Properties

Label 912.2.q.c.49.1
Level $912$
Weight $2$
Character 912.49
Analytic conductor $7.282$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,2,Mod(49,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,2,0,10,0,-1,0,8,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 456)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 912.49
Dual form 912.2.q.c.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(1.00000 - 1.73205i) q^{5} +5.00000 q^{7} +(-0.500000 - 0.866025i) q^{9} +4.00000 q^{11} +(-2.50000 - 4.33013i) q^{13} +(1.00000 + 1.73205i) q^{15} +(-4.00000 + 1.73205i) q^{19} +(-2.50000 + 4.33013i) q^{21} +(-3.00000 - 5.19615i) q^{23} +(0.500000 + 0.866025i) q^{25} +1.00000 q^{27} +(-4.00000 - 6.92820i) q^{29} +1.00000 q^{31} +(-2.00000 + 3.46410i) q^{33} +(5.00000 - 8.66025i) q^{35} +7.00000 q^{37} +5.00000 q^{39} +(-5.50000 + 9.52628i) q^{43} -2.00000 q^{45} +(5.00000 + 8.66025i) q^{47} +18.0000 q^{49} +(-3.00000 - 5.19615i) q^{53} +(4.00000 - 6.92820i) q^{55} +(0.500000 - 4.33013i) q^{57} +(4.00000 - 6.92820i) q^{59} +(0.500000 + 0.866025i) q^{61} +(-2.50000 - 4.33013i) q^{63} -10.0000 q^{65} +(2.50000 + 4.33013i) q^{67} +6.00000 q^{69} +(3.00000 - 5.19615i) q^{71} +(-0.500000 + 0.866025i) q^{73} -1.00000 q^{75} +20.0000 q^{77} +(-6.50000 + 11.2583i) q^{79} +(-0.500000 + 0.866025i) q^{81} +4.00000 q^{83} +8.00000 q^{87} +(6.00000 + 10.3923i) q^{89} +(-12.5000 - 21.6506i) q^{91} +(-0.500000 + 0.866025i) q^{93} +(-1.00000 + 8.66025i) q^{95} +(-1.00000 + 1.73205i) q^{97} +(-2.00000 - 3.46410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 2 q^{5} + 10 q^{7} - q^{9} + 8 q^{11} - 5 q^{13} + 2 q^{15} - 8 q^{19} - 5 q^{21} - 6 q^{23} + q^{25} + 2 q^{27} - 8 q^{29} + 2 q^{31} - 4 q^{33} + 10 q^{35} + 14 q^{37} + 10 q^{39} - 11 q^{43}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 1.00000 1.73205i 0.447214 0.774597i −0.550990 0.834512i \(-0.685750\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) 0 0
\(7\) 5.00000 1.88982 0.944911 0.327327i \(-0.106148\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −2.50000 4.33013i −0.693375 1.20096i −0.970725 0.240192i \(-0.922790\pi\)
0.277350 0.960769i \(-0.410544\pi\)
\(14\) 0 0
\(15\) 1.00000 + 1.73205i 0.258199 + 0.447214i
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −4.00000 + 1.73205i −0.917663 + 0.397360i
\(20\) 0 0
\(21\) −2.50000 + 4.33013i −0.545545 + 0.944911i
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −4.00000 6.92820i −0.742781 1.28654i −0.951224 0.308500i \(-0.900173\pi\)
0.208443 0.978035i \(-0.433160\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) −2.00000 + 3.46410i −0.348155 + 0.603023i
\(34\) 0 0
\(35\) 5.00000 8.66025i 0.845154 1.46385i
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) 5.00000 0.800641
\(40\) 0 0
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) −5.50000 + 9.52628i −0.838742 + 1.45274i 0.0522047 + 0.998636i \(0.483375\pi\)
−0.890947 + 0.454108i \(0.849958\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 5.00000 + 8.66025i 0.729325 + 1.26323i 0.957169 + 0.289530i \(0.0934991\pi\)
−0.227844 + 0.973698i \(0.573168\pi\)
\(48\) 0 0
\(49\) 18.0000 2.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 5.19615i −0.412082 0.713746i 0.583036 0.812447i \(-0.301865\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(54\) 0 0
\(55\) 4.00000 6.92820i 0.539360 0.934199i
\(56\) 0 0
\(57\) 0.500000 4.33013i 0.0662266 0.573539i
\(58\) 0 0
\(59\) 4.00000 6.92820i 0.520756 0.901975i −0.478953 0.877841i \(-0.658984\pi\)
0.999709 0.0241347i \(-0.00768307\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) −2.50000 4.33013i −0.314970 0.545545i
\(64\) 0 0
\(65\) −10.0000 −1.24035
\(66\) 0 0
\(67\) 2.50000 + 4.33013i 0.305424 + 0.529009i 0.977356 0.211604i \(-0.0678686\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) −0.500000 + 0.866025i −0.0585206 + 0.101361i −0.893801 0.448463i \(-0.851972\pi\)
0.835281 + 0.549823i \(0.185305\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 20.0000 2.27921
\(78\) 0 0
\(79\) −6.50000 + 11.2583i −0.731307 + 1.26666i 0.225018 + 0.974355i \(0.427756\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.00000 0.857690
\(88\) 0 0
\(89\) 6.00000 + 10.3923i 0.635999 + 1.10158i 0.986303 + 0.164946i \(0.0527450\pi\)
−0.350304 + 0.936636i \(0.613922\pi\)
\(90\) 0 0
