Properties

Label 455.2.j.g.326.2
Level $455$
Weight $2$
Character 455.326
Analytic conductor $3.633$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [455,2,Mod(261,455)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("455.261"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(455, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.63319329197\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + 17 x^{18} - 12 x^{17} + 181 x^{16} - 114 x^{15} + 1154 x^{14} - 605 x^{13} + \cdots + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 326.2
Root \(-1.16558 + 2.01884i\) of defining polynomial
Character \(\chi\) \(=\) 455.326
Dual form 455.2.j.g.261.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.16558 - 2.01884i) q^{2} +(1.60462 - 2.77928i) q^{3} +(-1.71715 + 2.97419i) q^{4} +(0.500000 + 0.866025i) q^{5} -7.48124 q^{6} +(1.52339 - 2.16317i) q^{7} +3.34356 q^{8} +(-3.64960 - 6.32129i) q^{9} +(1.16558 - 2.01884i) q^{10} +(0.450686 - 0.780611i) q^{11} +(5.51073 + 9.54487i) q^{12} -1.00000 q^{13} +(-6.14272 - 0.554136i) q^{14} +3.20924 q^{15} +(-0.462893 - 0.801755i) q^{16} +(-0.907858 + 1.57246i) q^{17} +(-8.50779 + 14.7359i) q^{18} +(-2.04243 - 3.53760i) q^{19} -3.43429 q^{20} +(-3.56759 - 7.70498i) q^{21} -2.10124 q^{22} +(2.54900 + 4.41500i) q^{23} +(5.36515 - 9.29270i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(1.16558 + 2.01884i) q^{26} -13.7972 q^{27} +(3.81778 + 8.24531i) q^{28} -5.72225 q^{29} +(-3.74062 - 6.47894i) q^{30} +(1.01596 - 1.75969i) q^{31} +(2.26449 - 3.92221i) q^{32} +(-1.44636 - 2.50517i) q^{33} +4.23272 q^{34} +(2.63505 + 0.237709i) q^{35} +25.0676 q^{36} +(-0.889726 - 1.54105i) q^{37} +(-4.76123 + 8.24669i) q^{38} +(-1.60462 + 2.77928i) q^{39} +(1.67178 + 2.89561i) q^{40} +10.3700 q^{41} +(-11.3968 + 16.1832i) q^{42} +9.38071 q^{43} +(1.54779 + 2.68085i) q^{44} +(3.64960 - 6.32129i) q^{45} +(5.94212 - 10.2921i) q^{46} +(6.32232 + 10.9506i) q^{47} -2.97107 q^{48} +(-2.35858 - 6.59068i) q^{49} +2.33116 q^{50} +(2.91353 + 5.04638i) q^{51} +(1.71715 - 2.97419i) q^{52} +(-1.08714 + 1.88298i) q^{53} +(16.0817 + 27.8543i) q^{54} +0.901372 q^{55} +(5.09354 - 7.23269i) q^{56} -13.1093 q^{57} +(6.66974 + 11.5523i) q^{58} +(-0.333079 + 0.576910i) q^{59} +(-5.51073 + 9.54487i) q^{60} +(2.35694 + 4.08235i) q^{61} -4.73672 q^{62} +(-19.2338 - 1.73508i) q^{63} -12.4093 q^{64} +(-0.500000 - 0.866025i) q^{65} +(-3.37169 + 5.83994i) q^{66} +(7.15443 - 12.3918i) q^{67} +(-3.11785 - 5.40028i) q^{68} +16.3607 q^{69} +(-2.59146 - 5.59682i) q^{70} -16.5124 q^{71} +(-12.2027 - 21.1357i) q^{72} +(7.65042 - 13.2509i) q^{73} +(-2.07409 + 3.59243i) q^{74} +(1.60462 + 2.77928i) q^{75} +14.0286 q^{76} +(-1.00202 - 2.16408i) q^{77} +7.48124 q^{78} +(1.94722 + 3.37268i) q^{79} +(0.462893 - 0.801755i) q^{80} +(-11.1904 + 19.3823i) q^{81} +(-12.0870 - 20.9353i) q^{82} +5.50843 q^{83} +(29.0421 + 2.61990i) q^{84} -1.81572 q^{85} +(-10.9340 - 18.9382i) q^{86} +(-9.18203 + 15.9037i) q^{87} +(1.50690 - 2.61002i) q^{88} +(-0.823877 - 1.42700i) q^{89} -17.0156 q^{90} +(-1.52339 + 2.16317i) q^{91} -17.5080 q^{92} +(-3.26045 - 5.64727i) q^{93} +(14.7383 - 25.5275i) q^{94} +(2.04243 - 3.53760i) q^{95} +(-7.26728 - 12.5873i) q^{96} -15.1306 q^{97} +(-10.5564 + 12.4436i) q^{98} -6.57930 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + 4 q^{3} - 13 q^{4} + 10 q^{5} - 18 q^{6} + q^{7} - 6 q^{8} - 14 q^{9} - q^{10} - 7 q^{11} + 7 q^{12} - 20 q^{13} + 3 q^{14} + 8 q^{15} - 7 q^{16} + 6 q^{17} + 5 q^{18} + 10 q^{19} - 26 q^{20}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/455\mathbb{Z}\right)^\times\).

