 1.25699i
\(455\) 31.8127 1.49140
\(456\) 0 0
\(457\) 9.85641 0.461063 0.230532 0.973065i \(-0.425953\pi\)
0.230532 + 0.973065i \(0.425953\pi\)
\(458\) 8.12066 0.379453
\(459\) 0 0
\(460\) 3.92820 0.183153
\(461\) 18.6625 0.869197 0.434599 0.900624i \(-0.356890\pi\)
0.434599 + 0.900624i \(0.356890\pi\)
\(462\) 0 0
\(463\) 25.3205 1.17674 0.588372 0.808590i \(-0.299769\pi\)
0.588372 + 0.808590i \(0.299769\pi\)
\(464\) 7.73205i 0.358951i
\(465\) 0 0
\(466\) 34.1257i 1.58084i
\(467\) 2.71654 0.125707 0.0628533 0.998023i \(-0.479980\pi\)
0.0628533 + 0.998023i \(0.479980\pi\)
\(468\) 0 0
\(469\) 17.5600i 0.810846i
\(470\) 24.3397i 1.12271i
\(471\) 0 0
\(472\) 18.5885 0.855603
\(473\) 0.535898i 0.0246406i
\(474\) 0 0
\(475\) 14.3923 0.660364
\(476\) −0.295400 4.53590i −0.0135396 0.207903i
\(477\) 0 0
\(478\) 41.2679 1.88755
\(479\) 40.1769i 1.83573i 0.396893 + 0.917865i \(0.370089\pi\)
−0.396893 + 0.917865i \(0.629911\pi\)
\(480\) 0 0
\(481\) 41.6555i 1.89933i
\(482\) 12.3923i 0.564454i
\(483\) 0 0
\(484\) 1.87564 0.0852566
\(485\) 22.7768 1.03424
\(486\) 0 0
\(487\) 29.0961i 1.31847i 0.751936 + 0.659236i \(0.229120\pi\)
−0.751936 + 0.659236i \(0.770880\pi\)
\(488\) 2.87564i 0.130174i
\(489\) 0 0
\(490\) 25.8969i 1.16990i
\(491\) −40.5531 −1.83014 −0.915068 0.403300i \(-0.867863\pi\)
−0.915068 + 0.403300i \(0.867863\pi\)
\(492\) 0 0
\(493\) 0.464102 + 7.12633i 0.0209021 + 0.320954i
\(494\) −48.3784 −2.17665
\(495\) 0 0
\(496\) 26.8912i 1.20745i
\(497\) 22.7768 1.02168
\(498\) 0 0
\(499\) 1.90949i 0.0854807i −0.999086 0.0427404i \(-0.986391\pi\)
0.999086 0.0427404i \(-0.0136088\pi\)
\(500\) 3.24871i 0.145287i
\(501\) 0 0
\(502\) 15.7128 0.701297
\(503\) 3.67949i 0.164060i −0.996630 0.0820302i \(-0.973860\pi\)
0.996630 0.0820302i \(-0.0261404\pi\)
\(504\) 0 0
\(505\) 21.3790i 0.951353i
\(506\) 25.4934 1.13332
\(507\) 0 0
\(508\) −2.92820 −0.129918
\(509\) 24.6863 1.09420 0.547101 0.837066i \(-0.315731\pi\)
0.547101 + 0.837066i \(0.315731\pi\)
\(510\) 0 0
\(511\) −29.3205 −1.29706
\(512\) −16.5657 −0.732107
\(513\) 0 0
\(514\) 11.9474 0.526979
\(515\) 11.7846i 0.519292i
\(516\) 0 0
\(517\) 18.6625i 0.820774i
\(518\) −57.8177 −2.54036
\(519\) 0 0
\(520\) 20.1684i 0.884444i
\(521\) 34.3923i 1.50675i 0.657589 + 0.753377i \(0.271576\pi\)
−0.657589 + 0.753377i \(0.728424\pi\)
\(522\) 0 0
\(523\) −6.92820 −0.302949 −0.151475 0.988461i \(-0.548402\pi\)