\(91\) −12.5000 21.6506i −1.31036 2.26960i
\(92\) 0 0
\(93\) −0.500000 + 0.866025i −0.0518476 + 0.0898027i
\(94\) 0 0
\(95\) −1.00000 + 8.66025i −0.102598 + 0.888523i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0 0
\(99\) −2.00000 3.46410i −0.201008 0.348155i
\(100\) 0 0
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) 5.00000 0.492665 0.246332 0.969185i \(-0.420775\pi\)
0.246332 + 0.969185i \(0.420775\pi\)
\(104\) 0 0
\(105\) 5.00000 + 8.66025i 0.487950 + 0.845154i
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) −3.50000 + 6.06218i −0.332205 + 0.575396i
\(112\) 0 0
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) −12.0000 −1.11901
\(116\) 0 0
\(117\) −2.50000 + 4.33013i −0.231125 + 0.400320i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 10.0000 + 17.3205i 0.887357 + 1.53695i 0.842989 + 0.537931i \(0.180794\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0 0
\(129\) −5.50000 9.52628i −0.484248 0.838742i
\(130\) 0 0
\(131\) 5.00000 8.66025i 0.436852 0.756650i −0.560593 0.828092i \(-0.689427\pi\)
0.997445 + 0.0714417i \(0.0227600\pi\)
\(132\) 0 0
\(133\) −20.0000 + 8.66025i −1.73422 + 0.750939i
\(134\) 0 0
\(135\) 1.00000 1.73205i 0.0860663 0.149071i
\(136\) 0 0
\(137\) −5.00000 8.66025i −0.427179 0.739895i 0.569442 0.822031i \(-0.307159\pi\)
−0.996621 + 0.0821359i \(0.973826\pi\)
\(138\) 0 0
\(139\) −2.50000 4.33013i −0.212047 0.367277i 0.740308 0.672268i \(-0.234680\pi\)
−0.952355 + 0.304991i \(0.901346\pi\)
\(140\) 0 0
\(141\) −10.0000 −0.842152
\(142\) 0 0
\(143\) −10.0000 17.3205i −0.836242 1.44841i
\(144\) 0 0
\(145\) −16.0000 −1.32873
\(146\) 0 0
\(147\) −9.00000 + 15.5885i −0.742307 + 1.28571i
\(148\) 0 0
\(149\) −4.00000 + 6.92820i −0.327693 + 0.567581i −0.982054 0.188602i \(-0.939604\pi\)
0.654361 + 0.756182i \(0.272938\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.00000 1.73205i 0.0803219 0.139122i
\(156\) 0 0
\(157\) 6.50000 11.2583i 0.518756 0.898513i −0.481006 0.876717i \(-0.659728\pi\)
0.999762 0.0217953i \(-0.00693820\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −15.0000 25.9808i −1.18217 2.04757i
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 0 0
\(165\) 4.00000 + 6.92820i 0.311400 + 0.539360i
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) 3.50000 + 2.59808i 0.267652 + 0.198680i
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 2.50000 + 4.33013i 0.188982 + 0.327327i
\(176\) 0 0
\(177\) 4.00000 + 6.92820i 0.300658 + 0.520756i
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 9.00000 + 15.5885i 0.668965 + 1.15868i 0.978194 + 0.207693i \(0.0665956\pi\)
−0.309229 + 0.950988i \(0.600071\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) 7.00000 12.1244i 0.514650 0.891400i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) 26.0000 1.88129 0.940647 0.339387i \(-0.110219\pi\)
0.940647 + 0.339387i \(0.110219\pi\)
\(192\) 0 0
\(193\) 2.50000 4.33013i 0.179954 0.311689i −0.761911 0.647682i \(-0.775738\pi\)
0.941865 + 0.335993i \(0.109072\pi\)
\(194\) 0 0
\(195\) 5.00000 8.66025i 0.358057 0.620174i
\(196\) 0 0
\(197\) −20.0000 −1.42494 −0.712470 0.701702i \(-0.752424\pi\)
−0.712470 + 0.701702i \(0.752424\pi\)
\(198\) 0 0
\(199\) 1.50000 + 2.59808i 0.106332 + 0.184173i 0.914282 0.405079i \(-0.132756\pi\)
−0.807950 + 0.589252i \(0.799423\pi\)
\(200\) 0 0
\(201\) −5.00000 −0.352673
\(202\) 0 0
\(203\) −20.0000 34.6410i −1.40372 2.43132i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.00000 + 5.19615i −0.208514 + 0.361158i
\(208\) 0 0
\(209\) −16.0000 + 6.92820i −1.10674 + 0.479234i
\(210\) 0 0
\(211\) −10.5000 + 18.1865i −0.722850 + 1.25201i 0.237003 + 0.971509i \(0.423835\pi\)
−0.959853 + 0.280504i \(0.909498\pi\)
\(212\) 0 0
\(213\) 3.00000 + 5.19615i 0.205557 + 0.356034i
\(214\) 0 0
\(215\) 11.0000 + 19.0526i 0.750194 + 1.29937i
\(216\) 0 0
\(217\) 5.00000 0.339422
\(218\) 0 0
\(219\) −0.500000 0.866025i −0.0337869 0.0585206i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.500000 + 0.866025i −0.0334825 + 0.0579934i −0.882281 0.470723i \(-0.843993\pi\)
0.848799 + 0.528716i \(0.177326\pi\)
\(224\) 0 0
\(225\) 0.500000 0.866025i 0.0333333 0.0577350i
\(226\) 0 0
\(227\) −2.00000 −0.132745 −0.0663723 0.997795i \(-0.521143\pi\)
−0.0663723 + 0.997795i \(0.521143\pi\)
\(228\) 0 0
\(229\) −27.0000 −1.78421 −0.892105 0.451828i \(-0.850772\pi\)