\(n\) \(66\) \(92\) \(106\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.16558 2.01884i −0.824189 1.42754i −0.902538 0.430610i \(-0.858298\pi\)
0.0783494 0.996926i \(-0.475035\pi\)
\(3\) 1.60462 2.77928i 0.926427 1.60462i 0.137177 0.990547i \(-0.456197\pi\)
0.789250 0.614072i \(-0.210470\pi\)
\(4\) −1.71715 + 2.97419i −0.858573 + 1.48709i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −7.48124 −3.05420
\(7\) 1.52339 2.16317i 0.575786 0.817600i
\(8\) 3.34356 1.18213
\(9\) −3.64960 6.32129i −1.21653 2.10710i
\(10\) 1.16558 2.01884i 0.368588 0.638414i
\(11\) 0.450686 0.780611i 0.135887 0.235363i −0.790049 0.613044i \(-0.789945\pi\)
0.925936 + 0.377681i \(0.123278\pi\)
\(12\) 5.51073 + 9.54487i 1.59081 + 2.75537i
\(13\) −1.00000 −0.277350
\(14\) −6.14272 0.554136i −1.64171 0.148099i
\(15\) 3.20924 0.828621
\(16\) −0.462893 0.801755i −0.115723 0.200439i
\(17\) −0.907858 + 1.57246i −0.220188 + 0.381377i −0.954865 0.297040i \(-0.904000\pi\)
0.734677 + 0.678417i \(0.237334\pi\)
\(18\) −8.50779 + 14.7359i −2.00531 + 3.47329i
\(19\) −2.04243 3.53760i −0.468566 0.811580i 0.530789 0.847504i \(-0.321896\pi\)
−0.999355 + 0.0359243i \(0.988562\pi\)
\(20\) −3.43429 −0.767931
\(21\) −3.56759 7.70498i −0.778513 1.68136i
\(22\) −2.10124 −0.447986
\(23\) 2.54900 + 4.41500i 0.531503 + 0.920591i 0.999324 + 0.0367674i \(0.0117061\pi\)
−0.467820 + 0.883824i \(0.654961\pi\)
\(24\) 5.36515 9.29270i 1.09516 1.89687i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 1.16558 + 2.01884i 0.228589 + 0.395927i
\(27\) −13.7972 −2.65526
\(28\) 3.81778 + 8.24531i 0.721493 + 1.55822i
\(29\) −5.72225 −1.06260 −0.531298 0.847185i \(-0.678295\pi\)
−0.531298 + 0.847185i \(0.678295\pi\)
\(30\) −3.74062 6.47894i −0.682940 1.18289i
\(31\) 1.01596 1.75969i 0.182472 0.316050i −0.760250 0.649631i \(-0.774924\pi\)
0.942722 + 0.333580i \(0.108257\pi\)
\(32\) 2.26449 3.92221i 0.400309 0.693355i
\(33\) −1.44636 2.50517i −0.251779 0.436093i
\(34\) 4.23272 0.725905
\(35\) 2.63505 + 0.237709i 0.445405 + 0.0401801i
\(36\) 25.0676 4.17793
\(37\) −0.889726 1.54105i −0.146270 0.253347i 0.783576 0.621296i \(-0.213394\pi\)
−0.929846 + 0.367949i \(0.880060\pi\)
\(38\) −4.76123 + 8.24669i −0.772373 + 1.33779i
\(39\) −1.60462 + 2.77928i −0.256945 + 0.445041i
\(40\) 1.67178 + 2.89561i 0.264332 + 0.457836i
\(41\) 10.3700 1.61952 0.809758 0.586764i \(-0.199598\pi\)
0.809758 + 0.586764i \(0.199598\pi\)
\(42\) −11.3968 + 16.1832i −1.75857 + 2.49712i
\(43\) 9.38071 1.43055 0.715273 0.698846i \(-0.246303\pi\)
