Properties

Label 4576.2.a.p.1.3
Level $4576$
Weight $2$
Character 4576.1
Self dual yes
Analytic conductor $36.540$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4576,2,Mod(1,4576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4576.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4576 = 2^{5} \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4576.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-1,0,-2,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.5395439649\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.106740016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 7x^{3} + 15x^{2} + x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.320976\) of defining polynomial
Character \(\chi\) \(=\) 4576.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.320976 q^{3} +0.406820 q^{5} -1.49015 q^{7} -2.89697 q^{9} -1.00000 q^{11} -1.00000 q^{13} -0.130579 q^{15} +2.52708 q^{17} +6.31684 q^{19} +0.478304 q^{21} -0.262686 q^{23} -4.83450 q^{25} +1.89279 q^{27} -0.276240 q^{29} -1.20763 q^{31} +0.320976 q^{33} -0.606224 q^{35} +8.52043 q^{37} +0.320976 q^{39} -6.54180 q^{41} -7.30248 q^{43} -1.17855 q^{45} +7.69440 q^{47} -4.77944 q^{49} -0.811131 q^{51} -9.76992 q^{53} -0.406820 q^{55} -2.02755 q^{57} -6.07501 q^{59} -5.77525 q^{61} +4.31694 q^{63} -0.406820 q^{65} +8.91405 q^{67} +0.0843160 q^{69} +9.70930 q^{71} +2.70239 q^{73} +1.55176 q^{75} +1.49015 q^{77} +8.16918 q^{79} +8.08338 q^{81} +15.7556 q^{83} +1.02806 q^{85} +0.0886665 q^{87} +16.3781 q^{89} +1.49015 q^{91} +0.387619 q^{93} +2.56981 q^{95} -3.20763 q^{97} +2.89697 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} - 2 q^{5} + 5 q^{7} + q^{9} - 6 q^{11} - 6 q^{13} + 5 q^{15} + 6 q^{17} - 2 q^{19} + 20 q^{23} + 4 q^{25} - q^{27} - 3 q^{29} + 11 q^{31} + q^{33} + 9 q^{35} - 3 q^{37} + q^{39} - q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.320976 −0.185316 −0.0926578 0.995698i \(-0.529536\pi\)
−0.0926578 + 0.995698i \(0.529536\pi\)
\(4\) 0 0
\(5\) 0.406820 0.181935 0.0909676 0.995854i \(-0.471004\pi\)
0.0909676 + 0.995854i \(0.471004\pi\)
\(6\) 0 0
\(7\) −1.49015 −0.563226 −0.281613 0.959528i \(-0.590869\pi\)
−0.281613 + 0.959528i \(0.590869\pi\)
\(8\) 0 0
\(9\) −2.89697 −0.965658
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −0.130579 −0.0337154
\(16\) 0 0
\(17\) 2.52708 0.612906 0.306453 0.951886i \(-0.400858\pi\)
0.306453 + 0.951886i \(0.400858\pi\)
\(18\) 0 0
\(19\) 6.31684 1.44918 0.724591 0.689179i \(-0.242029\pi\)
0.724591 + 0.689179i \(0.242029\pi\)
\(20\) 0 0
\(21\) 0.478304 0.104374
\(22\) 0 0
\(23\) −0.262686 −0.0547739 −0.0273869 0.999625i \(-0.508719\pi\)
−0.0273869 + 0.999625i \(0.508719\pi\)
\(24\) 0 0
\(25\) −4.83450 −0.966900
\(26\) 0 0
\(27\) 1.89279 0.364267
\(28\) 0 0
\(29\) −0.276240 −0.0512965 −0.0256483 0.999671i \(-0.508165\pi\)
−0.0256483 + 0.999671i \(0.508165\pi\)
\(30\) 0 0
\(31\) −1.20763 −0.216896 −0.108448 0.994102i \(-0.534588\pi\)
−0.108448 + 0.994102i \(0.534588\pi\)
\(32\) 0 0
\(33\) 0.320976 0.0558748
\(34\) 0 0
\(35\) −0.606224 −0.102471
\(36\) 0 0
\(37\) 8.52043 1.40075 0.700375 0.713775i \(-0.253016\pi\)
0.700375 + 0.713775i \(0.253016\pi\)
\(38\) 0 0
\(39\) 0.320976 0.0513973
\(40\) 0 0
\(41\) −6.54180 −1.02166 −0.510829 0.859683i \(-0.670661\pi\)
−0.510829 + 0.859683i \(0.670661\pi\)
\(42\) 0 0
\(43\) −7.30248 −1.11362 −0.556809 0.830641i \(-0.687974\pi\)
−0.556809 + 0.830641i \(0.687974\pi\)
\(44\) 0 0
\(45\) −1.17855 −0.175687
\(46\) 0 0
\(47\) 7.69440 1.12234 0.561172 0.827699i \(-0.310351\pi\)
0.561172 + 0.827699i \(0.310351\pi\)
\(48\) 0 0
\(49\) −4.77944 −0.682777
\(50\) 0 0
\(51\) −0.811131 −0.113581
\(52\) 0 0
\(53\) −9.76992 −1.34200 −0.671001 0.741457i \(-0.734135\pi\)
−0.671001 + 0.741457i \(0.734135\pi\)
\(54\) 0 0
\(55\) −0.406820 −0.0548555
\(56\) 0 0
\(57\) −2.02755 −0.268556
\(58\) 0 0
\(59\) −6.07501 −0.790899 −0.395449 0.918488i \(-0.629411\pi\)
−0.395449 + 0.918488i \(0.629411\pi\)
\(60\) 0 0
\(61\) −5.77525 −0.739445 −0.369723 0.929142i \(-0.620547\pi\)
−0.369723 + 0.929142i \(0.620547\pi\)
\(62\) 0 0
\(63\) 4.31694 0.543883
\(64\) 0 0
\(65\) −0.406820 −0.0504598
\(66\) 0 0
\(67\) 8.91405 1.08903 0.544513 0.838753i \(-0.316715\pi\)
