Properties

Label 456.2.q.c.49.1
Level $456$
Weight $2$
Character 456.49
Analytic conductor $3.641$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 250969136 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [456,2,Mod(49,456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("456.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.64117833217\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 456.49
Dual form 456.2.q.c.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(1.00000 - 1.73205i) q^{5} -5.00000 q^{7} +(-0.500000 - 0.866025i) q^{9} -4.00000 q^{11} +(-2.50000 - 4.33013i) q^{13} +(-1.00000 - 1.73205i) q^{15} +(4.00000 - 1.73205i) q^{19} +(-2.50000 + 4.33013i) q^{21} +(3.00000 + 5.19615i) q^{23} +(0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +(-4.00000 - 6.92820i) q^{29} -1.00000 q^{31} +(-2.00000 + 3.46410i) q^{33} +(-5.00000 + 8.66025i) q^{35} +7.00000 q^{37} -5.00000 q^{39} +(5.50000 - 9.52628i) q^{43} -2.00000 q^{45} +(-5.00000 - 8.66025i) q^{47} +18.0000 q^{49} +(-3.00000 - 5.19615i) q^{53} +(-4.00000 + 6.92820i) q^{55} +(0.500000 - 4.33013i) q^{57} +(-4.00000 + 6.92820i) q^{59} +(0.500000 + 0.866025i) q^{61} +(2.50000 + 4.33013i) q^{63} -10.0000 q^{65} +(-2.50000 - 4.33013i) q^{67} +6.00000 q^{69} +(-3.00000 + 5.19615i) q^{71} +(-0.500000 + 0.866025i) q^{73} +1.00000 q^{75} +20.0000 q^{77} +(6.50000 - 11.2583i) q^{79} +(-0.500000 + 0.866025i) q^{81} -4.00000 q^{83} -8.00000 q^{87} +(6.00000 + 10.3923i) q^{89} +(12.5000 + 21.6506i) q^{91} +(-0.500000 + 0.866025i) q^{93} +(1.00000 - 8.66025i) q^{95} +(-1.00000 + 1.73205i) q^{97} +(2.00000 + 3.46410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 2 q^{5} - 10 q^{7} - q^{9} - 8 q^{11} - 5 q^{13} - 2 q^{15} + 8 q^{19} - 5 q^{21} + 6 q^{23} + q^{25} - 2 q^{27} - 8 q^{29} - 2 q^{31} - 4 q^{33} - 10 q^{35} + 14 q^{37} - 10 q^{39} + 11 q^{43}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/456\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(343\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) 1.00000 1.73205i 0.447214 0.774597i −0.550990 0.834512i \(-0.685750\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) 0 0
\(7\) −5.00000 −1.88982 −0.944911 0.327327i \(-0.893852\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −2.50000 4.33013i −0.693375 1.20096i −0.970725 0.240192i \(-0.922790\pi\)
0.277350 0.960769i \(-0.410544\pi\)
\(14\) 0 0
\(15\) −1.00000 1.73205i −0.258199 0.447214i
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) 4.00000 1.73205i 0.917663 0.397360i
\(20\) 0 0
\(21\) −2.50000 + 4.33013i −0.545545 + 0.944911i
\(22\) 0 0
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −4.00000 6.92820i −0.742781 1.28654i −0.951224 0.308500i \(-0.900173\pi\)
0.208443 0.978035i \(-0.433160\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) −2.00000 + 3.46410i −0.348155 + 0.603023i
\(34\) 0 0
\(35\) −5.00000 + 8.66025i −0.845154 + 1.46385i
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) −5.00000 −0.800641
\(40\) 0 0
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) 5.50000 9.52628i 0.838742 1.45274i −0.0522047 0.998636i \(-0.516625\pi\)
0.890947 0.454108i \(-0.150042\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) −5.00000 8.66025i −0.729325 1.26323i −0.957169 0.289530i \(-0.906501\pi\)
0.227844 0.973698i \(-0.426832\pi\)
\(48\) 0 0
\(49\) 18.0000 2.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 5.19615i −0.412082 0.713746i 0.583036 0.812447i \(-0.301865\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(54\) 0 0
\(55\) −4.00000 + 6.92820i −0.539360 + 0.934199i
\(56\) 0 0
\(57\) 0.500000 4.33013i 0.0662266 0.573539i
\(58\) 0 0
\(59\) −4.00000 + 6.92820i −0.520756 + 0.901975i 0.478953 + 0.877841i \(0.341016\pi\)
−0.999709 + 0.0241347i \(0.992317\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 2.50000 + 4.33013i 0.314970 + 0.545545i
\(64\) 0 0
\(65\) −10.0000 −1.24035
\(66\) 0 0
\(67\) −2.50000 4.33013i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −3.00000 + 5.19615i −0.356034 + 0.616670i −0.987294 0.158901i \(-0.949205\pi\)
0.631260 + 0.775571i \(0.282538\pi\)
\(72\) 0 0
\(73\) −0.500000 + 0.866025i −0.0585206 + 0.101361i −0.893801 0.448463i \(-0.851972\pi\)
0.835281 + 0.549823i \(0.185305\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 20.0000 2.27921