0.715273 + 0.698846i \(0.246303\pi\)
\(44\) 1.54779 + 2.68085i 0.233338 + 0.404153i
\(45\) 3.64960 6.32129i 0.544050 0.942323i
\(46\) 5.94212 10.2921i 0.876118 1.51748i
\(47\) 6.32232 + 10.9506i 0.922205 + 1.59731i 0.795996 + 0.605302i \(0.206948\pi\)
0.126209 + 0.992004i \(0.459719\pi\)
\(48\) −2.97107 −0.428837
\(49\) −2.35858 6.59068i −0.336940 0.941526i
\(50\) 2.33116 0.329675
\(51\) 2.91353 + 5.04638i 0.407976 + 0.706635i
\(52\) 1.71715 2.97419i 0.238125 0.412445i
\(53\) −1.08714 + 1.88298i −0.149330 + 0.258647i −0.930980 0.365070i \(-0.881045\pi\)
0.781650 + 0.623717i \(0.214378\pi\)
\(54\) 16.0817 + 27.8543i 2.18844 + 3.79049i
\(55\) 0.901372 0.121541
\(56\) 5.09354 7.23269i 0.680653 0.966509i
\(57\) −13.1093 −1.73637
\(58\) 6.66974 + 11.5523i 0.875779 + 1.51689i
\(59\) −0.333079 + 0.576910i −0.0433632 + 0.0751073i −0.886892 0.461976i \(-0.847141\pi\)
0.843529 + 0.537083i \(0.180474\pi\)
\(60\) −5.51073 + 9.54487i −0.711432 + 1.23224i
\(61\) 2.35694 + 4.08235i 0.301776 + 0.522691i 0.976538 0.215344i \(-0.0690873\pi\)
−0.674762 + 0.738035i \(0.735754\pi\)
\(62\) −4.73672 −0.601564
\(63\) −19.2338 1.73508i −2.42323 0.218600i
\(64\) −12.4093 −1.55117
\(65\) −0.500000 0.866025i −0.0620174 0.107417i
\(66\) −3.37169 + 5.83994i −0.415026 + 0.718846i
\(67\) 7.15443 12.3918i 0.874052 1.51390i 0.0162831 0.999867i \(-0.494817\pi\)
0.857769 0.514035i \(-0.171850\pi\)
\(68\) −3.11785 5.40028i −0.378095 0.654880i
\(69\) 16.3607 1.96960
\(70\) −2.59146 5.59682i −0.309739 0.668948i
\(71\) −16.5124 −1.95966 −0.979830 0.199834i \(-0.935960\pi\)
−0.979830 + 0.199834i \(0.935960\pi\)
\(72\) −12.2027 21.1357i −1.43810 2.49086i
\(73\) 7.65042 13.2509i 0.895414 1.55090i 0.0621222 0.998069i \(-0.480213\pi\)
0.833292 0.552834i \(-0.186454\pi\)
\(74\) −2.07409 + 3.59243i −0.241108 + 0.417612i
\(75\) 1.60462 + 2.77928i 0.185285 + 0.320924i
\(76\) 14.0286 1.60919
\(77\) −1.00202 2.16408i −0.114191 0.246620i
\(78\) 7.48124 0.847083
\(79\) 1.94722 + 3.37268i 0.219079 + 0.379456i 0.954527 0.298126i \(-0.0963614\pi\)
−0.735448 + 0.677582i \(0.763028\pi\)
\(80\) 0.462893 0.801755i 0.0517530 0.0896389i
\(81\) −11.1904 + 19.3823i −1.24337 + 2.15359i
\(82\) −12.0870 20.9353i −1.33479 2.31192i
\(83\) 5.50843 0.604628 0.302314 0.953208i \(-0.402241\pi\)
0.302314 + 0.953208i \(0.402241\pi\)
\(84\) 29.0421 + 2.61990i 3.16875 + 0.285854i
\(85\) −1.81572 −0.196942
\(86\) −10.9340 18.9382i −1.17904 2.04216i
\(87\) −9.18203 + 15.9037i −0.984417 + 1.70506i