0.544513 + 0.838753i \(0.316715\pi\)
\(68\) 0 0
\(69\) 0.0843160 0.0101505
\(70\) 0 0
\(71\) 9.70930 1.15228 0.576141 0.817350i \(-0.304558\pi\)
0.576141 + 0.817350i \(0.304558\pi\)
\(72\) 0 0
\(73\) 2.70239 0.316291 0.158145 0.987416i \(-0.449449\pi\)
0.158145 + 0.987416i \(0.449449\pi\)
\(74\) 0 0
\(75\) 1.55176 0.179182
\(76\) 0 0
\(77\) 1.49015 0.169819
\(78\) 0 0
\(79\) 8.16918 0.919104 0.459552 0.888151i \(-0.348010\pi\)
0.459552 + 0.888151i \(0.348010\pi\)
\(80\) 0 0
\(81\) 8.08338 0.898154
\(82\) 0 0
\(83\) 15.7556 1.72940 0.864701 0.502286i \(-0.167508\pi\)
0.864701 + 0.502286i \(0.167508\pi\)
\(84\) 0 0
\(85\) 1.02806 0.111509
\(86\) 0 0
\(87\) 0.0886665 0.00950605
\(88\) 0 0
\(89\) 16.3781 1.73608 0.868040 0.496495i \(-0.165380\pi\)
0.868040 + 0.496495i \(0.165380\pi\)
\(90\) 0 0
\(91\) 1.49015 0.156211
\(92\) 0 0
\(93\) 0.387619 0.0401943
\(94\) 0 0
\(95\) 2.56981 0.263657
\(96\) 0 0
\(97\) −3.20763 −0.325685 −0.162843 0.986652i \(-0.552066\pi\)
−0.162843 + 0.986652i \(0.552066\pi\)
\(98\) 0 0
\(99\) 2.89697 0.291157
\(100\) 0 0
\(101\) −2.26672 −0.225547 −0.112774 0.993621i \(-0.535973\pi\)
−0.112774 + 0.993621i \(0.535973\pi\)
\(102\) 0 0
\(103\) −2.98917 −0.294531 −0.147266 0.989097i \(-0.547047\pi\)
−0.147266 + 0.989097i \(0.547047\pi\)
\(104\) 0 0
\(105\) 0.194583 0.0189894
\(106\) 0 0
\(107\) −5.61525 −0.542847 −0.271423 0.962460i \(-0.587494\pi\)
−0.271423 + 0.962460i \(0.587494\pi\)
\(108\) 0 0
\(109\) 3.76912 0.361016 0.180508 0.983574i \(-0.442226\pi\)
0.180508 + 0.983574i \(0.442226\pi\)
\(110\) 0 0
\(111\) −2.73485 −0.259581
\(112\) 0 0
\(113\) 10.3944 0.977819 0.488909 0.872335i \(-0.337395\pi\)
0.488909 + 0.872335i \(0.337395\pi\)
\(114\) 0 0
\(115\) −0.106866 −0.00996530
\(116\) 0 0
\(117\) 2.89697 0.267825
\(118\) 0 0
\(119\) −3.76573 −0.345204
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 2.09976 0.189329
\(124\) 0 0
\(125\) −4.00087 −0.357848
\(126\) 0 0
\(127\) 19.8997 1.76582 0.882908 0.469545i \(-0.155582\pi\)
0.882908 + 0.469545i \(0.155582\pi\)
\(128\) 0 0
\(129\) 2.34392 0.206371
\(130\) 0 0
\(131\) −1.95531 −0.170836 −0.0854182 0.996345i \(-0.527223\pi\)
−0.0854182 + 0.996345i \(0.527223\pi\)
\(132\) 0 0
\(133\) −9.41307 −0.816216
\(134\) 0 0
\(135\) 0.770023 0.0662730
\(136\) 0 0
\(137\) −3.89832 −0.333056 −0.166528 0.986037i \(-0.553256\pi\)
−0.166528 + 0.986037i \(0.553256\pi\)
\(138\) 0 0
\(139\) 13.4538 1.14113 0.570567 0.821251i \(-0.306724\pi\)
0.570567 + 0.821251i \(0.306724\pi\)
\(140\) 0 0
\(141\) −2.46972 −0.207988
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) −0.112380 −0.00933265
\(146\) 0 0
\(147\) 1.53409 0.126529
\(148\) 0 0
\(149\) 11.1315 0.911928 0.455964 0.889998i \(-0.349295\pi\)
0.455964 + 0.889998i \(0.349295\pi\)
\(150\) 0 0
\(151\) −8.98575 −0.731250 −0.365625 0.930762i \(-0.619145\pi\)
−0.365625 + 0.930762i \(0.619145\pi\)
\(152\) 0 0
\(153\) −7.32087 −0.591858
\(154\) 0 0
\(155\) −0.491286 −0.0394611
\(156\) 0 0
\(157\) 6.18728 0.493798 0.246899 0.969041i \(-0.420588\pi\)
0.246899 + 0.969041i \(0.420588\pi\)
\(158\) 0 0
\(159\) 3.13591 0.248694
\(160\) 0 0
\(161\) 0.391443 0.0308500
\(162\) 0 0
\(163\) 16.7850 1.31470 0.657350 0.753586i \(-0.271677\pi\)
0.657350 + 0.753586i \(0.271677\pi\)
\(164\) 0 0
\(165\) 0.130579 0.0101656
\(166\) 0 0
\(167\) 22.0963 1.70986 0.854930 0.518744i \(-0.173600\pi\)
0.854930 + 0.518744i \(0.173600\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −18.2997 −1.39941
\(172\) 0 0
\(173\) 17.2915 1.31465 0.657325 0.753607i \(-0.271688\pi\)
0.657325 + 0.753607i \(0.271688\pi\)
\(174\) 0 0
\(175\) 7.20415 0.544583
\(176\) 0 0
\(177\) 1.94993 0.146566
\(178\) 0 0
\(179\) 13.0247 0.973514 0.486757 0.873537i \(-0.338180\pi\)
0.486757 + 0.873537i \(0.338180\pi\)
\(180\) 0 0
\(181\) 11.5936 0.861745 0.430872 0.902413i \(-0.358206\pi\)
0.430872 + 0.902413i \(0.358206\pi\)
\(182\) 0 0
\(183\) 1.85372 0.137031
\(184\) 0 0
\(185\) 3.46628 0.254846
\(186\) 0 0
\(187\) −2.52708 −0.184798
\(188\) 0 0
\(189\) −2.82055 −0.205165
\(190\) 0 0
\(191\) 8.68418 0.628365 0.314183 0.949363i \(-0.398270\pi\)
0.314183 + 0.949363i \(0.398270\pi\)
\(192\) 0 0
\(193\) −19.6041 −1.41114 −0.705569 0.708642i \(-0.749308\pi\)