−0.892105 + 0.451828i \(0.850772\pi\)
\(230\) 0 0
\(231\) −10.0000 + 17.3205i −0.657952 + 1.13961i
\(232\) 0 0
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) 20.0000 1.30466
\(236\) 0 0
\(237\) −6.50000 11.2583i −0.422220 0.731307i
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 5.50000 + 9.52628i 0.354286 + 0.613642i 0.986996 0.160748i \(-0.0513906\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 18.0000 31.1769i 1.14998 1.99182i
\(246\) 0 0
\(247\) 17.5000 + 12.9904i 1.11350 + 0.826558i
\(248\) 0 0
\(249\) −2.00000 + 3.46410i −0.126745 + 0.219529i
\(250\) 0 0
\(251\) 13.0000 + 22.5167i 0.820553 + 1.42124i 0.905271 + 0.424834i \(0.139668\pi\)
−0.0847185 + 0.996405i \(0.526999\pi\)
\(252\) 0 0
\(253\) −12.0000 20.7846i −0.754434 1.30672i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.00000 8.66025i −0.311891 0.540212i 0.666880 0.745165i \(-0.267629\pi\)
−0.978772 + 0.204953i \(0.934296\pi\)
\(258\) 0 0
\(259\) 35.0000 2.17479
\(260\) 0 0
\(261\) −4.00000 + 6.92820i −0.247594 + 0.428845i
\(262\) 0 0
\(263\) −7.00000 + 12.1244i −0.431638 + 0.747620i −0.997015 0.0772134i \(-0.975398\pi\)
0.565376 + 0.824833i \(0.308731\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) 6.00000 10.3923i 0.365826 0.633630i −0.623082 0.782157i \(-0.714120\pi\)
0.988908 + 0.148527i \(0.0474530\pi\)
\(270\) 0 0
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 0 0
\(273\) 25.0000 1.51307
\(274\) 0 0
\(275\) 2.00000 + 3.46410i 0.120605 + 0.208893i
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −0.500000 0.866025i −0.0299342 0.0518476i
\(280\) 0 0
\(281\) 5.00000 + 8.66025i 0.298275 + 0.516627i 0.975741 0.218926i \(-0.0702554\pi\)
−0.677466 + 0.735554i \(0.736922\pi\)
\(282\) 0 0
\(283\) 10.0000 17.3205i 0.594438 1.02960i −0.399188 0.916869i \(-0.630708\pi\)
0.993626 0.112728i \(-0.0359589\pi\)
\(284\) 0 0
\(285\) −7.00000 5.19615i −0.414644 0.307794i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) −1.00000 1.73205i −0.0586210 0.101535i
\(292\) 0 0
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) −8.00000 13.8564i −0.465778 0.806751i
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) −15.0000 + 25.9808i −0.867472 + 1.50251i
\(300\) 0 0
\(301\) −27.5000 + 47.6314i −1.58507 + 2.74543i
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) 6.00000 10.3923i 0.342438 0.593120i −0.642447 0.766330i \(-0.722081\pi\)
0.984885 + 0.173210i \(0.0554140\pi\)
\(308\) 0 0
\(309\) −2.50000 + 4.33013i −0.142220 + 0.246332i
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −5.00000 8.66025i −0.282617 0.489506i 0.689412 0.724370i \(-0.257869\pi\)
−0.972028 + 0.234863i \(0.924536\pi\)
\(314\) 0 0
\(315\) −10.0000 −0.563436
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) −16.0000 27.7128i −0.895828 1.55162i
\(320\) 0 0
\(321\) 9.00000 15.5885i 0.502331 0.870063i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.50000 4.33013i 0.138675 0.240192i
\(326\) 0 0
\(327\) −1.00000 1.73205i −0.0553001 0.0957826i
\(328\) 0 0
\(329\) 25.0000 + 43.3013i 1.37829 + 2.38728i
\(330\) 0 0
\(331\) −5.00000 −0.274825 −0.137412 0.990514i \(-0.543879\pi\)
−0.137412 + 0.990514i \(0.543879\pi\)
\(332\) 0 0
\(333\) −3.50000 6.06218i −0.191799 0.332205i
\(334\) 0 0
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) 0 0
\(339\) 2.00000 3.46410i 0.108625 0.188144i
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) 55.0000 2.96972
\(344\) 0 0
\(345\) 6.00000 10.3923i 0.323029 0.559503i
\(346\) 0 0
\(347\) −15.0000 + 25.9808i −0.805242 + 1.39472i 0.110885 + 0.993833i \(0.464631\pi\)
−0.916127 + 0.400887i \(0.868702\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) 0 0
\(351\) −2.50000 4.33013i −0.133440 0.231125i
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) −6.00000 10.3923i −0.318447 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.0000 17.3205i 0.527780 0.914141i −0.471696 0.881761i \(-0.656358\pi\)
0.999476 0.0323801i \(-0.0103087\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 0 0
\(363\) −2.50000 + 4.33013i −0.131216 + 0.227273i
\(364\) 0 0
\(365\) 1.00000 + 1.73205i 0.0523424 + 0.0906597i
\(366\) 0 0
\(367\) −7.50000 12.9904i −0.391497 0.678092i 0.601150 0.799136i \(-0.294709\pi\)
−0.992647 + 0.121044i \(0.961376\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.0000 25.9808i −0.778761 1.34885i