\(78\) 0 0
\(79\) 6.50000 11.2583i 0.731307 1.26666i −0.225018 0.974355i \(-0.572244\pi\)
0.956325 0.292306i \(-0.0944227\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) 6.00000 + 10.3923i 0.635999 + 1.10158i 0.986303 + 0.164946i \(0.0527450\pi\)
−0.350304 + 0.936636i \(0.613922\pi\)
\(90\) 0 0
\(91\) 12.5000 + 21.6506i 1.31036 + 2.26960i
\(92\) 0 0
\(93\) −0.500000 + 0.866025i −0.0518476 + 0.0898027i
\(94\) 0 0
\(95\) 1.00000 8.66025i 0.102598 0.888523i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0 0
\(99\) 2.00000 + 3.46410i 0.201008 + 0.348155i
\(100\) 0 0
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) 0 0
\(105\) 5.00000 + 8.66025i 0.487950 + 0.845154i
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) 3.50000 6.06218i 0.332205 0.575396i
\(112\) 0 0
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) 12.0000 1.11901
\(116\) 0 0
\(117\) −2.50000 + 4.33013i −0.231125 + 0.400320i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −10.0000 17.3205i −0.887357 1.53695i −0.842989 0.537931i \(-0.819206\pi\)
−0.0443678 0.999015i \(-0.514127\pi\)
\(128\) 0 0
\(129\) −5.50000 9.52628i −0.484248 0.838742i
\(130\) 0 0
\(131\) −5.00000 + 8.66025i −0.436852 + 0.756650i −0.997445 0.0714417i \(-0.977240\pi\)
0.560593 + 0.828092i \(0.310573\pi\)
\(132\) 0 0
\(133\) −20.0000 + 8.66025i −1.73422 + 0.750939i
\(134\) 0 0
\(135\) −1.00000 + 1.73205i −0.0860663 + 0.149071i
\(136\) 0 0
\(137\) −5.00000 8.66025i −0.427179 0.739895i 0.569442 0.822031i \(-0.307159\pi\)
−0.996621 + 0.0821359i \(0.973826\pi\)
\(138\) 0 0
\(139\) 2.50000 + 4.33013i 0.212047 + 0.367277i 0.952355 0.304991i \(-0.0986536\pi\)
−0.740308 + 0.672268i \(0.765320\pi\)
\(140\) 0 0
\(141\) −10.0000 −0.842152
\(142\) 0 0
\(143\) 10.0000 + 17.3205i 0.836242 + 1.44841i
\(144\) 0 0
\(145\) −16.0000 −1.32873
\(146\) 0 0
\(147\) 9.00000 15.5885i 0.742307 1.28571i
\(148\) 0 0
\(149\) −4.00000 + 6.92820i −0.327693 + 0.567581i −0.982054 0.188602i \(-0.939604\pi\)
0.654361 + 0.756182i \(0.272938\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.00000 + 1.73205i −0.0803219 + 0.139122i
\(156\) 0 0
\(157\) 6.50000 11.2583i 0.518756 0.898513i −0.481006 0.876717i \(-0.659728\pi\)
0.999762 0.0217953i \(-0.00693820\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −15.0000 25.9808i −1.18217 2.04757i
\(162\) 0 0
\(163\) 1.00000 0.0783260 0.0391630 0.999233i \(-0.487531\pi\)
0.0391630 + 0.999233i \(0.487531\pi\)
\(164\) 0 0
\(165\) 4.00000 + 6.92820i 0.311400 + 0.539360i
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) −3.50000 2.59808i −0.267652 0.198680i
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −2.50000 4.33013i −0.188982 0.327327i
\(176\) 0 0
\(177\) 4.00000 + 6.92820i 0.300658 + 0.520756i
\(178\) 0 0
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) 9.00000 + 15.5885i 0.668965 + 1.15868i 0.978194 + 0.207693i \(0.0665956\pi\)
−0.309229 + 0.950988i \(0.600071\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) 7.00000 12.1244i 0.514650 0.891400i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −26.0000 −1.88129 −0.940647 0.339387i \(-0.889781\pi\)
−0.940647 + 0.339387i \(0.889781\pi\)
\(192\) 0 0
\(193\) 2.50000 4.33013i 0.179954 0.311689i −0.761911 0.647682i \(-0.775738\pi\)
0.941865 + 0.335993i \(0.109072\pi\)
\(194\) 0 0
\(195\) −5.00000 + 8.66025i −0.358057 + 0.620174i
\(196\) 0 0
\(197\) −20.0000 −1.42494 −0.712470 0.701702i \(-0.752424\pi\)
−0.712470 + 0.701702i \(0.752424\pi\)
\(198\) 0 0
\(199\) −1.50000 2.59808i −0.106332 0.184173i 0.807950 0.589252i \(-0.200577\pi\)
−0.914282 + 0.405079i \(0.867244\pi\)
\(200\) 0 0
\(201\) −5.00000 −0.352673
\(202\) 0 0
\(203\) 20.0000 + 34.6410i 1.40372 + 2.43132i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.00000 5.19615i 0.208514 0.361158i
\(208\) 0 0
\(209\) −16.0000 + 6.92820i −1.10674 + 0.479234i
\(210\) 0 0
\(211\) 10.5000 18.1865i 0.722850 1.25201i −0.237003 0.971509i \(-0.576165\pi\)
0.959853 0.280504i \(-0.0905015\pi\)
\(212\) 0 0
\(213\) 3.00000 + 5.19615i 0.205557 + 0.356034i
\(214\) 0 0
\(215\) −11.0000 19.0526i −0.750194 1.29937i
\(216\) 0 0
\(217\) 5.00000 0.339422
\(218\) 0 0
\(219\) 0.500000 + 0.866025i 0.0337869 + 0.0585206i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.500000 0.866025i 0.0334825 0.0579934i −0.848799 0.528716i \(-0.822674\pi\)