−0.705569 + 0.708642i \(0.749308\pi\)
\(194\) 0 0
\(195\) 0.130579 0.00935098
\(196\) 0 0
\(197\) −17.9622 −1.27975 −0.639876 0.768478i \(-0.721014\pi\)
−0.639876 + 0.768478i \(0.721014\pi\)
\(198\) 0 0
\(199\) 21.3333 1.51227 0.756137 0.654413i \(-0.227084\pi\)
0.756137 + 0.654413i \(0.227084\pi\)
\(200\) 0 0
\(201\) −2.86120 −0.201813
\(202\) 0 0
\(203\) 0.411641 0.0288915
\(204\) 0 0
\(205\) −2.66133 −0.185875
\(206\) 0 0
\(207\) 0.760995 0.0528928
\(208\) 0 0
\(209\) −6.31684 −0.436945
\(210\) 0 0
\(211\) −18.0179 −1.24041 −0.620203 0.784441i \(-0.712950\pi\)
−0.620203 + 0.784441i \(0.712950\pi\)
\(212\) 0 0
\(213\) −3.11645 −0.213536
\(214\) 0 0
\(215\) −2.97079 −0.202606
\(216\) 0 0
\(217\) 1.79955 0.122162
\(218\) 0 0
\(219\) −0.867403 −0.0586136
\(220\) 0 0
\(221\) −2.52708 −0.169990
\(222\) 0 0
\(223\) 19.7929 1.32543 0.662714 0.748872i \(-0.269404\pi\)
0.662714 + 0.748872i \(0.269404\pi\)
\(224\) 0 0
\(225\) 14.0054 0.933694
\(226\) 0 0
\(227\) −20.9990 −1.39375 −0.696876 0.717192i \(-0.745427\pi\)
−0.696876 + 0.717192i \(0.745427\pi\)
\(228\) 0 0
\(229\) −5.45778 −0.360660 −0.180330 0.983606i \(-0.557717\pi\)
−0.180330 + 0.983606i \(0.557717\pi\)
\(230\) 0 0
\(231\) −0.478304 −0.0314701
\(232\) 0 0
\(233\) −17.5712 −1.15113 −0.575565 0.817756i \(-0.695218\pi\)
−0.575565 + 0.817756i \(0.695218\pi\)
\(234\) 0 0
\(235\) 3.13023 0.204194
\(236\) 0 0
\(237\) −2.62211 −0.170324
\(238\) 0 0
\(239\) −9.00408 −0.582425 −0.291213 0.956658i \(-0.594059\pi\)
−0.291213 + 0.956658i \(0.594059\pi\)
\(240\) 0 0
\(241\) −5.22730 −0.336720 −0.168360 0.985726i \(-0.553847\pi\)
−0.168360 + 0.985726i \(0.553847\pi\)
\(242\) 0 0
\(243\) −8.27294 −0.530709
\(244\) 0 0
\(245\) −1.94437 −0.124221
\(246\) 0 0
\(247\) −6.31684 −0.401931
\(248\) 0 0
\(249\) −5.05717 −0.320485
\(250\) 0 0
\(251\) −18.6998 −1.18032 −0.590161 0.807285i \(-0.700936\pi\)
−0.590161 + 0.807285i \(0.700936\pi\)
\(252\) 0 0
\(253\) 0.262686 0.0165149
\(254\) 0 0
\(255\) −0.329984 −0.0206644
\(256\) 0 0
\(257\) 18.5746 1.15865 0.579324 0.815097i \(-0.303316\pi\)
0.579324 + 0.815097i \(0.303316\pi\)
\(258\) 0 0
\(259\) −12.6968 −0.788938
\(260\) 0 0
\(261\) 0.800261 0.0495349
\(262\) 0 0
\(263\) 0.423790 0.0261320 0.0130660 0.999915i \(-0.495841\pi\)
0.0130660 + 0.999915i \(0.495841\pi\)
\(264\) 0 0
\(265\) −3.97460 −0.244157
\(266\) 0 0
\(267\) −5.25699 −0.321723
\(268\) 0 0
\(269\) −4.99053 −0.304278 −0.152139 0.988359i \(-0.548616\pi\)
−0.152139 + 0.988359i \(0.548616\pi\)
\(270\) 0 0
\(271\) 18.5550 1.12713 0.563567 0.826070i \(-0.309429\pi\)
0.563567 + 0.826070i \(0.309429\pi\)
\(272\) 0 0
\(273\) −0.478304 −0.0289483
\(274\) 0 0
\(275\) 4.83450 0.291531
\(276\) 0 0
\(277\) 4.24246 0.254905 0.127452 0.991845i \(-0.459320\pi\)
0.127452 + 0.991845i \(0.459320\pi\)
\(278\) 0 0
\(279\) 3.49847 0.209448
\(280\) 0 0
\(281\) 25.2069 1.50372 0.751859 0.659324i \(-0.229157\pi\)
0.751859 + 0.659324i \(0.229157\pi\)
\(282\) 0 0
\(283\) 9.72942 0.578354 0.289177 0.957276i \(-0.406618\pi\)
0.289177 + 0.957276i \(0.406618\pi\)
\(284\) 0 0
\(285\) −0.824849 −0.0488598
\(286\) 0 0
\(287\) 9.74829 0.575423
\(288\) 0 0
\(289\) −10.6139 −0.624346
\(290\) 0 0
\(291\) 1.02957 0.0603546
\(292\) 0 0
\(293\) 12.3558 0.721832 0.360916 0.932598i \(-0.382464\pi\)
0.360916 + 0.932598i \(0.382464\pi\)
\(294\) 0 0
\(295\) −2.47143 −0.143892
\(296\) 0 0
\(297\) −1.89279 −0.109831
\(298\) 0 0
\(299\) 0.262686 0.0151915
\(300\) 0 0
\(301\) 10.8818 0.627218
\(302\) 0 0
\(303\) 0.727564 0.0417974
\(304\) 0 0
\(305\) −2.34949 −0.134531
\(306\) 0 0
\(307\) −21.9045 −1.25016 −0.625078 0.780563i \(-0.714933\pi\)
−0.625078 + 0.780563i \(0.714933\pi\)
\(308\) 0 0
\(309\) 0.959451 0.0545813
\(310\) 0 0
\(311\) 11.5441 0.654606 0.327303 0.944919i \(-0.393860\pi\)
0.327303 + 0.944919i \(0.393860\pi\)
\(312\) 0 0
\(313\) −1.14635 −0.0647956 −0.0323978 0.999475i \(-0.510314\pi\)
−0.0323978 + 0.999475i \(0.510314\pi\)
\(314\) 0 0
\(315\) 1.75622 0.0989516
\(316\) 0 0
\(317\) −24.3371 −1.36691 −0.683454 0.729993i \(-0.739523\pi\)
−0.683454 + 0.729993i \(0.739523\pi\)
\(318\) 0 0
\(319\) 0.276240 0.0154665
\(320\) 0 0
\(321\) 1.80236 0.100598
\(322\) 0 0