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) −6.00000 + 10.3923i −0.309839 + 0.536656i
\(376\) 0 0
\(377\) −20.0000 + 34.6410i −1.03005 + 1.78410i
\(378\) 0 0
\(379\) −13.0000 −0.667765 −0.333883 0.942615i \(-0.608359\pi\)
−0.333883 + 0.942615i \(0.608359\pi\)
\(380\) 0 0
\(381\) −20.0000 −1.02463
\(382\) 0 0
\(383\) 10.0000 17.3205i 0.510976 0.885037i −0.488943 0.872316i \(-0.662617\pi\)
0.999919 0.0127209i \(-0.00404928\pi\)
\(384\) 0 0
\(385\) 20.0000 34.6410i 1.01929 1.76547i
\(386\) 0 0
\(387\) 11.0000 0.559161
\(388\) 0 0
\(389\) 11.0000 + 19.0526i 0.557722 + 0.966003i 0.997686 + 0.0679877i \(0.0216579\pi\)
−0.439964 + 0.898015i \(0.645009\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 5.00000 + 8.66025i 0.252217 + 0.436852i
\(394\) 0 0
\(395\) 13.0000 + 22.5167i 0.654101 + 1.13294i
\(396\) 0 0
\(397\) 12.5000 21.6506i 0.627357 1.08661i −0.360723 0.932673i \(-0.617470\pi\)
0.988080 0.153941i \(-0.0491966\pi\)
\(398\) 0 0
\(399\) 2.50000 21.6506i 0.125157 1.08389i
\(400\) 0 0
\(401\) 12.0000 20.7846i 0.599251 1.03793i −0.393680 0.919247i \(-0.628798\pi\)
0.992932 0.118686i \(-0.0378683\pi\)
\(402\) 0 0
\(403\) −2.50000 4.33013i −0.124534 0.215699i
\(404\) 0 0
\(405\) 1.00000 + 1.73205i 0.0496904 + 0.0860663i
\(406\) 0 0
\(407\) 28.0000 1.38791
\(408\) 0 0
\(409\) −11.0000 19.0526i −0.543915 0.942088i −0.998674 0.0514740i \(-0.983608\pi\)
0.454759 0.890614i \(-0.349725\pi\)
\(410\) 0 0
\(411\) 10.0000 0.493264
\(412\) 0 0
\(413\) 20.0000 34.6410i 0.984136 1.70457i
\(414\) 0 0
\(415\) 4.00000 6.92820i 0.196352 0.340092i
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −3.00000 + 5.19615i −0.146211 + 0.253245i −0.929824 0.368004i \(-0.880041\pi\)
0.783613 + 0.621249i \(0.213375\pi\)
\(422\) 0 0
\(423\) 5.00000 8.66025i 0.243108 0.421076i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.50000 + 4.33013i 0.120983 + 0.209550i
\(428\) 0 0
\(429\) 20.0000 0.965609
\(430\) 0 0
\(431\) 3.00000 + 5.19615i 0.144505 + 0.250290i 0.929188 0.369607i \(-0.120508\pi\)
−0.784683 + 0.619897i \(0.787174\pi\)
\(432\) 0 0
\(433\) 2.50000 + 4.33013i 0.120142 + 0.208093i 0.919824 0.392332i \(-0.128332\pi\)
−0.799681 + 0.600425i \(0.794998\pi\)
\(434\) 0 0
\(435\) 8.00000 13.8564i 0.383571 0.664364i
\(436\) 0 0
\(437\) 21.0000 + 15.5885i 1.00457 + 0.745697i
\(438\) 0 0
\(439\) 6.50000 11.2583i 0.310228 0.537331i −0.668184 0.743996i \(-0.732928\pi\)
0.978412 + 0.206666i \(0.0662612\pi\)
\(440\) 0 0
\(441\) −9.00000 15.5885i −0.428571 0.742307i
\(442\) 0 0
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) 24.0000 1.13771
\(446\) 0 0
\(447\) −4.00000 6.92820i −0.189194 0.327693i
\(448\) 0 0
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 8.00000 13.8564i 0.375873 0.651031i
\(454\) 0 0
\(455\) −50.0000 −2.34404
\(456\) 0 0
\(457\) −15.0000 −0.701670 −0.350835 0.936437i \(-0.614102\pi\)
−0.350835 + 0.936437i \(0.614102\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.00000 13.8564i 0.372597 0.645357i −0.617367 0.786675i \(-0.711801\pi\)
0.989964 + 0.141318i \(0.0451340\pi\)
\(462\) 0 0
\(463\) −25.0000 −1.16185 −0.580924 0.813958i \(-0.697309\pi\)
−0.580924 + 0.813958i \(0.697309\pi\)
\(464\) 0 0
\(465\) 1.00000 + 1.73205i 0.0463739 + 0.0803219i
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 12.5000 + 21.6506i 0.577196 + 0.999733i
\(470\) 0 0
\(471\) 6.50000 + 11.2583i 0.299504 + 0.518756i
\(472\) 0 0
\(473\) −22.0000 + 38.1051i −1.01156 + 1.75208i
\(474\) 0 0
\(475\) −3.50000 2.59808i −0.160591 0.119208i
\(476\) 0 0
\(477\) −3.00000 + 5.19615i −0.137361 + 0.237915i
\(478\) 0 0
\(479\) −9.00000 15.5885i −0.411220 0.712255i 0.583803 0.811895i \(-0.301564\pi\)
−0.995023 + 0.0996406i \(0.968231\pi\)
\(480\) 0 0
\(481\) −17.5000 30.3109i −0.797931 1.38206i
\(482\) 0 0
\(483\) 30.0000 1.36505
\(484\) 0 0
\(485\) 2.00000 + 3.46410i 0.0908153 + 0.157297i
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) 0.500000 0.866025i 0.0226108 0.0391630i
\(490\) 0 0
\(491\) −13.0000 + 22.5167i −0.586682 + 1.01616i 0.407982 + 0.912990i \(0.366233\pi\)
−0.994663 + 0.103173i \(0.967101\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −8.00000 −0.359573
\(496\) 0 0
\(497\) 15.0000 25.9808i 0.672842 1.16540i
\(498\) 0 0
\(499\) −2.50000 + 4.33013i −0.111915 + 0.193843i −0.916542 0.399937i \(-0.869032\pi\)