0.882281 + 0.470723i \(0.156007\pi\)
\(224\) 0 0
\(225\) 0.500000 0.866025i 0.0333333 0.0577350i
\(226\) 0 0
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) −27.0000 −1.78421 −0.892105 0.451828i \(-0.850772\pi\)
−0.892105 + 0.451828i \(0.850772\pi\)
\(230\) 0 0
\(231\) 10.0000 17.3205i 0.657952 1.13961i
\(232\) 0 0
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) −20.0000 −1.30466
\(236\) 0 0
\(237\) −6.50000 11.2583i −0.422220 0.731307i
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 5.50000 + 9.52628i 0.354286 + 0.613642i 0.986996 0.160748i \(-0.0513906\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 18.0000 31.1769i 1.14998 1.99182i
\(246\) 0 0
\(247\) −17.5000 12.9904i −1.11350 0.826558i
\(248\) 0 0
\(249\) −2.00000 + 3.46410i −0.126745 + 0.219529i
\(250\) 0 0
\(251\) −13.0000 22.5167i −0.820553 1.42124i −0.905271 0.424834i \(-0.860332\pi\)
0.0847185 0.996405i \(-0.473001\pi\)
\(252\) 0 0
\(253\) −12.0000 20.7846i −0.754434 1.30672i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.00000 8.66025i −0.311891 0.540212i 0.666880 0.745165i \(-0.267629\pi\)
−0.978772 + 0.204953i \(0.934296\pi\)
\(258\) 0 0
\(259\) −35.0000 −2.17479
\(260\) 0 0
\(261\) −4.00000 + 6.92820i −0.247594 + 0.428845i
\(262\) 0 0
\(263\) 7.00000 12.1244i 0.431638 0.747620i −0.565376 0.824833i \(-0.691269\pi\)
0.997015 + 0.0772134i \(0.0246023\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) 6.00000 10.3923i 0.365826 0.633630i −0.623082 0.782157i \(-0.714120\pi\)
0.988908 + 0.148527i \(0.0474530\pi\)
\(270\) 0 0
\(271\) 8.00000 13.8564i 0.485965 0.841717i −0.513905 0.857847i \(-0.671801\pi\)
0.999870 + 0.0161307i \(0.00513477\pi\)
\(272\) 0 0
\(273\) 25.0000 1.51307
\(274\) 0 0
\(275\) −2.00000 3.46410i −0.120605 0.208893i
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) 0.500000 + 0.866025i 0.0299342 + 0.0518476i
\(280\) 0 0
\(281\) 5.00000 + 8.66025i 0.298275 + 0.516627i 0.975741 0.218926i \(-0.0702554\pi\)
−0.677466 + 0.735554i \(0.736922\pi\)
\(282\) 0 0
\(283\) −10.0000 + 17.3205i −0.594438 + 1.02960i 0.399188 + 0.916869i \(0.369292\pi\)
−0.993626 + 0.112728i \(0.964041\pi\)
\(284\) 0 0
\(285\) −7.00000 5.19615i −0.414644 0.307794i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 1.00000 + 1.73205i 0.0586210 + 0.101535i
\(292\) 0 0
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) 8.00000 + 13.8564i 0.465778 + 0.806751i
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) 15.0000 25.9808i 0.867472 1.50251i
\(300\) 0 0
\(301\) −27.5000 + 47.6314i −1.58507 + 2.74543i
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −6.00000 + 10.3923i −0.342438 + 0.593120i −0.984885 0.173210i \(-0.944586\pi\)
0.642447 + 0.766330i \(0.277919\pi\)
\(308\) 0 0
\(309\) −2.50000 + 4.33013i −0.142220 + 0.246332i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −5.00000 8.66025i −0.282617 0.489506i 0.689412 0.724370i \(-0.257869\pi\)
−0.972028 + 0.234863i \(0.924536\pi\)
\(314\) 0 0
\(315\) 10.0000 0.563436
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) 16.0000 + 27.7128i 0.895828 + 1.55162i
\(320\) 0 0
\(321\) 9.00000 15.5885i 0.502331 0.870063i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.50000 4.33013i 0.138675 0.240192i
\(326\) 0 0
\(327\) 1.00000 + 1.73205i 0.0553001 + 0.0957826i
\(328\) 0 0
\(329\) 25.0000 + 43.3013i 1.37829 + 2.38728i
\(330\) 0 0
\(331\) 5.00000 0.274825 0.137412 0.990514i \(-0.456121\pi\)
0.137412 + 0.990514i \(0.456121\pi\)
\(332\) 0 0
\(333\) −3.50000 6.06218i −0.191799 0.332205i
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) 0 0
\(339\) −2.00000 + 3.46410i −0.108625 + 0.188144i
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) −55.0000 −2.96972
\(344\) 0 0
\(345\) 6.00000 10.3923i 0.323029 0.559503i
\(346\) 0 0
\(347\) 15.0000 25.9808i 0.805242 1.39472i −0.110885 0.993833i \(-0.535369\pi\)
0.916127 0.400887i \(-0.131298\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) 0 0
\(351\) 2.50000 + 4.33013i 0.133440 + 0.231125i
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) 6.00000 + 10.3923i 0.318447 + 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 + 17.3205i −0.527780 + 0.914141i 0.471696 + 0.881761i \(0.343642\pi\)
−0.999476 + 0.0323801i \(0.989691\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 0 0
\(363\) 2.50000 4.33013i 0.131216 0.227273i
