Properties

Label 4576.2.a.p
Level $4576$
Weight $2$
Character orbit 4576.a
Self dual yes
Analytic conductor $36.540$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4576,2,Mod(1,4576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4576.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4576 = 2^{5} \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4576.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-1,0,-2,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.5395439649\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.106740016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 7x^{3} + 15x^{2} + x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_{5} q^{5} + ( - \beta_{5} + \beta_{4} - \beta_{3} + \cdots + 1) q^{7} + (\beta_{4} - \beta_{3} + \beta_1) q^{9} - q^{11} - q^{13} + (\beta_{3} + \beta_{2} + \beta_1) q^{15}+ \cdots + ( - \beta_{4} + \beta_{3} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} - 2 q^{5} + 5 q^{7} + q^{9} - 6 q^{11} - 6 q^{13} + 5 q^{15} + 6 q^{17} - 2 q^{19} + 20 q^{23} + 4 q^{25} - q^{27} - 3 q^{29} + 11 q^{31} + q^{33} + 9 q^{35} - 3 q^{37} + q^{39} - q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 9x^{4} + 7x^{3} + 15x^{2} + x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + \nu^{2} - 6\nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - \nu^{4} - 8\nu^{3} + 7\nu^{2} + 9\nu + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 8\nu^{3} + 8\nu^{2} + 8\nu - 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 2\nu^{4} + 8\nu^{3} - 14\nu^{2} - 7\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 7\beta_{4} - 6\beta_{3} + 5\beta _1 + 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 8\beta_{4} + 10\beta_{3} + 8\beta_{2} + 29\beta _1 - 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.53526
2.13437
0.320976
−0.531122
−0.822033
−2.63744
0 −2.53526 0 −3.51816 0 0.909368 0 3.42753 0
1.2 0 −2.13437 0 0.721145 0 3.27666 0 1.55552 0
1.3 0 −0.320976 0 0.406820 0 −1.49015 0 −2.89697 0
1.4 0 0.531122 0 −1.77141 0 −3.48932 0 −2.71791 0
1.5 0 0.822033 0 3.86135 0 2.53709 0 −2.32426 0
1.6 0 2.63744 0 −1.69975 0 3.25636 0 3.95610 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4576.2.a.p 6
4.b odd 2 1 4576.2.a.q yes 6
8.b even 2 1 9152.2.a.cr 6
8.d odd 2 1 9152.2.a.cp 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4576.2.a.p 6 1.a even 1 1 trivial
4576.2.a.q yes 6 4.b odd 2 1
9152.2.a.cp 6 8.d odd 2 1
9152.2.a.cr 6 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4576))\):

\( T_{3}^{6} + T_{3}^{5} - 9T_{3}^{4} - 7T_{3}^{3} + 15T_{3}^{2} - T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{6} + 2T_{5}^{5} - 15T_{5}^{4} - 34T_{5}^{3} + 10T_{5}^{2} + 32T_{5} - 12 \) Copy content Toggle raw display
\( T_{7}^{6} - 5T_{7}^{5} - 9T_{7}^{4} + 73T_{7}^{3} - 49T_{7}^{2} - 147T_{7} + 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{5} - 9 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{6} + 2 T^{5} + \cdots - 12 \) Copy content Toggle raw display
$7$ \( T^{6} - 5 T^{5} + \cdots + 128 \) Copy content Toggle raw display
$11$ \( (T + 1)^{6} \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 6 T^{5} + \cdots + 32 \) Copy content Toggle raw display
$19$ \( T^{6} + 2 T^{5} + \cdots - 32 \) Copy content Toggle raw display
$23$ \( T^{6} - 20 T^{5} + \cdots - 73 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + \cdots - 144 \) Copy content Toggle raw display
$31$ \( T^{6} - 11 T^{5} + \cdots - 6696 \) Copy content Toggle raw display
$37$ \( T^{6} + 3 T^{5} + \cdots - 128 \) Copy content Toggle raw display
$41$ \( T^{6} + T^{5} + \cdots - 4154 \) Copy content Toggle raw display
$43$ \( T^{6} + 9 T^{5} + \cdots - 12184 \) Copy content Toggle raw display
$47$ \( T^{6} + 8 T^{5} + \cdots - 63552 \) Copy content Toggle raw display
$53$ \( T^{6} + 2 T^{5} + \cdots - 3204 \) Copy content Toggle raw display
$59$ \( T^{6} - 6 T^{5} + \cdots + 13136 \) Copy content Toggle raw display
$61$ \( T^{6} + 11 T^{5} + \cdots + 31744 \) Copy content Toggle raw display
$67$ \( T^{6} - 14 T^{5} + \cdots + 51364 \) Copy content Toggle raw display
$71$ \( T^{6} - 19 T^{5} + \cdots + 3312 \) Copy content Toggle raw display
$73$ \( T^{6} + T^{5} + \cdots - 3746 \) Copy content Toggle raw display
$79$ \( T^{6} - 36 T^{5} + \cdots + 17152 \) Copy content Toggle raw display
$83$ \( T^{6} + 2 T^{5} + \cdots + 496 \) Copy content Toggle raw display
$89$ \( T^{6} + 5 T^{5} + \cdots - 2541536 \) Copy content Toggle raw display
$97$ \( T^{6} + T^{5} + \cdots - 14176 \) Copy content Toggle raw display
show more
show less