0.804627 + 0.593780i \(0.202365\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) −6.00000 10.3923i −0.266469 0.461538i
\(508\) 0 0
\(509\) 15.0000 + 25.9808i 0.664863 + 1.15158i 0.979322 + 0.202306i \(0.0648436\pi\)
−0.314459 + 0.949271i \(0.601823\pi\)
\(510\) 0 0
\(511\) −2.50000 + 4.33013i −0.110593 + 0.191554i
\(512\) 0 0
\(513\) −4.00000 + 1.73205i −0.176604 + 0.0764719i
\(514\) 0 0
\(515\) 5.00000 8.66025i 0.220326 0.381616i
\(516\) 0 0
\(517\) 20.0000 + 34.6410i 0.879599 + 1.52351i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.0000 −0.700973 −0.350486 0.936568i \(-0.613984\pi\)
−0.350486 + 0.936568i \(0.613984\pi\)
\(522\) 0 0
\(523\) −4.50000 7.79423i −0.196771 0.340818i 0.750708 0.660634i \(-0.229712\pi\)
−0.947480 + 0.319816i \(0.896379\pi\)
\(524\) 0 0
\(525\) −5.00000 −0.218218
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −18.0000 + 31.1769i −0.778208 + 1.34790i
\(536\) 0 0
\(537\) 9.00000 15.5885i 0.388379 0.672692i
\(538\) 0 0
\(539\) 72.0000 3.10126
\(540\) 0 0
\(541\) −0.500000 0.866025i −0.0214967 0.0372333i 0.855077 0.518501i \(-0.173510\pi\)
−0.876574 + 0.481268i \(0.840176\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) 2.00000 + 3.46410i 0.0856706 + 0.148386i
\(546\) 0 0
\(547\) 8.50000 + 14.7224i 0.363434 + 0.629486i 0.988524 0.151067i \(-0.0482710\pi\)
−0.625090 + 0.780553i \(0.714938\pi\)
\(548\) 0 0
\(549\) 0.500000 0.866025i 0.0213395 0.0369611i
\(550\) 0 0
\(551\) 28.0000 + 20.7846i 1.19284 + 0.885454i
\(552\) 0 0
\(553\) −32.5000 + 56.2917i −1.38204 + 2.39376i
\(554\) 0 0
\(555\) 7.00000 + 12.1244i 0.297133 + 0.514650i
\(556\) 0 0
\(557\) −21.0000 36.3731i −0.889799 1.54118i −0.840113 0.542411i \(-0.817511\pi\)
−0.0496855 0.998765i \(-0.515822\pi\)
\(558\) 0 0
\(559\) 55.0000 2.32625
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.0000 −0.590030 −0.295015 0.955493i \(-0.595325\pi\)
−0.295015 + 0.955493i \(0.595325\pi\)
\(564\) 0 0
\(565\) −4.00000 + 6.92820i −0.168281 + 0.291472i
\(566\) 0 0
\(567\) −2.50000 + 4.33013i −0.104990 + 0.181848i
\(568\) 0 0
\(569\) 12.0000 0.503066 0.251533 0.967849i \(-0.419065\pi\)
0.251533 + 0.967849i \(0.419065\pi\)
\(570\) 0 0
\(571\) −11.0000 −0.460336 −0.230168 0.973151i \(-0.573928\pi\)
−0.230168 + 0.973151i \(0.573928\pi\)
\(572\) 0 0
\(573\) −13.0000 + 22.5167i −0.543083 + 0.940647i
\(574\) 0 0
\(575\) 3.00000 5.19615i 0.125109 0.216695i
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) 2.50000 + 4.33013i 0.103896 + 0.179954i
\(580\) 0 0
\(581\) 20.0000 0.829740
\(582\) 0 0
\(583\) −12.0000 20.7846i −0.496989 0.860811i
\(584\) 0 0
\(585\) 5.00000 + 8.66025i 0.206725 + 0.358057i
\(586\) 0 0
\(587\) 10.0000 17.3205i 0.412744 0.714894i −0.582445 0.812870i \(-0.697904\pi\)
0.995189 + 0.0979766i \(0.0312370\pi\)
\(588\) 0 0
\(589\) −4.00000 + 1.73205i −0.164817 + 0.0713679i
\(590\) 0 0
\(591\) 10.0000 17.3205i 0.411345 0.712470i
\(592\) 0 0
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) −10.0000 17.3205i −0.408589 0.707697i 0.586143 0.810208i \(-0.300646\pi\)
−0.994732 + 0.102511i \(0.967312\pi\)
\(600\) 0 0
\(601\) 31.0000 1.26452 0.632258 0.774758i \(-0.282128\pi\)
0.632258 + 0.774758i \(0.282128\pi\)
\(602\) 0 0
\(603\) 2.50000 4.33013i 0.101808 0.176336i
\(604\) 0 0
\(605\) 5.00000 8.66025i 0.203279 0.352089i
\(606\) 0 0
\(607\) 5.00000 0.202944 0.101472 0.994838i \(-0.467645\pi\)
0.101472 + 0.994838i \(0.467645\pi\)
\(608\) 0 0
\(609\) 40.0000 1.62088
\(610\) 0 0
\(611\) 25.0000 43.3013i 1.01139 1.75178i
\(612\) 0 0
\(613\) 23.0000 39.8372i 0.928961 1.60901i 0.143898 0.989593i \(-0.454036\pi\)
0.785063 0.619416i \(-0.212630\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −24.0000 41.5692i −0.966204 1.67351i −0.706346 0.707867i \(-0.749658\pi\)
−0.259858 0.965647i \(-0.583676\pi\)
\(618\) 0 0
\(619\) 45.0000 1.80870 0.904351 0.426789i \(-0.140355\pi\)
0.904351 + 0.426789i \(0.140355\pi\)
\(620\) 0 0
\(621\) −3.00000 5.19615i −0.120386 0.208514i
\(622\) 0 0
\(623\) 30.0000 + 51.9615i 1.20192 + 2.08179i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 0 0
\(627\) 2.00000 17.3205i 0.0798723 0.691714i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −14.5000 25.1147i −0.577236 0.999802i −0.995795 0.0916122i \(-0.970798\pi\)
0.418559 0.908190i \(-0.362535\pi\)
\(632\) 0 0
\(633\) −10.5000 18.1865i −0.417338 0.722850i
\(634\) 0 0
\(635\) 40.0000 1.58735