\(364\) 0 0
\(365\) 1.00000 + 1.73205i 0.0523424 + 0.0906597i
\(366\) 0 0
\(367\) 7.50000 + 12.9904i 0.391497 + 0.678092i 0.992647 0.121044i \(-0.0386241\pi\)
−0.601150 + 0.799136i \(0.705291\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.0000 + 25.9808i 0.778761 + 1.34885i
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 6.00000 10.3923i 0.309839 0.536656i
\(376\) 0 0
\(377\) −20.0000 + 34.6410i −1.03005 + 1.78410i
\(378\) 0 0
\(379\) 13.0000 0.667765 0.333883 0.942615i \(-0.391641\pi\)
0.333883 + 0.942615i \(0.391641\pi\)
\(380\) 0 0
\(381\) −20.0000 −1.02463
\(382\) 0 0
\(383\) −10.0000 + 17.3205i −0.510976 + 0.885037i 0.488943 + 0.872316i \(0.337383\pi\)
−0.999919 + 0.0127209i \(0.995951\pi\)
\(384\) 0 0
\(385\) 20.0000 34.6410i 1.01929 1.76547i
\(386\) 0 0
\(387\) −11.0000 −0.559161
\(388\) 0 0
\(389\) 11.0000 + 19.0526i 0.557722 + 0.966003i 0.997686 + 0.0679877i \(0.0216579\pi\)
−0.439964 + 0.898015i \(0.645009\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 5.00000 + 8.66025i 0.252217 + 0.436852i
\(394\) 0 0
\(395\) −13.0000 22.5167i −0.654101 1.13294i
\(396\) 0 0
\(397\) 12.5000 21.6506i 0.627357 1.08661i −0.360723 0.932673i \(-0.617470\pi\)
0.988080 0.153941i \(-0.0491966\pi\)
\(398\) 0 0
\(399\) −2.50000 + 21.6506i −0.125157 + 1.08389i
\(400\) 0 0
\(401\) 12.0000 20.7846i 0.599251 1.03793i −0.393680 0.919247i \(-0.628798\pi\)
0.992932 0.118686i \(-0.0378683\pi\)
\(402\) 0 0
\(403\) 2.50000 + 4.33013i 0.124534 + 0.215699i
\(404\) 0 0
\(405\) 1.00000 + 1.73205i 0.0496904 + 0.0860663i
\(406\) 0 0
\(407\) −28.0000 −1.38791
\(408\) 0 0
\(409\) −11.0000 19.0526i −0.543915 0.942088i −0.998674 0.0514740i \(-0.983608\pi\)
0.454759 0.890614i \(-0.349725\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) 0 0
\(413\) 20.0000 34.6410i 0.984136 1.70457i
\(414\) 0 0
\(415\) −4.00000 + 6.92820i −0.196352 + 0.340092i
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −3.00000 + 5.19615i −0.146211 + 0.253245i −0.929824 0.368004i \(-0.880041\pi\)
0.783613 + 0.621249i \(0.213375\pi\)
\(422\) 0 0
\(423\) −5.00000 + 8.66025i −0.243108 + 0.421076i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.50000 4.33013i −0.120983 0.209550i
\(428\) 0 0
\(429\) 20.0000 0.965609
\(430\) 0 0
\(431\) −3.00000 5.19615i −0.144505 0.250290i 0.784683 0.619897i \(-0.212826\pi\)
−0.929188 + 0.369607i \(0.879492\pi\)
\(432\) 0 0
\(433\) 2.50000 + 4.33013i 0.120142 + 0.208093i 0.919824 0.392332i \(-0.128332\pi\)
−0.799681 + 0.600425i \(0.794998\pi\)
\(434\) 0 0
\(435\) −8.00000 + 13.8564i −0.383571 + 0.664364i
\(436\) 0 0
\(437\) 21.0000 + 15.5885i 1.00457 + 0.745697i
\(438\) 0 0
\(439\) −6.50000 + 11.2583i −0.310228 + 0.537331i −0.978412 0.206666i \(-0.933739\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) −9.00000 15.5885i −0.428571 0.742307i
\(442\) 0 0
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) 24.0000 1.13771
\(446\) 0 0
\(447\) 4.00000 + 6.92820i 0.189194 + 0.327693i
\(448\) 0 0
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 8.00000 13.8564i 0.375873 0.651031i
\(454\) 0 0
\(455\) 50.0000 2.34404
\(456\) 0 0
\(457\) −15.0000 −0.701670 −0.350835 0.936437i \(-0.614102\pi\)
−0.350835 + 0.936437i \(0.614102\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.00000 13.8564i 0.372597 0.645357i −0.617367 0.786675i \(-0.711801\pi\)
0.989964 + 0.141318i \(0.0451340\pi\)
\(462\) 0 0
\(463\) 25.0000 1.16185 0.580924 0.813958i \(-0.302691\pi\)
0.580924 + 0.813958i \(0.302691\pi\)
\(464\) 0 0
\(465\) 1.00000 + 1.73205i 0.0463739 + 0.0803219i
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 12.5000 + 21.6506i 0.577196 + 0.999733i
\(470\) 0 0
\(471\) −6.50000 11.2583i −0.299504 0.518756i
\(472\) 0 0
\(473\) −22.0000 + 38.1051i −1.01156 + 1.75208i
\(474\) 0 0
\(475\) 3.50000 + 2.59808i 0.160591 + 0.119208i
\(476\) 0 0
\(477\) −3.00000 + 5.19615i −0.137361 + 0.237915i
\(478\) 0 0
\(479\) 9.00000 + 15.5885i 0.411220 + 0.712255i 0.995023 0.0996406i \(-0.0317693\pi\)
−0.583803 + 0.811895i \(0.698436\pi\)
\(480\) 0 0
\(481\) −17.5000 30.3109i −0.797931 1.38206i
\(482\) 0 0
\(483\) −30.0000 −1.36505
\(484\) 0 0
\(485\) 2.00000 + 3.46410i 0.0908153 + 0.157297i
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) 0.500000 0.866025i 0.0226108 0.0391630i
\(490\) 0 0
\(491\) 13.0000 22.5167i 0.586682 1.01616i −0.407982 0.912990i \(-0.633767\pi\)