\(323\) 15.9631 0.888212
\(324\) 0 0
\(325\) 4.83450 0.268170
\(326\) 0 0
\(327\) −1.20980 −0.0669019
\(328\) 0 0
\(329\) −11.4658 −0.632133
\(330\) 0 0
\(331\) −32.0581 −1.76207 −0.881036 0.473050i \(-0.843153\pi\)
−0.881036 + 0.473050i \(0.843153\pi\)
\(332\) 0 0
\(333\) −24.6835 −1.35265
\(334\) 0 0
\(335\) 3.62641 0.198132
\(336\) 0 0
\(337\) 31.0725 1.69263 0.846314 0.532685i \(-0.178817\pi\)
0.846314 + 0.532685i \(0.178817\pi\)
\(338\) 0 0
\(339\) −3.33634 −0.181205
\(340\) 0 0
\(341\) 1.20763 0.0653967
\(342\) 0 0
\(343\) 17.5532 0.947783
\(344\) 0 0
\(345\) 0.0343014 0.00184673
\(346\) 0 0
\(347\) 18.7285 1.00540 0.502700 0.864461i \(-0.332340\pi\)
0.502700 + 0.864461i \(0.332340\pi\)
\(348\) 0 0
\(349\) 33.9345 1.81647 0.908235 0.418460i \(-0.137430\pi\)
0.908235 + 0.418460i \(0.137430\pi\)
\(350\) 0 0
\(351\) −1.89279 −0.101030
\(352\) 0 0
\(353\) −23.2673 −1.23839 −0.619196 0.785236i \(-0.712541\pi\)
−0.619196 + 0.785236i \(0.712541\pi\)
\(354\) 0 0
\(355\) 3.94993 0.209641
\(356\) 0 0
\(357\) 1.20871 0.0639717
\(358\) 0 0
\(359\) 22.4412 1.18440 0.592202 0.805790i \(-0.298259\pi\)
0.592202 + 0.805790i \(0.298259\pi\)
\(360\) 0 0
\(361\) 20.9024 1.10013
\(362\) 0 0
\(363\) −0.320976 −0.0168469
\(364\) 0 0
\(365\) 1.09939 0.0575445
\(366\) 0 0
\(367\) 3.03677 0.158518 0.0792591 0.996854i \(-0.474745\pi\)
0.0792591 + 0.996854i \(0.474745\pi\)
\(368\) 0 0
\(369\) 18.9514 0.986572
\(370\) 0 0
\(371\) 14.5587 0.755850
\(372\) 0 0
\(373\) −27.8349 −1.44124 −0.720618 0.693332i \(-0.756142\pi\)
−0.720618 + 0.693332i \(0.756142\pi\)
\(374\) 0 0
\(375\) 1.28418 0.0663149
\(376\) 0 0
\(377\) 0.276240 0.0142271
\(378\) 0 0
\(379\) −1.84707 −0.0948777 −0.0474388 0.998874i \(-0.515106\pi\)
−0.0474388 + 0.998874i \(0.515106\pi\)
\(380\) 0 0
\(381\) −6.38734 −0.327233
\(382\) 0 0
\(383\) 24.0057 1.22664 0.613318 0.789836i \(-0.289835\pi\)
0.613318 + 0.789836i \(0.289835\pi\)
\(384\) 0 0
\(385\) 0.606224 0.0308960
\(386\) 0 0
\(387\) 21.1551 1.07537
\(388\) 0 0
\(389\) −17.9711 −0.911172 −0.455586 0.890192i \(-0.650570\pi\)
−0.455586 + 0.890192i \(0.650570\pi\)
\(390\) 0 0
\(391\) −0.663828 −0.0335712
\(392\) 0 0
\(393\) 0.627609 0.0316587
\(394\) 0 0
\(395\) 3.32338 0.167217
\(396\) 0 0
\(397\) 26.1878 1.31433 0.657164 0.753748i \(-0.271756\pi\)
0.657164 + 0.753748i \(0.271756\pi\)
\(398\) 0 0
\(399\) 3.02137 0.151258
\(400\) 0 0
\(401\) 4.07164 0.203328 0.101664 0.994819i \(-0.467583\pi\)
0.101664 + 0.994819i \(0.467583\pi\)
\(402\) 0 0
\(403\) 1.20763 0.0601562
\(404\) 0 0
\(405\) 3.28848 0.163406
\(406\) 0 0
\(407\) −8.52043 −0.422342
\(408\) 0 0
\(409\) −5.12715 −0.253521 −0.126761 0.991933i \(-0.540458\pi\)
−0.126761 + 0.991933i \(0.540458\pi\)
\(410\) 0 0
\(411\) 1.25127 0.0617204
\(412\) 0 0
\(413\) 9.05271 0.445455
\(414\) 0 0
\(415\) 6.40969 0.314639
\(416\) 0 0
\(417\) −4.31834 −0.211470
\(418\) 0 0
\(419\) 6.05740 0.295924 0.147962 0.988993i \(-0.452729\pi\)
0.147962 + 0.988993i \(0.452729\pi\)
\(420\) 0 0
\(421\) −22.4873 −1.09597 −0.547983 0.836490i \(-0.684604\pi\)
−0.547983 + 0.836490i \(0.684604\pi\)
\(422\) 0 0
\(423\) −22.2905 −1.08380
\(424\) 0 0
\(425\) −12.2171 −0.592618
\(426\) 0 0
\(427\) 8.60602 0.416474
\(428\) 0 0
\(429\) −0.320976 −0.0154969
\(430\) 0 0
\(431\) 25.2957 1.21845 0.609224 0.792998i \(-0.291481\pi\)
0.609224 + 0.792998i \(0.291481\pi\)
\(432\) 0 0
\(433\) −6.46157 −0.310523 −0.155262 0.987873i \(-0.549622\pi\)
−0.155262 + 0.987873i \(0.549622\pi\)
\(434\) 0 0
\(435\) 0.0360713 0.00172949
\(436\) 0 0
\(437\) −1.65935 −0.0793773
\(438\) 0 0
\(439\) 21.7620 1.03864 0.519321 0.854579i \(-0.326185\pi\)
0.519321 + 0.854579i \(0.326185\pi\)
\(440\) 0 0
\(441\) 13.8459 0.659329
\(442\) 0 0
\(443\) −15.6715 −0.744574 −0.372287 0.928118i \(-0.621426\pi\)
−0.372287 + 0.928118i \(0.621426\pi\)
\(444\) 0 0
\(445\) 6.66295 0.315854
\(446\) 0 0
\(447\) −3.57294 −0.168994
\(448\) 0 0
\(449\) −6.33091 −0.298774 −0.149387 0.988779i \(-0.547730\pi\)
−0.149387 + 0.988779i \(0.547730\pi\)
\(450\) 0 0
\(451\) 6.54180 0.308041
\(452\) 0 0
\(453\) 2.88421 0.135512
\(454\) 0 0
\(455\) 0.606224 0.0284202
\(456\) 0 0
\(457\) 11.6052 0.542868 0.271434 0.962457i \(-0.412502\pi\)