\(636\) 0 0
\(637\) −45.0000 77.9423i −1.78296 3.08819i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −23.0000 + 39.8372i −0.908445 + 1.57347i −0.0922210 + 0.995739i \(0.529397\pi\)
−0.816224 + 0.577735i \(0.803937\pi\)
\(642\) 0 0
\(643\) −2.50000 + 4.33013i −0.0985904 + 0.170764i −0.911101 0.412182i \(-0.864767\pi\)
0.812511 + 0.582946i \(0.198100\pi\)
\(644\) 0 0
\(645\) −22.0000 −0.866249
\(646\) 0 0
\(647\) −40.0000 −1.57256 −0.786281 0.617869i \(-0.787996\pi\)
−0.786281 + 0.617869i \(0.787996\pi\)
\(648\) 0 0
\(649\) 16.0000 27.7128i 0.628055 1.08782i
\(650\) 0 0
\(651\) −2.50000 + 4.33013i −0.0979827 + 0.169711i
\(652\) 0 0
\(653\) 34.0000 1.33052 0.665261 0.746611i \(-0.268320\pi\)
0.665261 + 0.746611i \(0.268320\pi\)
\(654\) 0 0
\(655\) −10.0000 17.3205i −0.390732 0.676768i
\(656\) 0 0
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) 22.0000 + 38.1051i 0.856998 + 1.48436i 0.874779 + 0.484523i \(0.161007\pi\)
−0.0177803 + 0.999842i \(0.505660\pi\)
\(660\) 0 0
\(661\) 7.00000 + 12.1244i 0.272268 + 0.471583i 0.969442 0.245319i \(-0.0788928\pi\)
−0.697174 + 0.716902i \(0.745559\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.00000 + 43.3013i −0.193892 + 1.67915i
\(666\) 0 0
\(667\) −24.0000 + 41.5692i −0.929284 + 1.60957i
\(668\) 0 0
\(669\) −0.500000 0.866025i −0.0193311 0.0334825i
\(670\) 0 0
\(671\) 2.00000 + 3.46410i 0.0772091 + 0.133730i
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) 0 0
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) −5.00000 + 8.66025i −0.191882 + 0.332350i
\(680\) 0 0
\(681\) 1.00000 1.73205i 0.0383201 0.0663723i
\(682\) 0 0
\(683\) −10.0000 −0.382639 −0.191320 0.981528i \(-0.561277\pi\)
−0.191320 + 0.981528i \(0.561277\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 13.5000 23.3827i 0.515057 0.892105i
\(688\) 0 0
\(689\) −15.0000 + 25.9808i −0.571454 + 0.989788i
\(690\) 0 0
\(691\) 44.0000 1.67384 0.836919 0.547326i \(-0.184354\pi\)
0.836919 + 0.547326i \(0.184354\pi\)
\(692\) 0 0
\(693\) −10.0000 17.3205i −0.379869 0.657952i
\(694\) 0 0
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −3.00000 5.19615i −0.113470 0.196537i
\(700\) 0 0
\(701\) 1.00000 1.73205i 0.0377695 0.0654187i −0.846523 0.532353i \(-0.821308\pi\)
0.884292 + 0.466934i \(0.154641\pi\)
\(702\) 0 0
\(703\) −28.0000 + 12.1244i −1.05604 + 0.457279i
\(704\) 0 0
\(705\) −10.0000 + 17.3205i −0.376622 + 0.652328i
\(706\) 0 0
\(707\) 15.0000 + 25.9808i 0.564133 + 0.977107i
\(708\) 0 0
\(709\) 13.5000 + 23.3827i 0.507003 + 0.878155i 0.999967 + 0.00810550i \(0.00258009\pi\)
−0.492964 + 0.870050i \(0.664087\pi\)
\(710\) 0 0
\(711\) 13.0000 0.487538
\(712\) 0 0
\(713\) −3.00000 5.19615i −0.112351 0.194597i
\(714\) 0 0
\(715\) −40.0000 −1.49592
\(716\) 0 0
\(717\) 1.00000 1.73205i 0.0373457 0.0646846i
\(718\) 0 0
\(719\) −21.0000 + 36.3731i −0.783168 + 1.35649i 0.146920 + 0.989148i \(0.453064\pi\)
−0.930087 + 0.367338i \(0.880269\pi\)
\(720\) 0 0
\(721\) 25.0000 0.931049
\(722\) 0 0
\(723\) −11.0000 −0.409094
\(724\) 0 0
\(725\) 4.00000 6.92820i 0.148556 0.257307i
\(726\) 0 0
\(727\) −18.5000 + 32.0429i −0.686127 + 1.18841i 0.286954 + 0.957944i \(0.407357\pi\)
−0.973081 + 0.230463i \(0.925976\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 0 0
\(735\) 18.0000 + 31.1769i 0.663940 + 1.14998i
\(736\) 0 0
\(737\) 10.0000 + 17.3205i 0.368355 + 0.638009i
\(738\) 0 0
\(739\) −1.50000 + 2.59808i −0.0551784 + 0.0955718i −0.892295 0.451452i \(-0.850906\pi\)
0.837117 + 0.547024i \(0.184239\pi\)
\(740\) 0 0
\(741\) −20.0000 + 8.66025i −0.734718 + 0.318142i
\(742\) 0 0
\(743\) 12.0000 20.7846i 0.440237 0.762513i −0.557470 0.830197i \(-0.688228\pi\)
0.997707 + 0.0676840i \(0.0215610\pi\)
\(744\) 0 0
\(745\) 8.00000 + 13.8564i 0.293097 + 0.507659i
\(746\) 0 0
\(747\) −2.00000 3.46410i −0.0731762 0.126745i
\(748\) 0 0
\(749\) −90.0000 −3.28853
\(750\) 0 0
\(751\) −14.5000 25.1147i −0.529113 0.916450i −0.999424 0.0339490i \(-0.989192\pi\)
0.470311 0.882501i \(-0.344142\pi\)
\(752\) 0 0
\(753\) −26.0000 −0.947493
\(754\) 0 0
\(755\) −16.0000 + 27.7128i −0.582300 + 1.00857i
\(756\) 0 0
\(757\) 7.50000 12.9904i 0.272592 0.472143i −0.696933 0.717137i \(-0.745452\pi\)
0.969525 + 0.244993i \(0.0787857\pi\)
\(758\) 0 0
\(759\) 24.0000 0.871145