−0.151475 + 0.988461i \(0.548402\pi\)
\(524\) 0.267949i 0.0117054i
\(525\) 0 0
\(526\) −21.4641 −0.935879
\(527\) −1.61410 24.7846i −0.0703111 1.07963i
\(528\) 0 0
\(529\) −48.6410 −2.11483
\(530\) 4.98076i 0.216350i
\(531\) 0 0
\(532\) 7.93338i 0.343956i
\(533\) 29.7321i 1.28784i
\(534\) 0 0
\(535\) 5.19615 0.224649
\(536\) −11.1326 −0.480855
\(537\) 0 0
\(538\) 26.0842i 1.12457i
\(539\) 19.8564i 0.855276i
\(540\) 0 0
\(541\) 12.0478i 0.517974i −0.965881 0.258987i \(-0.916611\pi\)
0.965881 0.258987i \(-0.0833887\pi\)
\(542\) −18.0717 −0.776244
\(543\) 0 0
\(544\) −6.19615 + 0.403524i −0.265658 + 0.0173009i
\(545\) −22.7768 −0.975653
\(546\) 0 0
\(547\) 6.61468i 0.282823i −0.989951 0.141412i \(-0.954836\pi\)
0.989951 0.141412i \(-0.0451641\pi\)
\(548\) −0.590800 −0.0252377
\(549\) 0 0
\(550\) 6.02388i 0.256859i
\(551\) 12.4641i 0.530989i
\(552\) 0 0
\(553\) 41.7128 1.77381
\(554\) 17.3731i 0.738111i
\(555\) 0 0
\(556\) 4.40979i 0.187017i
\(557\) −26.5958 −1.12690 −0.563451 0.826150i \(-0.690527\pi\)
−0.563451 + 0.826150i \(0.690527\pi\)
\(558\) 0 0
\(559\) −1.19615 −0.0505919
\(560\) 31.8127 1.34433
\(561\) 0 0
\(562\) 6.19615 0.261369
\(563\) 29.6078 1.24782 0.623909 0.781497i \(-0.285543\pi\)
0.623909 + 0.781497i \(0.285543\pi\)
\(564\) 0 0
\(565\) −19.8564 −0.835365
\(566\) 11.9474i 0.502188i
\(567\) 0 0
\(568\) 14.4399i 0.605886i
\(569\) 2.50029 0.104818 0.0524089 0.998626i \(-0.483310\pi\)
0.0524089 + 0.998626i \(0.483310\pi\)
\(570\) 0 0
\(571\) 14.5481i 0.608818i −0.952541 0.304409i \(-0.901541\pi\)
0.952541 0.304409i \(-0.0984589\pi\)
\(572\) 2.39230i 0.100027i
\(573\) 0 0
\(574\) 41.2679 1.72249
\(575\) 16.9282i 0.705955i
\(576\) 0 0
\(577\) −37.8564 −1.57598 −0.787991 0.615686i \(-0.788879\pi\)
−0.787991 + 0.615686i \(0.788879\pi\)
\(578\) 25.3853 3.32051i 1.05589 0.138115i
\(579\) 0 0
\(580\) 0.803848 0.0333780
\(581\) 0 0
\(582\) 0 0
\(583\) 3.81899i 0.158166i
\(584\) 18.5885i 0.769196i
\(585\) 0 0
\(586\) −43.3731 −1.79172
\(587\) −13.7410 −0.567152 −0.283576 0.958950i \(-0.591521\pi\)
−0.283576 + 0.958950i \(0.591521\pi\)
\(588\) 0 0
\(589\) 43.3488i 1.78616i
\(590\) 18.5885i 0.765275i
\(591\) 0 0
\(592\) 41.6555i 1.71203i
\(593\) 26.3004 1.08003 0.540015 0.841656i \(-0.318419\pi\)
0.540015 + 0.841656i \(0.318419\pi\)
\(594\) 0 0
\(595\) −29.3205 + 1.90949i −1.20202 + 0.0782817i