0.271434 + 0.962457i \(0.412502\pi\)
\(458\) 0 0
\(459\) 4.78322 0.223261
\(460\) 0 0
\(461\) 14.3894 0.670181 0.335091 0.942186i \(-0.391233\pi\)
0.335091 + 0.942186i \(0.391233\pi\)
\(462\) 0 0
\(463\) −4.19439 −0.194930 −0.0974649 0.995239i \(-0.531073\pi\)
−0.0974649 + 0.995239i \(0.531073\pi\)
\(464\) 0 0
\(465\) 0.157691 0.00731275
\(466\) 0 0
\(467\) −0.727501 −0.0336647 −0.0168324 0.999858i \(-0.505358\pi\)
−0.0168324 + 0.999858i \(0.505358\pi\)
\(468\) 0 0
\(469\) −13.2833 −0.613367
\(470\) 0 0
\(471\) −1.98597 −0.0915085
\(472\) 0 0
\(473\) 7.30248 0.335768
\(474\) 0 0
\(475\) −30.5387 −1.40121
\(476\) 0 0
\(477\) 28.3032 1.29591
\(478\) 0 0
\(479\) 4.73550 0.216371 0.108185 0.994131i \(-0.465496\pi\)
0.108185 + 0.994131i \(0.465496\pi\)
\(480\) 0 0
\(481\) −8.52043 −0.388498
\(482\) 0 0
\(483\) −0.125644 −0.00571699
\(484\) 0 0
\(485\) −1.30493 −0.0592536
\(486\) 0 0
\(487\) −29.6760 −1.34475 −0.672375 0.740211i \(-0.734726\pi\)
−0.672375 + 0.740211i \(0.734726\pi\)
\(488\) 0 0
\(489\) −5.38757 −0.243634
\(490\) 0 0
\(491\) −9.11125 −0.411185 −0.205593 0.978638i \(-0.565912\pi\)
−0.205593 + 0.978638i \(0.565912\pi\)
\(492\) 0 0
\(493\) −0.698080 −0.0314399
\(494\) 0 0
\(495\) 1.17855 0.0529717
\(496\) 0 0
\(497\) −14.4684 −0.648995
\(498\) 0 0
\(499\) −18.5863 −0.832035 −0.416018 0.909357i \(-0.636575\pi\)
−0.416018 + 0.909357i \(0.636575\pi\)
\(500\) 0 0
\(501\) −7.09237 −0.316864
\(502\) 0 0
\(503\) 34.2704 1.52804 0.764022 0.645191i \(-0.223222\pi\)
0.764022 + 0.645191i \(0.223222\pi\)
\(504\) 0 0
\(505\) −0.922147 −0.0410350
\(506\) 0 0
\(507\) −0.320976 −0.0142550
\(508\) 0 0
\(509\) −3.57365 −0.158399 −0.0791997 0.996859i \(-0.525236\pi\)
−0.0791997 + 0.996859i \(0.525236\pi\)
\(510\) 0 0
\(511\) −4.02698 −0.178143
\(512\) 0 0
\(513\) 11.9564 0.527889
\(514\) 0 0
\(515\) −1.21605 −0.0535856
\(516\) 0 0
\(517\) −7.69440 −0.338399
\(518\) 0 0
\(519\) −5.55016 −0.243625
\(520\) 0 0
\(521\) 25.8691 1.13335 0.566674 0.823942i \(-0.308230\pi\)
0.566674 + 0.823942i \(0.308230\pi\)
\(522\) 0 0
\(523\) −14.6243 −0.639477 −0.319738 0.947506i \(-0.603595\pi\)
−0.319738 + 0.947506i \(0.603595\pi\)
\(524\) 0 0
\(525\) −2.31236 −0.100920
\(526\) 0 0
\(527\) −3.05177 −0.132937
\(528\) 0 0
\(529\) −22.9310 −0.997000
\(530\) 0 0
\(531\) 17.5991 0.763738
\(532\) 0 0
\(533\) 6.54180 0.283357
\(534\) 0 0
\(535\) −2.28439 −0.0987630
\(536\) 0 0
\(537\) −4.18063 −0.180407
\(538\) 0 0
\(539\) 4.77944 0.205865
\(540\) 0 0
\(541\) 9.07699 0.390250 0.195125 0.980778i \(-0.437489\pi\)
0.195125 + 0.980778i \(0.437489\pi\)
\(542\) 0 0
\(543\) −3.72127 −0.159695
\(544\) 0 0
\(545\) 1.53335 0.0656815
\(546\) 0 0
\(547\) −43.7355 −1.87000 −0.934998 0.354652i \(-0.884599\pi\)
−0.934998 + 0.354652i \(0.884599\pi\)
\(548\) 0 0
\(549\) 16.7308 0.714051
\(550\) 0 0
\(551\) −1.74496 −0.0743380
\(552\) 0 0
\(553\) −12.1733 −0.517663
\(554\) 0 0
\(555\) −1.11259 −0.0472269
\(556\) 0 0
\(557\) −45.8315 −1.94194 −0.970971 0.239199i \(-0.923115\pi\)
−0.970971 + 0.239199i \(0.923115\pi\)
\(558\) 0 0
\(559\) 7.30248 0.308862
\(560\) 0 0
\(561\) 0.811131 0.0342460
\(562\) 0 0
\(563\) 24.6000 1.03677 0.518384 0.855148i \(-0.326534\pi\)
0.518384 + 0.855148i \(0.326534\pi\)
\(564\) 0 0
\(565\) 4.22863 0.177900
\(566\) 0 0
\(567\) −12.0455 −0.505863
\(568\) 0 0
\(569\) −11.7250 −0.491538 −0.245769 0.969328i \(-0.579040\pi\)
−0.245769 + 0.969328i \(0.579040\pi\)
\(570\) 0 0
\(571\) 10.3184 0.431813 0.215907 0.976414i \(-0.430729\pi\)
0.215907 + 0.976414i \(0.430729\pi\)
\(572\) 0 0
\(573\) −2.78741 −0.116446
\(574\) 0 0
\(575\) 1.26996 0.0529608
\(576\) 0 0
\(577\) −12.7317 −0.530029 −0.265015 0.964244i \(-0.585377\pi\)
−0.265015 + 0.964244i \(0.585377\pi\)
\(578\) 0 0
\(579\) 6.29246 0.261506
\(580\) 0 0
\(581\) −23.4783 −0.974044
\(582\) 0 0
\(583\) 9.76992 0.404629
\(584\) 0 0
\(585\) 1.17855 0.0487269
\(586\) 0 0
\(587\) 31.1975 1.28766 0.643829 0.765169i \(-0.277345\pi\)
0.643829 + 0.765169i \(0.277345\pi\)
\(588\) 0 0
\(589\) −7.62839 −0.314322
\(590\) 0 0
\(591\) 5.76543 0.237158
\(592\) 0 0
\(593\) −9.83653 −0.403938 −0.201969 0.979392i \(-0.564734\pi\)
−0.201969 + 0.979392i \(0.564734\pi\)
\(594\) 0 0
\(595\) −1.53197 −0.0628048