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) −5.00000 + 8.66025i −0.181012 + 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −40.0000 −1.44432
\(768\) 0 0
\(769\) −21.5000 37.2391i −0.775310 1.34288i −0.934620 0.355647i \(-0.884260\pi\)
0.159310 0.987229i \(-0.449073\pi\)
\(770\) 0 0
\(771\) 10.0000 0.360141
\(772\) 0 0
\(773\) 15.0000 + 25.9808i 0.539513 + 0.934463i 0.998930 + 0.0462427i \(0.0147248\pi\)
−0.459418 + 0.888220i \(0.651942\pi\)
\(774\) 0 0
\(775\) 0.500000 + 0.866025i 0.0179605 + 0.0311086i
\(776\) 0 0
\(777\) −17.5000 + 30.3109i −0.627809 + 1.08740i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 12.0000 20.7846i 0.429394 0.743732i
\(782\) 0 0
\(783\) −4.00000 6.92820i −0.142948 0.247594i
\(784\) 0 0
\(785\) −13.0000 22.5167i −0.463990 0.803654i
\(786\) 0 0
\(787\) 5.00000 0.178231 0.0891154 0.996021i \(-0.471596\pi\)
0.0891154 + 0.996021i \(0.471596\pi\)
\(788\) 0 0
\(789\) −7.00000 12.1244i −0.249207 0.431638i
\(790\) 0 0
\(791\) −20.0000 −0.711118
\(792\) 0 0
\(793\) 2.50000 4.33013i 0.0887776 0.153767i
\(794\) 0 0
\(795\) 6.00000 10.3923i 0.212798 0.368577i
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 10.3923i 0.212000 0.367194i
\(802\) 0 0
\(803\) −2.00000 + 3.46410i −0.0705785 + 0.122245i
\(804\) 0 0
\(805\) −60.0000 −2.11472
\(806\) 0 0
\(807\) 6.00000 + 10.3923i 0.211210 + 0.365826i
\(808\) 0 0
\(809\) −2.00000 −0.0703163 −0.0351581 0.999382i \(-0.511193\pi\)
−0.0351581 + 0.999382i \(0.511193\pi\)
\(810\) 0 0
\(811\) −8.00000 13.8564i −0.280918 0.486564i 0.690693 0.723148i \(-0.257306\pi\)
−0.971611 + 0.236584i \(0.923972\pi\)
\(812\) 0 0
\(813\) −8.00000 13.8564i −0.280572 0.485965i
\(814\) 0 0
\(815\) −1.00000 + 1.73205i −0.0350285 + 0.0606711i
\(816\) 0 0
\(817\) 5.50000 47.6314i 0.192421 1.66641i
\(818\) 0 0
\(819\) −12.5000 + 21.6506i −0.436785 + 0.756534i
\(820\) 0 0
\(821\) 12.0000 + 20.7846i 0.418803 + 0.725388i 0.995819 0.0913446i \(-0.0291165\pi\)
−0.577016 + 0.816733i \(0.695783\pi\)
\(822\) 0 0
\(823\) −20.0000 34.6410i −0.697156 1.20751i −0.969448 0.245295i \(-0.921115\pi\)
0.272292 0.962215i \(-0.412218\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 10.0000 + 17.3205i 0.347734 + 0.602293i 0.985847 0.167650i \(-0.0536179\pi\)
−0.638112 + 0.769943i \(0.720285\pi\)
\(828\) 0 0
\(829\) 45.0000 1.56291 0.781457 0.623959i \(-0.214477\pi\)
0.781457 + 0.623959i \(0.214477\pi\)
\(830\) 0 0
\(831\) 5.00000 8.66025i 0.173448 0.300421i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) −15.0000 + 25.9808i −0.517858 + 0.896956i 0.481927 + 0.876211i \(0.339937\pi\)
−0.999785 + 0.0207443i \(0.993396\pi\)
\(840\) 0 0
\(841\) −17.5000 + 30.3109i −0.603448 + 1.04520i
\(842\) 0 0
\(843\) −10.0000 −0.344418
\(844\) 0 0
\(845\) 12.0000 + 20.7846i 0.412813 + 0.715012i
\(846\) 0 0
\(847\) 25.0000 0.859010
\(848\) 0 0
\(849\) 10.0000 + 17.3205i 0.343199 + 0.594438i
\(850\) 0 0
\(851\) −21.0000 36.3731i −0.719871 1.24685i
\(852\) 0 0
\(853\) 0.500000 0.866025i 0.0171197 0.0296521i −0.857339 0.514753i \(-0.827884\pi\)
0.874458 + 0.485101i \(0.161217\pi\)
\(854\) 0 0
\(855\) 8.00000 3.46410i 0.273594 0.118470i
\(856\) 0 0
\(857\) −21.0000 + 36.3731i −0.717346 + 1.24248i 0.244701 + 0.969599i \(0.421310\pi\)
−0.962048 + 0.272882i \(0.912023\pi\)
\(858\) 0 0
\(859\) 8.50000 + 14.7224i 0.290016 + 0.502323i 0.973813 0.227349i \(-0.0730059\pi\)
−0.683797 + 0.729672i \(0.739673\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −34.0000 −1.15737 −0.578687 0.815550i \(-0.696435\pi\)
−0.578687 + 0.815550i \(0.696435\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −17.0000 −0.577350
\(868\) 0 0
\(869\) −26.0000 + 45.0333i −0.881990 + 1.52765i
\(870\) 0 0
\(871\) 12.5000 21.6506i 0.423546 0.733604i
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) 60.0000 2.02837
\(876\) 0 0
\(877\) 6.50000 11.2583i 0.219489 0.380167i −0.735163 0.677891i \(-0.762894\pi\)
0.954652 + 0.297724i \(0.0962275\pi\)
\(878\) 0 0
\(879\) 5.00000 8.66025i 0.168646 0.292103i
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) −17.5000 30.3109i −0.588922 1.02004i −0.994374 0.105926i \(-0.966219\pi\)
0.405452 0.914116i \(-0.367114\pi\)
\(884\) 0 0
\(885\) 16.0000 0.537834
\(886\) 0 0
\(887\) −10.0000 17.3205i −0.335767 0.581566i 0.647865 0.761755i \(-0.275662\pi\)
−0.983632 + 0.180190i \(0.942329\pi\)
\(888\) 0 0
\(889\) 50.0000 + 86.6025i 1.67695 + 2.90456i
\(890\) 0 0