0.994663 0.103173i \(-0.0328994\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) 15.0000 25.9808i 0.672842 1.16540i
\(498\) 0 0
\(499\) 2.50000 4.33013i 0.111915 0.193843i −0.804627 0.593780i \(-0.797635\pi\)
0.916542 + 0.399937i \(0.130968\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) 6.00000 + 10.3923i 0.266469 + 0.461538i
\(508\) 0 0
\(509\) 15.0000 + 25.9808i 0.664863 + 1.15158i 0.979322 + 0.202306i \(0.0648436\pi\)
−0.314459 + 0.949271i \(0.601823\pi\)
\(510\) 0 0
\(511\) 2.50000 4.33013i 0.110593 0.191554i
\(512\) 0 0
\(513\) −4.00000 + 1.73205i −0.176604 + 0.0764719i
\(514\) 0 0
\(515\) −5.00000 + 8.66025i −0.220326 + 0.381616i
\(516\) 0 0
\(517\) 20.0000 + 34.6410i 0.879599 + 1.52351i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.0000 −0.700973 −0.350486 0.936568i \(-0.613984\pi\)
−0.350486 + 0.936568i \(0.613984\pi\)
\(522\) 0 0
\(523\) 4.50000 + 7.79423i 0.196771 + 0.340818i 0.947480 0.319816i \(-0.103621\pi\)
−0.750708 + 0.660634i \(0.770288\pi\)
\(524\) 0 0
\(525\) −5.00000 −0.218218
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 18.0000 31.1769i 0.778208 1.34790i
\(536\) 0 0
\(537\) 9.00000 15.5885i 0.388379 0.672692i
\(538\) 0 0
\(539\) −72.0000 −3.10126
\(540\) 0 0
\(541\) −0.500000 0.866025i −0.0214967 0.0372333i 0.855077 0.518501i \(-0.173510\pi\)
−0.876574 + 0.481268i \(0.840176\pi\)
\(542\) 0 0
\(543\) 18.0000 0.772454
\(544\) 0 0
\(545\) 2.00000 + 3.46410i 0.0856706 + 0.148386i
\(546\) 0 0
\(547\) −8.50000 14.7224i −0.363434 0.629486i 0.625090 0.780553i \(-0.285062\pi\)
−0.988524 + 0.151067i \(0.951729\pi\)
\(548\) 0 0
\(549\) 0.500000 0.866025i 0.0213395 0.0369611i
\(550\) 0 0
\(551\) −28.0000 20.7846i −1.19284 0.885454i
\(552\) 0 0
\(553\) −32.5000 + 56.2917i −1.38204 + 2.39376i
\(554\) 0 0
\(555\) −7.00000 12.1244i −0.297133 0.514650i
\(556\) 0 0
\(557\) −21.0000 36.3731i −0.889799 1.54118i −0.840113 0.542411i \(-0.817511\pi\)
−0.0496855 0.998765i \(-0.515822\pi\)
\(558\) 0 0
\(559\) −55.0000 −2.32625
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) −4.00000 + 6.92820i −0.168281 + 0.291472i
\(566\) 0 0
\(567\) 2.50000 4.33013i 0.104990 0.181848i
\(568\) 0 0
\(569\) 12.0000 0.503066 0.251533 0.967849i \(-0.419065\pi\)
0.251533 + 0.967849i \(0.419065\pi\)
\(570\) 0 0
\(571\) 11.0000 0.460336 0.230168 0.973151i \(-0.426072\pi\)
0.230168 + 0.973151i \(0.426072\pi\)
\(572\) 0 0
\(573\) −13.0000 + 22.5167i −0.543083 + 0.940647i
\(574\) 0 0
\(575\) −3.00000 + 5.19615i −0.125109 + 0.216695i
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) −2.50000 4.33013i −0.103896 0.179954i
\(580\) 0 0
\(581\) 20.0000 0.829740
\(582\) 0 0
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) 5.00000 + 8.66025i 0.206725 + 0.358057i
\(586\) 0 0
\(587\) −10.0000 + 17.3205i −0.412744 + 0.714894i −0.995189 0.0979766i \(-0.968763\pi\)
0.582445 + 0.812870i \(0.302096\pi\)
\(588\) 0 0
\(589\) −4.00000 + 1.73205i −0.164817 + 0.0713679i
\(590\) 0 0
\(591\) −10.0000 + 17.3205i −0.411345 + 0.712470i
\(592\) 0 0
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) 10.0000 + 17.3205i 0.408589 + 0.707697i 0.994732 0.102511i \(-0.0326876\pi\)
−0.586143 + 0.810208i \(0.699354\pi\)
\(600\) 0 0
\(601\) 31.0000 1.26452 0.632258 0.774758i \(-0.282128\pi\)
0.632258 + 0.774758i \(0.282128\pi\)
\(602\) 0 0
\(603\) −2.50000 + 4.33013i −0.101808 + 0.176336i
\(604\) 0 0
\(605\) 5.00000 8.66025i 0.203279 0.352089i
\(606\) 0 0
\(607\) −5.00000 −0.202944 −0.101472 0.994838i \(-0.532355\pi\)
−0.101472 + 0.994838i \(0.532355\pi\)
\(608\) 0 0
\(609\) 40.0000 1.62088
\(610\) 0 0
\(611\) −25.0000 + 43.3013i −1.01139 + 1.75178i
\(612\) 0 0
\(613\) 23.0000 39.8372i 0.928961 1.60901i 0.143898 0.989593i \(-0.454036\pi\)
0.785063 0.619416i \(-0.212630\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −24.0000 41.5692i −0.966204 1.67351i −0.706346 0.707867i \(-0.749658\pi\)
−0.259858 0.965647i \(-0.583676\pi\)
\(618\) 0 0
\(619\) −45.0000 −1.80870 −0.904351 0.426789i \(-0.859645\pi\)
−0.904351 + 0.426789i \(0.859645\pi\)
\(620\) 0 0
\(621\) −3.00000 5.19615i −0.120386 0.208514i
\(622\) 0 0
\(623\) −30.0000 51.9615i −1.20192 2.08179i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 0 0