\(596\) 0 0
\(597\) −6.84746 −0.280248
\(598\) 0 0
\(599\) 5.25105 0.214552 0.107276 0.994229i \(-0.465787\pi\)
0.107276 + 0.994229i \(0.465787\pi\)
\(600\) 0 0
\(601\) 40.9551 1.67059 0.835297 0.549800i \(-0.185296\pi\)
0.835297 + 0.549800i \(0.185296\pi\)
\(602\) 0 0
\(603\) −25.8238 −1.05163
\(604\) 0 0
\(605\) 0.406820 0.0165396
\(606\) 0 0
\(607\) −35.5744 −1.44392 −0.721960 0.691935i \(-0.756759\pi\)
−0.721960 + 0.691935i \(0.756759\pi\)
\(608\) 0 0
\(609\) −0.132127 −0.00535405
\(610\) 0 0
\(611\) −7.69440 −0.311282
\(612\) 0 0
\(613\) 32.9365 1.33029 0.665147 0.746712i \(-0.268369\pi\)
0.665147 + 0.746712i \(0.268369\pi\)
\(614\) 0 0
\(615\) 0.854224 0.0344456
\(616\) 0 0
\(617\) −38.6317 −1.55525 −0.777627 0.628726i \(-0.783577\pi\)
−0.777627 + 0.628726i \(0.783577\pi\)
\(618\) 0 0
\(619\) −33.9917 −1.36624 −0.683120 0.730306i \(-0.739377\pi\)
−0.683120 + 0.730306i \(0.739377\pi\)
\(620\) 0 0
\(621\) −0.497209 −0.0199523
\(622\) 0 0
\(623\) −24.4060 −0.977804
\(624\) 0 0
\(625\) 22.5449 0.901794
\(626\) 0 0
\(627\) 2.02755 0.0809727
\(628\) 0 0
\(629\) 21.5318 0.858528
\(630\) 0 0
\(631\) 2.35121 0.0936001 0.0468000 0.998904i \(-0.485098\pi\)
0.0468000 + 0.998904i \(0.485098\pi\)
\(632\) 0 0
\(633\) 5.78333 0.229867
\(634\) 0 0
\(635\) 8.09561 0.321264
\(636\) 0 0
\(637\) 4.77944 0.189368
\(638\) 0 0
\(639\) −28.1276 −1.11271
\(640\) 0 0
\(641\) −11.7314 −0.463364 −0.231682 0.972792i \(-0.574423\pi\)
−0.231682 + 0.972792i \(0.574423\pi\)
\(642\) 0 0
\(643\) −6.20535 −0.244715 −0.122358 0.992486i \(-0.539045\pi\)
−0.122358 + 0.992486i \(0.539045\pi\)
\(644\) 0 0
\(645\) 0.953553 0.0375461
\(646\) 0 0
\(647\) −34.6388 −1.36179 −0.680895 0.732381i \(-0.738409\pi\)
−0.680895 + 0.732381i \(0.738409\pi\)
\(648\) 0 0
\(649\) 6.07501 0.238465
\(650\) 0 0
\(651\) −0.577613 −0.0226384
\(652\) 0 0
\(653\) 11.0014 0.430518 0.215259 0.976557i \(-0.430940\pi\)
0.215259 + 0.976557i \(0.430940\pi\)
\(654\) 0 0
\(655\) −0.795459 −0.0310812
\(656\) 0 0
\(657\) −7.82876 −0.305429
\(658\) 0 0
\(659\) 18.7085 0.728781 0.364390 0.931246i \(-0.381277\pi\)
0.364390 + 0.931246i \(0.381277\pi\)
\(660\) 0 0
\(661\) 27.2734 1.06081 0.530407 0.847743i \(-0.322039\pi\)
0.530407 + 0.847743i \(0.322039\pi\)
\(662\) 0 0
\(663\) 0.811131 0.0315017
\(664\) 0 0
\(665\) −3.82942 −0.148499
\(666\) 0 0
\(667\) 0.0725645 0.00280971
\(668\) 0 0
\(669\) −6.35304 −0.245623
\(670\) 0 0
\(671\) 5.77525 0.222951
\(672\) 0 0
\(673\) 1.93812 0.0747089 0.0373545 0.999302i \(-0.488107\pi\)
0.0373545 + 0.999302i \(0.488107\pi\)
\(674\) 0 0
\(675\) −9.15068 −0.352210
\(676\) 0 0
\(677\) 12.5740 0.483258 0.241629 0.970369i \(-0.422318\pi\)
0.241629 + 0.970369i \(0.422318\pi\)
\(678\) 0 0
\(679\) 4.77986 0.183434
\(680\) 0 0
\(681\) 6.74017 0.258284
\(682\) 0 0
\(683\) 12.2609 0.469152 0.234576 0.972098i \(-0.424630\pi\)
0.234576 + 0.972098i \(0.424630\pi\)
\(684\) 0 0
\(685\) −1.58591 −0.0605946
\(686\) 0 0
\(687\) 1.75182 0.0668360
\(688\) 0 0
\(689\) 9.76992 0.372204
\(690\) 0 0
\(691\) 10.0782 0.383393 0.191696 0.981454i \(-0.438601\pi\)
0.191696 + 0.981454i \(0.438601\pi\)
\(692\) 0 0
\(693\) −4.31694 −0.163987
\(694\) 0 0
\(695\) 5.47326 0.207612
\(696\) 0 0
\(697\) −16.5316 −0.626180
\(698\) 0 0
\(699\) 5.63995 0.213322
\(700\) 0 0
\(701\) 8.47088 0.319941 0.159970 0.987122i \(-0.448860\pi\)
0.159970 + 0.987122i \(0.448860\pi\)
\(702\) 0 0
\(703\) 53.8222 2.02994
\(704\) 0 0
\(705\) −1.00473 −0.0378403
\(706\) 0 0
\(707\) 3.37777 0.127034
\(708\) 0 0
\(709\) −17.2510 −0.647876 −0.323938 0.946078i \(-0.605007\pi\)
−0.323938 + 0.946078i \(0.605007\pi\)
\(710\) 0 0
\(711\) −23.6659 −0.887541
\(712\) 0 0
\(713\) 0.317227 0.0118802
\(714\) 0 0
\(715\) 0.406820 0.0152142
\(716\) 0 0
\(717\) 2.89009 0.107933
\(718\) 0 0
\(719\) −10.7487 −0.400858 −0.200429 0.979708i \(-0.564234\pi\)
−0.200429 + 0.979708i \(0.564234\pi\)
\(720\) 0 0
\(721\) 4.45432 0.165888
\(722\) 0 0
\(723\) 1.67784 0.0623995
\(724\) 0 0
\(725\) 1.33548 0.0495986
\(726\) 0 0
\(727\) −29.6911 −1.10118 −0.550591 0.834775i \(-0.685598\pi\)
−0.550591 + 0.834775i \(0.685598\pi\)
\(728\) 0 0
\(729\) −21.5947 −0.799805
\(730\) 0 0
\(731\) −18.4539 −0.682543
\(732\) 0 0