\(596\) 0.511648 0.0209579
\(597\) 0 0
\(598\) 56.9025i 2.32692i
\(599\) 27.4029 1.11965 0.559826 0.828610i \(-0.310868\pi\)
0.559826 + 0.828610i \(0.310868\pi\)
\(600\) 0 0
\(601\) 19.7649i 0.806227i 0.915150 + 0.403114i \(0.132072\pi\)
−0.915150 + 0.403114i \(0.867928\pi\)
\(602\) 1.66025i 0.0676669i
\(603\) 0 0
\(604\) −0.464102 −0.0188840
\(605\) 12.1244i 0.492925i
\(606\) 0 0
\(607\) 30.7102i 1.24649i −0.782027 0.623245i \(-0.785814\pi\)
0.782027 0.623245i \(-0.214186\pi\)
\(608\) −10.8372 −0.439506
\(609\) 0 0
\(610\) −2.87564 −0.116431
\(611\) −41.6555 −1.68520
\(612\) 0 0
\(613\) −22.1769 −0.895717 −0.447859 0.894104i \(-0.647813\pi\)
−0.447859 + 0.894104i \(0.647813\pi\)
\(614\) 32.5116 1.31206
\(615\) 0 0
\(616\) 21.4641 0.864813
\(617\) 40.5167i 1.63114i −0.578659 0.815570i \(-0.696424\pi\)
0.578659 0.815570i \(-0.303576\pi\)
\(618\) 0 0
\(619\) 6.61468i 0.265867i 0.991125 + 0.132933i \(0.0424396\pi\)
−0.991125 + 0.132933i \(0.957560\pi\)
\(620\) −2.79569 −0.112278
\(621\) 0 0
\(622\) 50.7705i 2.03571i
\(623\) 9.07180i 0.363454i
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 30.5359i 1.22046i
\(627\) 0 0
\(628\) 2.43078 0.0969987
\(629\) −2.50029 38.3923i −0.0996933 1.53080i
\(630\) 0 0
\(631\) 23.0526 0.917708 0.458854 0.888512i \(-0.348260\pi\)
0.458854 + 0.888512i \(0.348260\pi\)
\(632\) 26.4449i 1.05192i
\(633\) 0 0
\(634\) 17.4519i 0.693103i
\(635\) 18.9282i 0.751143i
\(636\) 0 0
\(637\) 44.3205 1.75604
\(638\) 5.21684 0.206537
\(639\) 0 0
\(640\) 22.5896i 0.892931i
\(641\) 8.80385i 0.347731i 0.984769 + 0.173866i \(0.0556258\pi\)
−0.984769 + 0.173866i \(0.944374\pi\)
\(642\) 0 0
\(643\) 32.6197i 1.28640i 0.765700 + 0.643198i \(0.222393\pi\)
−0.765700 + 0.643198i \(0.777607\pi\)
\(644\) 9.33123 0.367702
\(645\) 0 0
\(646\) 44.5885 2.90382i 1.75431 0.114249i
\(647\) −27.4029 −1.07732 −0.538659 0.842524i \(-0.681069\pi\)
−0.538659 + 0.842524i \(0.681069\pi\)
\(648\) 0 0
\(649\) 14.2527i 0.559466i
\(650\) −13.4456 −0.527380
\(651\) 0 0
\(652\) 1.61410i 0.0632128i
\(653\) 4.24871i 0.166265i 0.996539 + 0.0831325i \(0.0264925\pi\)
−0.996539 + 0.0831325i \(0.973508\pi\)
\(654\) 0 0
\(655\) 1.73205 0.0676768
\(656\) 29.7321i 1.16084i
\(657\) 0 0
\(658\) 57.8177i 2.25397i
\(659\) −23.0722 −0.898767 −0.449384 0.893339i \(-0.648356\pi\)
−0.449384 + 0.893339i \(0.648356\pi\)
\(660\) 0 0