\(627\) −2.00000 + 17.3205i −0.0798723 + 0.691714i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 14.5000 + 25.1147i 0.577236 + 0.999802i 0.995795 + 0.0916122i \(0.0292020\pi\)
−0.418559 + 0.908190i \(0.637465\pi\)
\(632\) 0 0
\(633\) −10.5000 18.1865i −0.417338 0.722850i
\(634\) 0 0
\(635\) −40.0000 −1.58735
\(636\) 0 0
\(637\) −45.0000 77.9423i −1.78296 3.08819i
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −23.0000 + 39.8372i −0.908445 + 1.57347i −0.0922210 + 0.995739i \(0.529397\pi\)
−0.816224 + 0.577735i \(0.803937\pi\)
\(642\) 0 0
\(643\) 2.50000 4.33013i 0.0985904 0.170764i −0.812511 0.582946i \(-0.801900\pi\)
0.911101 + 0.412182i \(0.135233\pi\)
\(644\) 0 0
\(645\) −22.0000 −0.866249
\(646\) 0 0
\(647\) 40.0000 1.57256 0.786281 0.617869i \(-0.212004\pi\)
0.786281 + 0.617869i \(0.212004\pi\)
\(648\) 0 0
\(649\) 16.0000 27.7128i 0.628055 1.08782i
\(650\) 0 0
\(651\) 2.50000 4.33013i 0.0979827 0.169711i
\(652\) 0 0
\(653\) 34.0000 1.33052 0.665261 0.746611i \(-0.268320\pi\)
0.665261 + 0.746611i \(0.268320\pi\)
\(654\) 0 0
\(655\) 10.0000 + 17.3205i 0.390732 + 0.676768i
\(656\) 0 0
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) −22.0000 38.1051i −0.856998 1.48436i −0.874779 0.484523i \(-0.838993\pi\)
0.0177803 0.999842i \(-0.494340\pi\)
\(660\) 0 0
\(661\) 7.00000 + 12.1244i 0.272268 + 0.471583i 0.969442 0.245319i \(-0.0788928\pi\)
−0.697174 + 0.716902i \(0.745559\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.00000 + 43.3013i −0.193892 + 1.67915i
\(666\) 0 0
\(667\) 24.0000 41.5692i 0.929284 1.60957i
\(668\) 0 0
\(669\) −0.500000 0.866025i −0.0193311 0.0334825i
\(670\) 0 0
\(671\) −2.00000 3.46410i −0.0772091 0.133730i
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) 0 0
\(675\) −0.500000 0.866025i −0.0192450 0.0333333i
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 5.00000 8.66025i 0.191882 0.332350i
\(680\) 0 0
\(681\) 1.00000 1.73205i 0.0383201 0.0663723i
\(682\) 0 0
\(683\) 10.0000 0.382639 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) −13.5000 + 23.3827i −0.515057 + 0.892105i
\(688\) 0 0
\(689\) −15.0000 + 25.9808i −0.571454 + 0.989788i
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 0 0
\(693\) −10.0000 17.3205i −0.379869 0.657952i
\(694\) 0 0
\(695\) 10.0000 0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 3.00000 + 5.19615i 0.113470 + 0.196537i
\(700\) 0 0
\(701\) 1.00000 1.73205i 0.0377695 0.0654187i −0.846523 0.532353i \(-0.821308\pi\)
0.884292 + 0.466934i \(0.154641\pi\)
\(702\) 0 0
\(703\) 28.0000 12.1244i 1.05604 0.457279i
\(704\) 0 0
\(705\) −10.0000 + 17.3205i −0.376622 + 0.652328i
\(706\) 0 0
\(707\) −15.0000 25.9808i −0.564133 0.977107i
\(708\) 0 0
\(709\) 13.5000 + 23.3827i 0.507003 + 0.878155i 0.999967 + 0.00810550i \(0.00258009\pi\)
−0.492964 + 0.870050i \(0.664087\pi\)
\(710\) 0 0
\(711\) −13.0000 −0.487538
\(712\) 0 0
\(713\) −3.00000 5.19615i −0.112351 0.194597i
\(714\) 0 0
\(715\) 40.0000 1.49592
\(716\) 0 0
\(717\) 1.00000 1.73205i 0.0373457 0.0646846i
\(718\) 0 0
\(719\) 21.0000 36.3731i 0.783168 1.35649i −0.146920 0.989148i \(-0.546936\pi\)
0.930087 0.367338i \(-0.119731\pi\)
\(720\) 0 0
\(721\) 25.0000 0.931049
\(722\) 0 0
\(723\) 11.0000 0.409094
\(724\) 0 0
\(725\) 4.00000 6.92820i 0.148556 0.257307i
\(726\) 0 0
\(727\) 18.5000 32.0429i 0.686127 1.18841i −0.286954 0.957944i \(-0.592643\pi\)
0.973081 0.230463i \(-0.0740239\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 0 0
\(735\) −18.0000 31.1769i −0.663940 1.14998i
\(736\) 0 0
\(737\) 10.0000 + 17.3205i 0.368355 + 0.638009i
\(738\) 0 0
\(739\) 1.50000 2.59808i 0.0551784 0.0955718i −0.837117 0.547024i \(-0.815761\pi\)
0.892295 + 0.451452i \(0.149094\pi\)
\(740\) 0 0
\(741\) −20.0000 + 8.66025i −0.734718 + 0.318142i
\(742\) 0 0
\(743\) −12.0000 + 20.7846i −0.440237 + 0.762513i −0.997707 0.0676840i \(-0.978439\pi\)
0.557470 + 0.830197i \(0.311772\pi\)
\(744\) 0 0
\(745\) 8.00000 + 13.8564i 0.293097 + 0.507659i
\(746\) 0 0
\(747\) 2.00000 + 3.46410i 0.0731762 + 0.126745i
\(748\) 0 0
\(749\) −90.0000 −3.28853
\(750\) 0 0
\(751\) 14.5000 + 25.1147i 0.529113 + 0.916450i 0.999424 + 0.0339490i \(0.0108084\pi\)
−0.470311 + 0.882501i \(0.655858\pi\)
\(752\) 0 0
\(753\) −26.0000 −0.947493
\(754\) 0 0
\(755\) 16.0000 27.7128i 0.582300 1.00857i
\(756\) 0 0
\(757\) 7.50000 12.9904i 0.272592 0.472143i −0.696933 0.717137i \(-0.745452\pi\)
0.969525 + 0.244993i \(0.0787857\pi\)