\(88\) 1.50690 2.61002i 0.160636 0.278229i
\(89\) −0.823877 1.42700i −0.0873307 0.151261i 0.819051 0.573720i \(-0.194500\pi\)
−0.906382 + 0.422459i \(0.861167\pi\)
\(90\) −17.0156 −1.79360
\(91\) −1.52339 + 2.16317i −0.159694 + 0.226762i
\(92\) −17.5080 −1.82534
\(93\) −3.26045 5.64727i −0.338093 0.585595i
\(94\) 14.7383 25.5275i 1.52014 2.63296i
\(95\) 2.04243 3.53760i 0.209549 0.362950i
\(96\) −7.26728 12.5873i −0.741713 1.28469i
\(97\) −15.1306 −1.53628 −0.768139 0.640283i \(-0.778817\pi\)
−0.768139 + 0.640283i \(0.778817\pi\)
\(98\) −10.5564 + 12.4436i −1.06636 + 1.25699i
\(99\) −6.57930 −0.661244
\(100\) −1.71715 2.97419i −0.171715 0.297419i
\(101\) −3.72797 + 6.45703i −0.370947 + 0.642498i −0.989711 0.143078i \(-0.954300\pi\)
0.618765 + 0.785576i \(0.287633\pi\)
\(102\) 6.79190 11.7639i 0.672498 1.16480i
\(103\) 6.87775 + 11.9126i 0.677685 + 1.17378i 0.975676 + 0.219216i \(0.0703499\pi\)
−0.297992 + 0.954568i \(0.596317\pi\)
\(104\) −3.34356 −0.327863
\(105\) 4.88891 6.94212i 0.477109 0.677481i
\(106\) 5.06858 0.492304
\(107\) 1.68776 + 2.92329i 0.163162 + 0.282605i 0.936001 0.351997i \(-0.114497\pi\)
−0.772839 + 0.634602i \(0.781164\pi\)
\(108\) 23.6917 41.0353i 2.27974 3.94862i
\(109\) 6.05541 10.4883i 0.580003 1.00460i −0.415475 0.909605i \(-0.636385\pi\)
0.995478 0.0949905i \(-0.0302821\pi\)
\(110\) −1.05062 1.81973i −0.100173 0.173504i
\(111\) −5.71068 −0.542034
\(112\) −2.43949 0.220067i −0.230511 0.0207944i
\(113\) 5.74150 0.540115 0.270058 0.962844i \(-0.412957\pi\)
0.270058 + 0.962844i \(0.412957\pi\)
\(114\) 15.2799 + 26.4656i 1.43109 + 2.47873i
\(115\) −2.54900 + 4.41500i −0.237696 + 0.411701i
\(116\) 9.82595 17.0190i 0.912316 1.58018i
\(117\) 3.64960 + 6.32129i 0.337406 + 0.584404i
\(118\) 1.55292 0.142958
\(119\) 2.01847 + 4.35931i 0.185032 + 0.399617i
\(120\) 10.7303 0.979537
\(121\) 5.09376 + 8.82266i 0.463069 + 0.802060i
\(122\) 5.49441 9.51659i 0.497440 0.861592i
\(123\) 16.6398 28.8210i 1.50036 2.59871i
\(124\) 3.48910 + 6.04330i 0.313331 + 0.542705i
\(125\) −1.00000 −0.0894427
\(126\) 18.9156 + 40.8523i 1.68514 + 3.63941i
\(127\) 5.73807 0.509172 0.254586 0.967050i \(-0.418061\pi\)
0.254586 + 0.967050i \(0.418061\pi\)
\(128\) 9.93507 + 17.2080i 0.878144 + 1.52099i
\(129\) 15.0525 26.0716i 1.32530 2.29548i
\(130\) −1.16558 + 2.01884i −0.102228 + 0.177064i
\(131\) −5.22618 9.05200i −0.456613 0.790877i 0.542166 0.840271i \(-0.317604\pi\)
−0.998779 + 0.0493940i \(0.984271\pi\)
\(132\) 9.93444 0.864682
\(133\) −10.7638 0.971007i −0.933342 0.0841970i