\(661\) 5.53590 0.215321 0.107661 0.994188i \(-0.465664\pi\)
0.107661 + 0.994188i \(0.465664\pi\)
\(662\) 33.3186 1.29497
\(663\) 0 0
\(664\) 0 0
\(665\) −51.2822 −1.98864
\(666\) 0 0
\(667\) −14.6603 −0.567647
\(668\) 1.85641i 0.0718265i
\(669\) 0 0
\(670\) 11.1326i 0.430090i
\(671\) −2.20489 −0.0851190
\(672\) 0 0
\(673\) 48.7819i 1.88040i −0.340618 0.940202i \(-0.610636\pi\)
0.340618 0.940202i \(-0.389364\pi\)
\(674\) 4.09103i 0.157581i
\(675\) 0 0
\(676\) 1.85641 0.0714002
\(677\) 10.5167i 0.404188i −0.979366 0.202094i \(-0.935225\pi\)
0.979366 0.202094i \(-0.0647747\pi\)
\(678\) 0 0
\(679\) 54.1051 2.07636
\(680\) 1.21057 + 18.5885i 0.0464233 + 0.712835i
\(681\) 0 0
\(682\) −18.1436 −0.694754
\(683\) 2.78461i 0.106550i −0.998580 0.0532751i \(-0.983034\pi\)
0.998580 0.0532751i \(-0.0169660\pi\)
\(684\) 0 0
\(685\) 3.81899i 0.145916i
\(686\) 18.1436i 0.692726i
\(687\) 0 0
\(688\) −1.19615 −0.0456029
\(689\) 8.52418 0.324745
\(690\) 0 0
\(691\) 20.2765i 0.771356i −0.922633 0.385678i \(-0.873968\pi\)
0.922633 0.385678i \(-0.126032\pi\)
\(692\) 4.00000i 0.152057i
\(693\) 0 0
\(694\) 1.28972i 0.0489572i
\(695\) 28.5053 1.08127
\(696\) 0 0
\(697\) 1.78461 + 27.4029i 0.0675969 + 1.03796i
\(698\) −25.9761 −0.983208
\(699\) 0 0
\(700\) 2.20489i 0.0833372i
\(701\) 41.1439 1.55398 0.776992 0.629511i \(-0.216745\pi\)
0.776992 + 0.629511i \(0.216745\pi\)
\(702\) 0 0
\(703\) 67.1489i 2.53257i
\(704\) 13.3205i 0.502036i
\(705\) 0 0
\(706\) −21.4641 −0.807812
\(707\) 50.7846i 1.90995i
\(708\) 0 0
\(709\) 34.5292i 1.29677i −0.761312 0.648386i \(-0.775444\pi\)
0.761312 0.648386i \(-0.224556\pi\)
\(710\) 14.4399 0.541921
\(711\) 0 0
\(712\) 5.75129 0.215539
\(713\) 50.9868 1.90947
\(714\) 0 0
\(715\) 15.4641 0.578325
\(716\) 1.61410 0.0603216
\(717\) 0 0
\(718\) −41.2679 −1.54011
\(719\) 43.3923i 1.61826i −0.587630 0.809130i \(-0.699939\pi\)
0.587630 0.809130i \(-0.300061\pi\)
\(720\) 0 0
\(721\) 27.9937i 1.04254i
\(722\) 49.3727 1.83746
\(723\) 0 0
\(724\) 1.61410i 0.0599874i
\(725\) 3.46410i 0.128654i
\(726\) 0 0
\(727\) 25.1962 0.934474 0.467237 0.884132i \(-0.345250\pi\)
0.467237 + 0.884132i \(0.345250\pi\)
\(728\) 47.9090i 1.77562i
\(729\) 0 0
\(730\) −18.5885 −0.687990
\(731\) 1.10245 0.0717968i 0.0407755 0.00265550i
\(732\) 0 0
\(733\) 32.4641 1.19909 0.599544 0.800341i \(-0.295348\pi\)
0.599544 + 0.800341i \(0.295348\pi\)