\(758\) 0 0
\(759\) −24.0000 −0.871145
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) 5.00000 8.66025i 0.181012 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.0000 1.44432
\(768\) 0 0
\(769\) −21.5000 37.2391i −0.775310 1.34288i −0.934620 0.355647i \(-0.884260\pi\)
0.159310 0.987229i \(-0.449073\pi\)
\(770\) 0 0
\(771\) −10.0000 −0.360141
\(772\) 0 0
\(773\) 15.0000 + 25.9808i 0.539513 + 0.934463i 0.998930 + 0.0462427i \(0.0147248\pi\)
−0.459418 + 0.888220i \(0.651942\pi\)
\(774\) 0 0
\(775\) −0.500000 0.866025i −0.0179605 0.0311086i
\(776\) 0 0
\(777\) −17.5000 + 30.3109i −0.627809 + 1.08740i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 12.0000 20.7846i 0.429394 0.743732i
\(782\) 0 0
\(783\) 4.00000 + 6.92820i 0.142948 + 0.247594i
\(784\) 0 0
\(785\) −13.0000 22.5167i −0.463990 0.803654i
\(786\) 0 0
\(787\) −5.00000 −0.178231 −0.0891154 0.996021i \(-0.528404\pi\)
−0.0891154 + 0.996021i \(0.528404\pi\)
\(788\) 0 0
\(789\) −7.00000 12.1244i −0.249207 0.431638i
\(790\) 0 0
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) 2.50000 4.33013i 0.0887776 0.153767i
\(794\) 0 0
\(795\) −6.00000 + 10.3923i −0.212798 + 0.368577i
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 10.3923i 0.212000 0.367194i
\(802\) 0 0
\(803\) 2.00000 3.46410i 0.0705785 0.122245i
\(804\) 0 0
\(805\) −60.0000 −2.11472
\(806\) 0 0
\(807\) −6.00000 10.3923i −0.211210 0.365826i
\(808\) 0 0
\(809\) −2.00000 −0.0703163 −0.0351581 0.999382i \(-0.511193\pi\)
−0.0351581 + 0.999382i \(0.511193\pi\)
\(810\) 0 0
\(811\) 8.00000 + 13.8564i 0.280918 + 0.486564i 0.971611 0.236584i \(-0.0760278\pi\)
−0.690693 + 0.723148i \(0.742694\pi\)
\(812\) 0 0
\(813\) −8.00000 13.8564i −0.280572 0.485965i
\(814\) 0 0
\(815\) 1.00000 1.73205i 0.0350285 0.0606711i
\(816\) 0 0
\(817\) 5.50000 47.6314i 0.192421 1.66641i
\(818\) 0 0
\(819\) 12.5000 21.6506i 0.436785 0.756534i
\(820\) 0 0
\(821\) 12.0000 + 20.7846i 0.418803 + 0.725388i 0.995819 0.0913446i \(-0.0291165\pi\)
−0.577016 + 0.816733i \(0.695783\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) −10.0000 17.3205i −0.347734 0.602293i 0.638112 0.769943i \(-0.279715\pi\)
−0.985847 + 0.167650i \(0.946382\pi\)
\(828\) 0 0
\(829\) 45.0000 1.56291 0.781457 0.623959i \(-0.214477\pi\)
0.781457 + 0.623959i \(0.214477\pi\)
\(830\) 0 0
\(831\) −5.00000 + 8.66025i −0.173448 + 0.300421i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) 15.0000 25.9808i 0.517858 0.896956i −0.481927 0.876211i \(-0.660063\pi\)
0.999785 0.0207443i \(-0.00660359\pi\)
\(840\) 0 0
\(841\) −17.5000 + 30.3109i −0.603448 + 1.04520i
\(842\) 0 0
\(843\) 10.0000 0.344418
\(844\) 0 0
\(845\) 12.0000 + 20.7846i 0.412813 + 0.715012i
\(846\) 0 0
\(847\) −25.0000 −0.859010
\(848\) 0 0
\(849\) 10.0000 + 17.3205i 0.343199 + 0.594438i
\(850\) 0 0
\(851\) 21.0000 + 36.3731i 0.719871 + 1.24685i
\(852\) 0 0
\(853\) 0.500000 0.866025i 0.0171197 0.0296521i −0.857339 0.514753i \(-0.827884\pi\)
0.874458 + 0.485101i \(0.161217\pi\)
\(854\) 0 0
\(855\) −8.00000 + 3.46410i −0.273594 + 0.118470i
\(856\) 0 0
\(857\) −21.0000 + 36.3731i −0.717346 + 1.24248i 0.244701 + 0.969599i \(0.421310\pi\)
−0.962048 + 0.272882i \(0.912023\pi\)
\(858\) 0 0
\(859\) −8.50000 14.7224i −0.290016 0.502323i 0.683797 0.729672i \(-0.260327\pi\)
−0.973813 + 0.227349i \(0.926994\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.0000 1.15737 0.578687 0.815550i \(-0.303565\pi\)
0.578687 + 0.815550i \(0.303565\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) −26.0000 + 45.0333i −0.881990 + 1.52765i
\(870\) 0 0
\(871\) −12.5000 + 21.6506i −0.423546 + 0.733604i
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) −60.0000 −2.02837
\(876\) 0 0
\(877\) 6.50000 11.2583i 0.219489 0.380167i −0.735163 0.677891i \(-0.762894\pi\)
0.954652 + 0.297724i \(0.0962275\pi\)
\(878\) 0 0
\(879\) −5.00000 + 8.66025i −0.168646 + 0.292103i
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) 17.5000 + 30.3109i 0.588922 + 1.02004i 0.994374 + 0.105926i \(0.0337808\pi\)
−0.405452 + 0.914116i \(0.632886\pi\)
\(884\) 0 0
\(885\) 16.0000 0.537834
\(886\) 0 0
\(887\) 10.0000 + 17.3205i 0.335767 + 0.581566i 0.983632 0.180190i \(-0.0576711\pi\)
−0.647865 + 0.761755i \(0.724338\pi\)
\(888\) 0 0
\(889\) 50.0000 + 86.6025i 1.67695 + 2.90456i
\(890\) 0 0
\(891\) 2.00000 3.46410i 0.0670025 0.116052i