\(134\) −33.3562 −2.88154
\(135\) −6.89858 11.9487i −0.593735 1.02838i
\(136\) −3.03548 + 5.25761i −0.260290 + 0.450836i
\(137\) 2.19339 3.79906i 0.187394 0.324576i −0.756987 0.653430i \(-0.773329\pi\)
0.944381 + 0.328854i \(0.106663\pi\)
\(138\) −19.0697 33.0296i −1.62332 2.81167i
\(139\) −18.8692 −1.60046 −0.800231 0.599692i \(-0.795290\pi\)
−0.800231 + 0.599692i \(0.795290\pi\)
\(140\) −5.23176 + 7.42895i −0.442164 + 0.627861i
\(141\) 40.5796 3.41742
\(142\) 19.2465 + 33.3359i 1.61513 + 2.79749i
\(143\) −0.450686 + 0.780611i −0.0376883 + 0.0652780i
\(144\) −3.37875 + 5.85217i −0.281563 + 0.487681i
\(145\) −2.86113 4.95562i −0.237604 0.411542i
\(146\) −35.6687 −2.95196
\(147\) −22.1020 4.02037i −1.82294 0.331594i
\(148\) 6.11116 0.502334
\(149\) −2.42932 4.20771i −0.199018 0.344709i 0.749192 0.662352i \(-0.230442\pi\)
−0.948210 + 0.317643i \(0.897108\pi\)
\(150\) 3.74062 6.47894i 0.305420 0.529003i
\(151\) −0.700967 + 1.21411i −0.0570439 + 0.0988030i −0.893137 0.449784i \(-0.851501\pi\)
0.836093 + 0.548587i \(0.184834\pi\)
\(152\) −6.82900 11.8282i −0.553905 0.959392i
\(153\) 13.2533 1.07146
\(154\) −3.20100 + 4.54533i −0.257944 + 0.366273i
\(155\) 2.03192 0.163208
\(156\) −5.51073 9.54487i −0.441212 0.764201i
\(157\) 3.73007 6.46067i 0.297692 0.515617i −0.677916 0.735140i \(-0.737117\pi\)
0.975607 + 0.219522i \(0.0704499\pi\)
\(158\) 4.53927 7.86224i 0.361125 0.625486i
\(159\) 3.48888 + 6.04292i 0.276686 + 0.479235i
\(160\) 4.52898 0.358047
\(161\) 13.4335 + 1.21184i 1.05871 + 0.0955063i
\(162\) 52.1730 4.09910
\(163\) 2.15383 + 3.73055i 0.168701 + 0.292199i 0.937963 0.346734i \(-0.112709\pi\)
−0.769262 + 0.638933i \(0.779376\pi\)
\(164\) −17.8068 + 30.8422i −1.39047 + 2.40837i
\(165\) 1.44636 2.50517i 0.112599 0.195027i
\(166\) −6.42050 11.1206i −0.498328 0.863129i
\(167\) −15.9916 −1.23747 −0.618734 0.785601i \(-0.712354\pi\)
−0.618734 + 0.785601i \(0.712354\pi\)
\(168\) −11.9285 25.7621i −0.920302 1.98759i
\(169\) 1.00000 0.0769231
\(170\) 2.11636 + 3.66564i 0.162317 + 0.281142i
\(171\) −14.9081 + 25.8216i −1.14005 + 1.97463i
\(172\) −16.1081 + 27.9000i −1.22823 + 2.12735i
\(173\) −2.37584 4.11508i −0.180632 0.312864i 0.761464 0.648207i \(-0.224481\pi\)
−0.942096 + 0.335343i \(0.891148\pi\)
\(174\) 42.8095 3.24538
\(175\) 1.11166 + 2.40088i 0.0840339 + 0.181489i
\(176\) −0.834478 −0.0629011
\(177\) 1.06893 + 1.85144i 0.0803457 + 0.139163i
\(178\) −1.92059 + 3.32655i −0.143954 + 0.249336i