\(734\) 34.3013i 1.26608i
\(735\) 0 0
\(736\) 12.7467i 0.469849i
\(737\) 8.53590i 0.314424i
\(738\) 0 0
\(739\) 7.19615 0.264715 0.132357 0.991202i \(-0.457745\pi\)
0.132357 + 0.991202i \(0.457745\pi\)
\(740\) −4.33064 −0.159197
\(741\) 0 0
\(742\) 11.8315i 0.434349i
\(743\) 40.6410i 1.49097i −0.666520 0.745487i \(-0.732217\pi\)
0.666520 0.745487i \(-0.267783\pi\)
\(744\) 0 0
\(745\) 3.30734i 0.121172i
\(746\) −28.9880 −1.06133
\(747\) 0 0
\(748\) −0.143594 2.20489i −0.00525030 0.0806189i
\(749\) 12.3432 0.451010
\(750\) 0 0
\(751\) 8.22878i 0.300272i −0.988665 0.150136i \(-0.952029\pi\)
0.988665 0.150136i \(-0.0479712\pi\)
\(752\) −41.6555 −1.51902
\(753\) 0 0
\(754\) 11.6442i 0.424058i
\(755\) 3.00000i 0.109181i
\(756\) 0 0
\(757\) −24.1769 −0.878725 −0.439362 0.898310i \(-0.644796\pi\)
−0.439362 + 0.898310i \(0.644796\pi\)
\(758\) 52.4449i 1.90488i
\(759\) 0 0
\(760\) 32.5116i 1.17932i
\(761\) −18.9579 −0.687222 −0.343611 0.939112i \(-0.611650\pi\)
−0.343611 + 0.939112i \(0.611650\pi\)
\(762\) 0 0
\(763\) −54.1051 −1.95874
\(764\) −6.02388 −0.217937
\(765\) 0 0
\(766\) −30.5359 −1.10331
\(767\) 31.8127 1.14869
\(768\) 0 0
\(769\) −37.9282 −1.36773 −0.683863 0.729610i \(-0.739701\pi\)
−0.683863 + 0.729610i \(0.739701\pi\)
\(770\) 21.4641i 0.773513i
\(771\) 0 0
\(772\) 2.79569i 0.100619i
\(773\) 3.81899 0.137360 0.0686798 0.997639i \(-0.478121\pi\)
0.0686798 + 0.997639i \(0.478121\pi\)
\(774\) 0 0
\(775\) 12.0478i 0.432769i
\(776\) 34.3013i 1.23134i
\(777\) 0 0
\(778\) −15.7128 −0.563332
\(779\) 47.9282i 1.71721i
\(780\) 0 0
\(781\) 11.0718 0.396180
\(782\) 3.41547 + 52.4449i 0.122137 + 1.87542i
\(783\) 0 0
\(784\) 44.3205 1.58288
\(785\) 15.7128i 0.560814i
\(786\) 0 0
\(787\) 46.5770i 1.66029i 0.557547 + 0.830145i \(0.311742\pi\)
−0.557547 + 0.830145i \(0.688258\pi\)
\(788\) 4.46410i 0.159027i
\(789\) 0 0
\(790\) 26.4449 0.940866
\(791\) −47.1678 −1.67709
\(792\) 0 0
\(793\) 4.92144i 0.174765i
\(794\) 3.32051i 0.117840i
\(795\) 0 0
\(796\) 5.43308i 0.192571i
\(797\) −51.2822 −1.81651 −0.908254 0.418420i \(-0.862584\pi\)
−0.908254 + 0.418420i \(0.862584\pi\)
\(798\) 0 0
\(799\) 38.3923 2.50029i 1.35822 0.0884541i
\(800\) −3.01194 −0.106488
\(801\) 0 0
\(802\) 19.6568i 0.694105i
\(803\) −14.2527 −0.502966
\(804\) 0 0
\(805\) 60.3180i 2.12593i
\(806\) 40.4974i 1.42646i
\(807\) 0 0
\(808\) −32.1962 −1.13266