\(733\) 43.1043 1.59209 0.796047 0.605235i \(-0.206921\pi\)
0.796047 + 0.605235i \(0.206921\pi\)
\(734\) 0 0
\(735\) 0.624096 0.0230201
\(736\) 0 0
\(737\) −8.91405 −0.328353
\(738\) 0 0
\(739\) −8.59678 −0.316238 −0.158119 0.987420i \(-0.550543\pi\)
−0.158119 + 0.987420i \(0.550543\pi\)
\(740\) 0 0
\(741\) 2.02755 0.0744840
\(742\) 0 0
\(743\) −2.74932 −0.100863 −0.0504313 0.998728i \(-0.516060\pi\)
−0.0504313 + 0.998728i \(0.516060\pi\)
\(744\) 0 0
\(745\) 4.52851 0.165912
\(746\) 0 0
\(747\) −45.6436 −1.67001
\(748\) 0 0
\(749\) 8.36759 0.305745
\(750\) 0 0
\(751\) 7.81172 0.285054 0.142527 0.989791i \(-0.454477\pi\)
0.142527 + 0.989791i \(0.454477\pi\)
\(752\) 0 0
\(753\) 6.00220 0.218732
\(754\) 0 0
\(755\) −3.65558 −0.133040
\(756\) 0 0
\(757\) 26.1209 0.949379 0.474689 0.880153i \(-0.342560\pi\)
0.474689 + 0.880153i \(0.342560\pi\)
\(758\) 0 0
\(759\) −0.0843160 −0.00306048
\(760\) 0 0
\(761\) 45.4058 1.64596 0.822980 0.568071i \(-0.192310\pi\)
0.822980 + 0.568071i \(0.192310\pi\)
\(762\) 0 0
\(763\) −5.61657 −0.203333
\(764\) 0 0
\(765\) −2.97827 −0.107680
\(766\) 0 0
\(767\) 6.07501 0.219356
\(768\) 0 0
\(769\) −10.6495 −0.384032 −0.192016 0.981392i \(-0.561503\pi\)
−0.192016 + 0.981392i \(0.561503\pi\)
\(770\) 0 0
\(771\) −5.96199 −0.214716
\(772\) 0 0
\(773\) −13.3587 −0.480480 −0.240240 0.970714i \(-0.577226\pi\)
−0.240240 + 0.970714i \(0.577226\pi\)
\(774\) 0 0
\(775\) 5.83827 0.209717
\(776\) 0 0
\(777\) 4.07536 0.146203
\(778\) 0 0
\(779\) −41.3235 −1.48057
\(780\) 0 0
\(781\) −9.70930 −0.347426
\(782\) 0 0
\(783\) −0.522864 −0.0186856
\(784\) 0 0
\(785\) 2.51711 0.0898393
\(786\) 0 0
\(787\) −28.3908 −1.01202 −0.506011 0.862527i \(-0.668881\pi\)
−0.506011 + 0.862527i \(0.668881\pi\)
\(788\) 0 0
\(789\) −0.136026 −0.00484266
\(790\) 0 0
\(791\) −15.4892 −0.550733
\(792\) 0 0
\(793\) 5.77525 0.205085
\(794\) 0 0
\(795\) 1.27575 0.0452462
\(796\) 0 0
\(797\) −24.0049 −0.850297 −0.425148 0.905124i \(-0.639778\pi\)
−0.425148 + 0.905124i \(0.639778\pi\)
\(798\) 0 0
\(799\) 19.4443 0.687891
\(800\) 0 0
\(801\) −47.4471 −1.67646
\(802\) 0 0
\(803\) −2.70239 −0.0953653
\(804\) 0 0
\(805\) 0.159247 0.00561271
\(806\) 0 0
\(807\) 1.60184 0.0563875
\(808\) 0 0
\(809\) 6.87470 0.241702 0.120851 0.992671i \(-0.461438\pi\)
0.120851 + 0.992671i \(0.461438\pi\)
\(810\) 0 0
\(811\) −52.8647 −1.85633 −0.928165 0.372170i \(-0.878614\pi\)
−0.928165 + 0.372170i \(0.878614\pi\)
\(812\) 0 0
\(813\) −5.95570 −0.208875
\(814\) 0 0
\(815\) 6.82845 0.239190
\(816\) 0 0
\(817\) −46.1286 −1.61383
\(818\) 0 0
\(819\) −4.31694 −0.150846
\(820\) 0 0
\(821\) 45.0563 1.57248 0.786238 0.617924i \(-0.212026\pi\)
0.786238 + 0.617924i \(0.212026\pi\)
\(822\) 0 0
\(823\) −1.85920 −0.0648076 −0.0324038 0.999475i \(-0.510316\pi\)
−0.0324038 + 0.999475i \(0.510316\pi\)
\(824\) 0 0
\(825\) −1.55176 −0.0540253
\(826\) 0 0
\(827\) −11.0273 −0.383456 −0.191728 0.981448i \(-0.561409\pi\)
−0.191728 + 0.981448i \(0.561409\pi\)
\(828\) 0 0
\(829\) 8.23844 0.286133 0.143066 0.989713i \(-0.454304\pi\)
0.143066 + 0.989713i \(0.454304\pi\)
\(830\) 0 0
\(831\) −1.36173 −0.0472378
\(832\) 0 0
\(833\) −12.0780 −0.418478
\(834\) 0 0
\(835\) 8.98919 0.311084
\(836\) 0 0
\(837\) −2.28578 −0.0790082
\(838\) 0 0
\(839\) −10.9649 −0.378551 −0.189275 0.981924i \(-0.560614\pi\)
−0.189275 + 0.981924i \(0.560614\pi\)
\(840\) 0 0
\(841\) −28.9237 −0.997369
\(842\) 0 0
\(843\) −8.09082 −0.278662
\(844\) 0 0
\(845\) 0.406820 0.0139950
\(846\) 0 0
\(847\) −1.49015 −0.0512023
\(848\) 0 0
\(849\) −3.12291 −0.107178
\(850\) 0 0
\(851\) −2.23820 −0.0767245
\(852\) 0 0
\(853\) −43.5163 −1.48997 −0.744985 0.667081i \(-0.767543\pi\)
−0.744985 + 0.667081i \(0.767543\pi\)
\(854\) 0 0
\(855\) −7.44468 −0.254603
\(856\) 0 0
\(857\) −36.5293 −1.24782 −0.623908 0.781498i \(-0.714456\pi\)
−0.623908 + 0.781498i \(0.714456\pi\)
\(858\) 0 0
\(859\) 38.9062 1.32746 0.663732 0.747971i \(-0.268972\pi\)
0.663732 + 0.747971i \(0.268972\pi\)
\(860\) 0 0
\(861\) −3.12897 −0.106635
\(862\) 0 0
\(863\) −47.7942 −1.62693 −0.813467 0.581611i \(-0.802423\pi\)
−0.813467 + 0.581611i \(0.802423\pi\)
\(864\) 0 0
\(865\) 7.03453 0.239181
\(866\) 0 0
\(867\) 3.40680 0.115701
\(868\) 0 0