\(891\) −2.00000 + 3.46410i −0.0670025 + 0.116052i
\(892\) 0 0
\(893\) −35.0000 25.9808i −1.17123 0.869413i
\(894\) 0 0
\(895\) −18.0000 + 31.1769i −0.601674 + 1.04213i
\(896\) 0 0
\(897\) −15.0000 25.9808i −0.500835 0.867472i
\(898\) 0 0
\(899\) −4.00000 6.92820i −0.133407 0.231069i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −27.5000 47.6314i −0.915143 1.58507i
\(904\) 0 0
\(905\) 36.0000 1.19668
\(906\) 0 0
\(907\) −10.0000 + 17.3205i −0.332045 + 0.575118i −0.982913 0.184073i \(-0.941072\pi\)
0.650868 + 0.759191i \(0.274405\pi\)
\(908\) 0 0
\(909\) 3.00000 5.19615i 0.0995037 0.172345i
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) −1.00000 + 1.73205i −0.0330590 + 0.0572598i
\(916\) 0 0
\(917\) 25.0000 43.3013i 0.825573 1.42993i
\(918\) 0 0
\(919\) 55.0000 1.81428 0.907141 0.420826i \(-0.138260\pi\)
0.907141 + 0.420826i \(0.138260\pi\)
\(920\) 0 0
\(921\) 6.00000 + 10.3923i 0.197707 + 0.342438i
\(922\) 0 0
\(923\) −30.0000 −0.987462
\(924\) 0 0
\(925\) 3.50000 + 6.06218i 0.115079 + 0.199323i
\(926\) 0 0
\(927\) −2.50000 4.33013i −0.0821108 0.142220i
\(928\) 0 0
\(929\) 9.00000 15.5885i 0.295280 0.511441i −0.679770 0.733426i \(-0.737920\pi\)
0.975050 + 0.221985i \(0.0712536\pi\)
\(930\) 0 0
\(931\) −72.0000 + 31.1769i −2.35970 + 1.02178i
\(932\) 0 0
\(933\) 6.00000 10.3923i 0.196431 0.340229i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −11.5000 19.9186i −0.375689 0.650712i 0.614741 0.788729i \(-0.289260\pi\)
−0.990430 + 0.138017i \(0.955927\pi\)
\(938\) 0 0
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) 28.0000 + 48.4974i 0.912774 + 1.58097i 0.810128 + 0.586253i \(0.199397\pi\)
0.102646 + 0.994718i \(0.467269\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 5.00000 8.66025i 0.162650 0.281718i
\(946\) 0 0
\(947\) −15.0000 + 25.9808i −0.487435 + 0.844261i −0.999896 0.0144491i \(-0.995401\pi\)
0.512461 + 0.858710i \(0.328734\pi\)
\(948\) 0 0
\(949\) 5.00000 0.162307
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) −30.0000 + 51.9615i −0.971795 + 1.68320i −0.281666 + 0.959512i \(0.590887\pi\)
−0.690129 + 0.723686i \(0.742446\pi\)
\(954\) 0 0
\(955\) 26.0000 45.0333i 0.841340 1.45724i
\(956\) 0 0
\(957\) 32.0000 1.03441
\(958\) 0 0
\(959\) −25.0000 43.3013i −0.807292 1.39827i
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 9.00000 + 15.5885i 0.290021 + 0.502331i
\(964\) 0 0
\(965\) −5.00000 8.66025i −0.160956 0.278783i
\(966\) 0 0
\(967\) −11.5000 + 19.9186i −0.369815 + 0.640538i −0.989536 0.144283i \(-0.953912\pi\)
0.619721 + 0.784822i \(0.287246\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.0000 19.0526i 0.353007 0.611426i −0.633768 0.773523i \(-0.718493\pi\)
0.986775 + 0.162098i \(0.0518259\pi\)
\(972\) 0 0
\(973\) −12.5000 21.6506i −0.400732 0.694087i
\(974\) 0 0
\(975\) 2.50000 + 4.33013i 0.0800641 + 0.138675i
\(976\) 0 0
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) 0 0
\(979\) 24.0000 + 41.5692i 0.767043 + 1.32856i
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) 20.0000 34.6410i 0.637901 1.10488i −0.347992 0.937498i \(-0.613136\pi\)
0.985893 0.167379i \(-0.0535304\pi\)
\(984\) 0 0
\(985\) −20.0000 + 34.6410i −0.637253 + 1.10375i
\(986\) 0 0
\(987\) −50.0000 −1.59152
\(988\) 0 0
\(989\) 66.0000 2.09868
\(990\) 0 0
\(991\) 12.5000 21.6506i 0.397076 0.687755i −0.596288 0.802771i \(-0.703358\pi\)
0.993364 + 0.115015i \(0.0366917\pi\)
\(992\) 0 0
\(993\) 2.50000 4.33013i 0.0793351 0.137412i
\(994\) 0 0
\(995\) 6.00000 0.190213
\(996\) 0 0
\(997\) 12.5000 + 21.6506i 0.395879 + 0.685682i 0.993213 0.116310i \(-0.0371066\pi\)
−0.597334 + 0.801993i \(0.703773\pi\)
\(998\) 0 0
\(999\) 7.00000 0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.q.c.49.1 2
3.2 odd 2 2736.2.s.f.1873.1 2
4.3 odd 2 456.2.q.c.49.1 2
12.11 even 2 1368.2.s.b.505.1 2
19.7 even 3 inner 912.2.q.c.577.1 2
57.26 odd 6 2736.2.s.f.577.1 2
76.7 odd 6 456.2.q.c.121.1 yes 2
76.11 odd 6 8664.2.a.b.1.1 1
76.27 even 6 8664.2.a.h.1.1 1
228.83 even 6 1368.2.s.b.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.q.c.49.1 2 4.3 odd 2
456.2.q.c.121.1 yes 2 76.7 odd 6
912.2.q.c.49.1 2 1.1 even 1 trivial
912.2.q.c.577.1 2 19.7 even 3 inner
1368.2.s.b.505.1 2 12.11 even 2
1368.2.s.b.577.1 2 228.83 even 6
2736.2.s.f.577.1 2 57.26 odd 6
2736.2.s.f.1873.1 2 3.2 odd 2
8664.2.a.b.1.1 1 76.11 odd 6
8664.2.a.h.1.1 1 76.27 even 6