\(809\) 26.1244i 0.918483i 0.888311 + 0.459242i \(0.151879\pi\)
−0.888311 + 0.459242i \(0.848121\pi\)
\(810\) 0 0
\(811\) 34.8246i 1.22286i −0.791299 0.611429i \(-0.790595\pi\)
0.791299 0.611429i \(-0.209405\pi\)
\(812\) 1.90949 0.0670101
\(813\) 0 0
\(814\) −28.1051 −0.985084
\(815\) −10.4337 −0.365476
\(816\) 0 0
\(817\) 1.92820 0.0674593
\(818\) −6.13201 −0.214401
\(819\) 0 0
\(820\) 3.09103 0.107944
\(821\) 28.5359i 0.995910i 0.867203 + 0.497955i \(0.165915\pi\)
−0.867203 + 0.497955i \(0.834085\pi\)
\(822\) 0 0
\(823\) 4.40979i 0.153716i 0.997042 + 0.0768578i \(0.0244887\pi\)
−0.997042 + 0.0768578i \(0.975511\pi\)
\(824\) 17.7473 0.618256
\(825\) 0 0
\(826\) 44.1558i 1.53638i
\(827\) 41.7846i 1.45299i −0.687170 0.726497i \(-0.741147\pi\)
0.687170 0.726497i \(-0.258853\pi\)
\(828\) 0 0
\(829\) 18.3205 0.636298 0.318149 0.948041i \(-0.396939\pi\)
0.318149 + 0.948041i \(0.396939\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −29.7321 −1.03077
\(833\) −40.8485 + 2.66025i −1.41532 + 0.0921723i
\(834\) 0 0
\(835\) −12.0000 −0.415277
\(836\) 3.85641i 0.133377i
\(837\) 0 0
\(838\) 9.14395i 0.315873i
\(839\) 13.5359i 0.467311i 0.972319 + 0.233656i \(0.0750688\pi\)
−0.972319 + 0.233656i \(0.924931\pi\)
\(840\) 0 0
\(841\) 26.0000 0.896552
\(842\) −6.02388 −0.207597
\(843\) 0 0
\(844\) 0.0791522i 0.00272453i
\(845\) 12.0000i 0.412813i
\(846\) 0 0
\(847\) 28.8007i 0.989605i
\(848\) 8.52418 0.292722
\(849\) 0 0
\(850\) 12.3923 0.807048i 0.425053 0.0276815i
\(851\) 78.9805 2.70742
\(852\) 0 0
\(853\) 28.5053i 0.976004i 0.872843 + 0.488002i \(0.162274\pi\)
−0.872843 + 0.488002i \(0.837726\pi\)
\(854\) −6.83093 −0.233750
\(855\) 0 0
\(856\) 7.82526i 0.267462i
\(857\) 24.5359i 0.838130i −0.907956 0.419065i \(-0.862358\pi\)
0.907956 0.419065i \(-0.137642\pi\)
\(858\) 0 0
\(859\) 30.1436 1.02849 0.514243 0.857644i \(-0.328073\pi\)
0.514243 + 0.857644i \(0.328073\pi\)
\(860\) 0.124356i 0.00424049i
\(861\) 0 0
\(862\) 41.2520i 1.40505i
\(863\) −10.4337 −0.355166 −0.177583 0.984106i \(-0.556828\pi\)
−0.177583 + 0.984106i \(0.556828\pi\)
\(864\) 0 0
\(865\) 25.8564 0.879144
\(866\) −25.6015 −0.869975
\(867\) 0 0
\(868\) −6.64102 −0.225411
\(869\) 20.2765 0.687835
\(870\) 0 0
\(871\) −19.0526 −0.645571
\(872\) 34.3013i 1.16159i
\(873\) 0 0
\(874\) 91.7271i 3.10272i
\(875\) −49.8843 −1.68640
\(876\) 0 0