\(892\) 0 0
\(893\) −35.0000 25.9808i −1.17123 0.869413i
\(894\) 0 0
\(895\) 18.0000 31.1769i 0.601674 1.04213i
\(896\) 0 0
\(897\) −15.0000 25.9808i −0.500835 0.867472i
\(898\) 0 0
\(899\) 4.00000 + 6.92820i 0.133407 + 0.231069i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 27.5000 + 47.6314i 0.915143 + 1.58507i
\(904\) 0 0
\(905\) 36.0000 1.19668
\(906\) 0 0
\(907\) 10.0000 17.3205i 0.332045 0.575118i −0.650868 0.759191i \(-0.725595\pi\)
0.982913 + 0.184073i \(0.0589282\pi\)
\(908\) 0 0
\(909\) 3.00000 5.19615i 0.0995037 0.172345i
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) 1.00000 1.73205i 0.0330590 0.0572598i
\(916\) 0 0
\(917\) 25.0000 43.3013i 0.825573 1.42993i
\(918\) 0 0
\(919\) −55.0000 −1.81428 −0.907141 0.420826i \(-0.861740\pi\)
−0.907141 + 0.420826i \(0.861740\pi\)
\(920\) 0 0
\(921\) 6.00000 + 10.3923i 0.197707 + 0.342438i
\(922\) 0 0
\(923\) 30.0000 0.987462
\(924\) 0 0
\(925\) 3.50000 + 6.06218i 0.115079 + 0.199323i
\(926\) 0 0
\(927\) 2.50000 + 4.33013i 0.0821108 + 0.142220i
\(928\) 0 0
\(929\) 9.00000 15.5885i 0.295280 0.511441i −0.679770 0.733426i \(-0.737920\pi\)
0.975050 + 0.221985i \(0.0712536\pi\)
\(930\) 0 0
\(931\) 72.0000 31.1769i 2.35970 1.02178i
\(932\) 0 0
\(933\) 6.00000 10.3923i 0.196431 0.340229i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −11.5000 19.9186i −0.375689 0.650712i 0.614741 0.788729i \(-0.289260\pi\)
−0.990430 + 0.138017i \(0.955927\pi\)
\(938\) 0 0
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) 28.0000 + 48.4974i 0.912774 + 1.58097i 0.810128 + 0.586253i \(0.199397\pi\)
0.102646 + 0.994718i \(0.467269\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 5.00000 8.66025i 0.162650 0.281718i
\(946\) 0 0
\(947\) 15.0000 25.9808i 0.487435 0.844261i −0.512461 0.858710i \(-0.671266\pi\)
0.999896 + 0.0144491i \(0.00459946\pi\)
\(948\) 0 0
\(949\) 5.00000 0.162307
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) −30.0000 + 51.9615i −0.971795 + 1.68320i −0.281666 + 0.959512i \(0.590887\pi\)
−0.690129 + 0.723686i \(0.742446\pi\)
\(954\) 0 0
\(955\) −26.0000 + 45.0333i −0.841340 + 1.45724i
\(956\) 0 0
\(957\) 32.0000 1.03441
\(958\) 0 0
\(959\) 25.0000 + 43.3013i 0.807292 + 1.39827i
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) −9.00000 15.5885i −0.290021 0.502331i
\(964\) 0 0
\(965\) −5.00000 8.66025i −0.160956 0.278783i
\(966\) 0 0
\(967\) 11.5000 19.9186i 0.369815 0.640538i −0.619721 0.784822i \(-0.712754\pi\)
0.989536 + 0.144283i \(0.0460877\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.0000 + 19.0526i −0.353007 + 0.611426i −0.986775 0.162098i \(-0.948174\pi\)
0.633768 + 0.773523i \(0.281507\pi\)
\(972\) 0 0
\(973\) −12.5000 21.6506i −0.400732 0.694087i
\(974\) 0 0
\(975\) −2.50000 4.33013i −0.0800641 0.138675i
\(976\) 0 0
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) 0 0
\(979\) −24.0000 41.5692i −0.767043 1.32856i
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) −20.0000 + 34.6410i −0.637901 + 1.10488i 0.347992 + 0.937498i \(0.386864\pi\)
−0.985893 + 0.167379i \(0.946470\pi\)
\(984\) 0 0
\(985\) −20.0000 + 34.6410i −0.637253 + 1.10375i
\(986\) 0 0
\(987\) 50.0000 1.59152
\(988\) 0 0
\(989\) 66.0000 2.09868
\(990\) 0 0
\(991\) −12.5000 + 21.6506i −0.397076 + 0.687755i −0.993364 0.115015i \(-0.963308\pi\)
0.596288 + 0.802771i \(0.296642\pi\)
\(992\) 0 0
\(993\) 2.50000 4.33013i 0.0793351 0.137412i
\(994\) 0 0
\(995\) −6.00000 −0.190213
\(996\) 0 0
\(997\) 12.5000 + 21.6506i 0.395879 + 0.685682i 0.993213 0.116310i \(-0.0371066\pi\)
−0.597334 + 0.801993i \(0.703773\pi\)
\(998\) 0 0
\(999\) −7.00000 −0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 456.2.q.c.49.1 2
3.2 odd 2 1368.2.s.b.505.1 2
4.3 odd 2 912.2.q.c.49.1 2
12.11 even 2 2736.2.s.f.1873.1 2
19.7 even 3 inner 456.2.q.c.121.1 yes 2
19.8 odd 6 8664.2.a.h.1.1 1
19.11 even 3 8664.2.a.b.1.1 1
57.26 odd 6 1368.2.s.b.577.1 2
76.7 odd 6 912.2.q.c.577.1 2
228.83 even 6 2736.2.s.f.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.q.c.49.1 2 1.1 even 1 trivial
456.2.q.c.121.1 yes 2 19.7 even 3 inner
912.2.q.c.49.1 2 4.3 odd 2
912.2.q.c.577.1 2 76.7 odd 6
1368.2.s.b.505.1 2 3.2 odd 2
1368.2.s.b.577.1 2 57.26 odd 6
2736.2.s.f.577.1 2 228.83 even 6
2736.2.s.f.1873.1 2 12.11 even 2
8664.2.a.b.1.1 1 19.11 even 3
8664.2.a.h.1.1 1 19.8 odd 6