\(869\) −8.16918 −0.277120
\(870\) 0 0
\(871\) −8.91405 −0.302041
\(872\) 0 0
\(873\) 9.29241 0.314501
\(874\) 0 0
\(875\) 5.96191 0.201549
\(876\) 0 0
\(877\) 22.5633 0.761909 0.380955 0.924594i \(-0.375595\pi\)
0.380955 + 0.924594i \(0.375595\pi\)
\(878\) 0 0
\(879\) −3.96591 −0.133767
\(880\) 0 0
\(881\) 33.7545 1.13722 0.568610 0.822608i \(-0.307482\pi\)
0.568610 + 0.822608i \(0.307482\pi\)
\(882\) 0 0
\(883\) −44.9557 −1.51288 −0.756440 0.654063i \(-0.773063\pi\)
−0.756440 + 0.654063i \(0.773063\pi\)
\(884\) 0 0
\(885\) 0.793271 0.0266655
\(886\) 0 0
\(887\) 20.8902 0.701424 0.350712 0.936483i \(-0.385940\pi\)
0.350712 + 0.936483i \(0.385940\pi\)
\(888\) 0 0
\(889\) −29.6537 −0.994553
\(890\) 0 0
\(891\) −8.08338 −0.270804
\(892\) 0 0
\(893\) 48.6043 1.62648
\(894\) 0 0
\(895\) 5.29872 0.177117
\(896\) 0 0
\(897\) −0.0843160 −0.00281523
\(898\) 0 0
\(899\) 0.333595 0.0111260
\(900\) 0 0
\(901\) −24.6893 −0.822521
\(902\) 0 0
\(903\) −3.49280 −0.116233
\(904\) 0 0
\(905\) 4.71650 0.156782
\(906\) 0 0
\(907\) −46.0531 −1.52917 −0.764584 0.644524i \(-0.777056\pi\)
−0.764584 + 0.644524i \(0.777056\pi\)
\(908\) 0 0
\(909\) 6.56664 0.217802
\(910\) 0 0
\(911\) 51.2590 1.69829 0.849143 0.528164i \(-0.177119\pi\)
0.849143 + 0.528164i \(0.177119\pi\)
\(912\) 0 0
\(913\) −15.7556 −0.521435
\(914\) 0 0
\(915\) 0.754129 0.0249307
\(916\) 0 0
\(917\) 2.91372 0.0962195
\(918\) 0 0
\(919\) −24.5960 −0.811346 −0.405673 0.914018i \(-0.632963\pi\)
−0.405673 + 0.914018i \(0.632963\pi\)
\(920\) 0 0
\(921\) 7.03082 0.231673
\(922\) 0 0
\(923\) −9.70930 −0.319585
\(924\) 0 0
\(925\) −41.1920 −1.35438
\(926\) 0 0
\(927\) 8.65954 0.284417
\(928\) 0 0
\(929\) 22.3197 0.732286 0.366143 0.930559i \(-0.380678\pi\)
0.366143 + 0.930559i \(0.380678\pi\)
\(930\) 0 0
\(931\) −30.1909 −0.989468
\(932\) 0 0
\(933\) −3.70538 −0.121309
\(934\) 0 0
\(935\) −1.02806 −0.0336213
\(936\) 0 0
\(937\) 40.3010 1.31658 0.658288 0.752766i \(-0.271281\pi\)
0.658288 + 0.752766i \(0.271281\pi\)
\(938\) 0 0
\(939\) 0.367951 0.0120076
\(940\) 0 0
\(941\) −41.4004 −1.34962 −0.674808 0.737993i \(-0.735773\pi\)
−0.674808 + 0.737993i \(0.735773\pi\)
\(942\) 0 0
\(943\) 1.71844 0.0559601
\(944\) 0 0
\(945\) −1.14745 −0.0373267
\(946\) 0 0
\(947\) −4.04040 −0.131295 −0.0656477 0.997843i \(-0.520911\pi\)
−0.0656477 + 0.997843i \(0.520911\pi\)
\(948\) 0 0
\(949\) −2.70239 −0.0877233
\(950\) 0 0
\(951\) 7.81163 0.253309
\(952\) 0 0
\(953\) 26.6692 0.863900 0.431950 0.901898i \(-0.357826\pi\)
0.431950 + 0.901898i \(0.357826\pi\)
\(954\) 0 0
\(955\) 3.53289 0.114322
\(956\) 0 0
\(957\) −0.0886665 −0.00286618
\(958\) 0 0
\(959\) 5.80910 0.187586
\(960\) 0 0
\(961\) −29.5416 −0.952956
\(962\) 0 0
\(963\) 16.2672 0.524205
\(964\) 0 0
\(965\) −7.97535 −0.256736
\(966\) 0 0
\(967\) −26.2328 −0.843588 −0.421794 0.906692i \(-0.638600\pi\)
−0.421794 + 0.906692i \(0.638600\pi\)
\(968\) 0 0
\(969\) −5.12378 −0.164600
\(970\) 0 0
\(971\) 28.3624 0.910192 0.455096 0.890442i \(-0.349605\pi\)
0.455096 + 0.890442i \(0.349605\pi\)
\(972\) 0 0
\(973\) −20.0482 −0.642716
\(974\) 0 0
\(975\) −1.55176 −0.0496960
\(976\) 0 0
\(977\) 43.5330 1.39275 0.696373 0.717680i \(-0.254796\pi\)
0.696373 + 0.717680i \(0.254796\pi\)
\(978\) 0 0
\(979\) −16.3781 −0.523448
\(980\) 0 0
\(981\) −10.9190 −0.348618
\(982\) 0 0
\(983\) −10.9898 −0.350520 −0.175260 0.984522i \(-0.556077\pi\)
−0.175260 + 0.984522i \(0.556077\pi\)
\(984\) 0 0
\(985\) −7.30736 −0.232832
\(986\) 0 0
\(987\) 3.68026 0.117144
\(988\) 0 0
\(989\) 1.91826 0.0609971
\(990\) 0 0
\(991\) 20.3784 0.647340 0.323670 0.946170i \(-0.395083\pi\)
0.323670 + 0.946170i \(0.395083\pi\)
\(992\) 0 0
\(993\) 10.2899 0.326539
\(994\) 0 0
\(995\) 8.67879 0.275136
\(996\) 0 0
\(997\) 23.1387 0.732810 0.366405 0.930455i \(-0.380588\pi\)
0.366405 + 0.930455i \(0.380588\pi\)
\(998\) 0 0
\(999\) 16.1274 0.510247
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4576.2.a.p.1.3 6
4.3 odd 2 4576.2.a.q.1.4 yes 6
8.3 odd 2 9152.2.a.cp.1.3 6
8.5 even 2 9152.2.a.cr.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4576.2.a.p.1.3 6 1.1 even 1 trivial
4576.2.a.q.1.4 yes 6 4.3 odd 2
9152.2.a.cp.1.3 6 8.3 odd 2
9152.2.a.cr.1.4 6 8.5 even 2