\(877\) 38.3482i 1.29493i −0.762097 0.647463i \(-0.775830\pi\)
0.762097 0.647463i \(-0.224170\pi\)
\(878\) 12.8372i 0.433233i
\(879\) 0 0
\(880\) 15.4641 0.521295
\(881\) 43.9808i 1.48175i 0.671643 + 0.740875i \(0.265589\pi\)
−0.671643 + 0.740875i \(0.734411\pi\)
\(882\) 0 0
\(883\) −48.5167 −1.63272 −0.816358 0.577546i \(-0.804010\pi\)
−0.816358 + 0.577546i \(0.804010\pi\)
\(884\) −4.92144 + 0.320508i −0.165526 + 0.0107799i
\(885\) 0 0
\(886\) 8.30127 0.278887
\(887\) 26.0000i 0.872995i 0.899706 + 0.436497i \(0.143781\pi\)
−0.899706 + 0.436497i \(0.856219\pi\)
\(888\) 0 0
\(889\) 44.9629i 1.50801i
\(890\) 5.75129i 0.192784i
\(891\) 0 0
\(892\) 2.03332 0.0680806
\(893\) 67.1489 2.24705
\(894\) 0 0
\(895\) 10.4337i 0.348759i
\(896\) 53.6603i 1.79266i
\(897\) 0 0
\(898\) 19.6857i 0.656922i
\(899\) 10.4337 0.347983
\(900\) 0 0
\(901\) −7.85641 + 0.511648i −0.261735 + 0.0170455i
\(902\) 20.0603 0.667935
\(903\) 0 0
\(904\) 29.9032i 0.994565i
\(905\) 10.4337 0.346827
\(906\) 0 0
\(907\) 28.8007i 0.956312i −0.878275 0.478156i \(-0.841305\pi\)
0.878275 0.478156i \(-0.158695\pi\)
\(908\) 4.76537i 0.158144i
\(909\) 0 0
\(910\) 47.9090 1.58817
\(911\) 7.24871i 0.240161i 0.992764 + 0.120080i \(0.0383152\pi\)
−0.992764 + 0.120080i \(0.961685\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 14.8435 0.490978
\(915\) 0 0
\(916\) 1.44486 0.0477396
\(917\) 4.11439 0.135869
\(918\) 0 0
\(919\) 37.9808 1.25287 0.626435 0.779474i \(-0.284513\pi\)
0.626435 + 0.779474i \(0.284513\pi\)
\(920\) −38.2401 −1.26074
\(921\) 0 0
\(922\) 28.1051 0.925593
\(923\) 24.7128i 0.813432i
\(924\) 0 0
\(925\) 18.6625i 0.613618i
\(926\) 38.1320 1.25309
\(927\) 0 0
\(928\) 2.60842i 0.0856255i
\(929\) 18.1244i 0.594641i 0.954778 + 0.297320i \(0.0960930\pi\)
−0.954778 + 0.297320i \(0.903907\pi\)
\(930\) 0 0
\(931\) −71.4449 −2.34151
\(932\) 6.07180i 0.198888i
\(933\) 0 0
\(934\) 4.09103 0.133863
\(935\) −14.2527 + 0.928203i −0.466112 + 0.0303555i
\(936\) 0 0
\(937\) 42.8564 1.40006 0.700029 0.714115i \(-0.253170\pi\)
0.700029 + 0.714115i \(0.253170\pi\)
\(938\) 26.4449i 0.863455i
\(939\) 0 0
\(940\) 4.33064i 0.141250i
\(941\) 10.3923i 0.338779i −0.985549 0.169390i \(-0.945820\pi\)
0.985549 0.169390i \(-0.0541797\pi\)
\(942\) 0 0
\(943\) −56.3731 −1.83576
\(944\) 31.8127 1.03541
\(945\) 0 0
\(946\) 0.807048i 0.0262394i
\(947\) 14.7846i 0.480435i 0.970719 + 0.240218i \(0.0772188\pi\)
−0.970719 + 0.240218i \(0.922781\pi\)
\(948\) 0 0
\(949\) 31.8127i 1.03268i
\(950\) 21.6744 0.703210
\(951\) 0 0
\(952\) 2.87564 + 44.1558i 0.0932002 + 1.43110i
\(953\) −38.9390 −1.26136 −0.630679 0.776044i \(-0.717224\pi\)
−0.630679 + 0.776044i \(0.717224\pi\)
\(954\) 0 0
\(955\) 38.9390i 1.26004i
\(956\) 7.34258 0.237476
\(957\) 0 0
\(958\) 60.5053i 1.95484i
\(959\) 9.07180i 0.292944i
\(960\) 0 0
\(961\) −5.28719 −0.170554
\(962\) 62.7321i 2.02256i
\(963\) 0 0
\(964\) 2.20489i 0.0710149i
\(965\) −18.0717 −0.581747
\(966\) 0 0
\(967\) −27.5885 −0.887185 −0.443592 0.896229i \(-0.646296\pi\)
−0.443592 + 0.896229i \(0.646296\pi\)
\(968\) −18.2589 −0.586864
\(969\) 0 0
\(970\) 34.3013 1.10135
\(971\) −17.5600 −0.563527 −0.281764 0.959484i \(-0.590919\pi\)
−0.281764 + 0.959484i \(0.590919\pi\)
\(972\) 0 0
\(973\) 67.7128 2.17077
\(974\) 43.8179i 1.40402i
\(975\) 0 0
\(976\) 4.92144i 0.157531i
\(977\) 10.1383 0.324352 0.162176 0.986762i \(-0.448149\pi\)
0.162176 + 0.986762i \(0.448149\pi\)
\(978\) 0 0
\(979\) 4.40979i 0.140937i
\(980\) 4.60770i 0.147187i
\(981\) 0 0
\(982\) −61.0718 −1.94888
\(983\) 22.3205i 0.711914i −0.934502 0.355957i \(-0.884155\pi\)
0.934502 0.355957i \(-0.115845\pi\)
\(984\) 0 0
\(985\) −28.8564 −0.919442
\(986\) 0.698924 + 10.7321i 0.0222583 + 0.341778i
\(987\) 0 0
\(988\) −8.60770 −0.273847
\(989\) 2.26795i 0.0721166i
\(990\) 0 0
\(991\) 34.2338i 1.08747i 0.839256 + 0.543736i \(0.182991\pi\)
−0.839256 + 0.543736i \(0.817009\pi\)
\(992\) 9.07180i 0.288030i
\(993\) 0 0
\(994\) 34.3013 1.08797
\(995\) 35.1200 1.11338
\(996\) 0 0
\(997\) 4.40979i 0.139659i 0.997559 + 0.0698297i \(0.0222456\pi\)
−0.997559 + 0.0698297i \(0.977754\pi\)
\(998\) 2.87564i 0.0910269i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.d.b.271.5 yes 8
3.2 odd 2 inner 459.2.d.b.271.4 yes 8
17.4 even 4 7803.2.a.bi.1.2 4
17.13 even 4 7803.2.a.bh.1.2 4
17.16 even 2 inner 459.2.d.b.271.6 yes 8
51.38 odd 4 7803.2.a.bh.1.3 4
51.47 odd 4 7803.2.a.bi.1.3 4
51.50 odd 2 inner 459.2.d.b.271.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.d.b.271.3 8 51.50 odd 2 inner
459.2.d.b.271.4 yes 8 3.2 odd 2 inner
459.2.d.b.271.5 yes 8 1.1 even 1 trivial
459.2.d.b.271.6 yes 8 17.16 even 2 inner
7803.2.a.bh.1.2 4 17.13 even 4
7803.2.a.bh.1.3 4 51.38 odd 4
7803.2.a.bi.1.2 4 17.4 even 4
7803.2.a.bi.1.3 4 51.47 odd 4