\(179\) −11.6053 + 20.1009i −0.867418 + 1.50241i −0.00279260 + 0.999996i \(0.500889\pi\)
−0.864626 + 0.502417i \(0.832444\pi\)
\(180\) 12.5338 + 21.7092i 0.934214 + 1.61811i
\(181\) 2.04014 0.151643 0.0758213 0.997121i \(-0.475842\pi\)
0.0758213 + 0.997121i \(0.475842\pi\)
\(182\) 6.14272 + 0.554136i 0.455329 + 0.0410753i
\(183\) 15.1280 1.11829
\(184\) 8.52275 + 14.7618i 0.628305 + 1.08826i
\(185\) 0.889726 1.54105i 0.0654140 0.113300i
\(186\) −7.60063 + 13.1647i −0.557305 + 0.965281i
\(187\) 0.818318 + 1.41737i 0.0598413 + 0.103648i
\(188\) −43.4254 −3.16712
\(189\) −21.0184 + 29.8456i −1.52886 + 2.17094i
\(190\) −9.52246 −0.690832
\(191\) −2.09749 3.63295i −0.151769 0.262871i 0.780109 0.625644i \(-0.215164\pi\)
−0.931878 + 0.362772i \(0.881830\pi\)
\(192\) −19.9122 + 34.4890i −1.43704 + 2.48903i
\(193\) 0.586423 1.01571i 0.0422116 0.0731127i −0.844148 0.536111i \(-0.819893\pi\)
0.886359 + 0.462998i \(0.153226\pi\)
\(194\) 17.6359 + 30.5463i 1.26618 + 2.19309i
\(195\) −3.20924 −0.229818
\(196\) 23.6519 + 4.30231i 1.68942 + 0.307308i
\(197\) 16.3473 1.16470 0.582350 0.812938i \(-0.302133\pi\)
0.582350 + 0.812938i \(0.302133\pi\)
\(198\) 7.66869 + 13.2826i 0.544990 + 0.943950i
\(199\) 4.19533 7.26653i 0.297399 0.515110i −0.678141 0.734932i \(-0.737214\pi\)
0.975540 + 0.219821i \(0.0705475\pi\)
\(200\) −1.67178 + 2.89561i −0.118213 + 0.204751i
\(201\) −22.9602 39.7683i −1.61949 2.80504i
\(202\) 17.3810 1.22292
\(203\) −8.71721 + 12.3782i −0.611828 + 0.868779i
\(204\) −20.0118 −1.40111
\(205\) 5.18498 + 8.98065i 0.362135 + 0.627236i
\(206\) 16.0331 27.7702i 1.11708 1.93484i
\(207\) 18.6057 32.2260i 1.29318 2.23986i
\(208\) 0.462893 + 0.801755i 0.0320959 + 0.0555917i
\(209\) −3.68198 −0.254688
\(210\) −19.7134 1.77835i −1.36036 0.122718i
\(211\) 17.2392 1.18680 0.593398 0.804909i \(-0.297786\pi\)
0.593398 + 0.804909i \(0.297786\pi\)
\(212\) −3.73355 6.46670i −0.256421 0.444135i
\(213\) −26.4961 + 45.8926i −1.81548 + 3.14451i
\(214\) 3.93443 6.81464i 0.268952 0.465839i
\(215\) 4.69036 + 8.12393i 0.319880 + 0.554048i
\(216\) −46.1317 −3.13886
\(217\) −2.25881 4.87838i −0.153338 0.331166i
\(218\) −28.2322 −1.91213
\(219\) −24.5520 42.5253i −1.65907 2.87360i
\(220\) −1.54779 + 2.68085i −0.104352 + 0.180743i
\(221\) 0.907858 1.57246i 0.0610691 0.105775i
\(222\) 6.65625 + 11.5290i 0.446738 + 0.773773i
\(223\) −0.0621872 −0.00416437 −0.00208218 0.999998i \(-0.500663\pi\)
−0.00208218 + 0.999998i \(0.500663\pi\)
\(224\) −5.03470 10.8735i −0.336395 0.726517i
\(225\) 7.29920 0.486613
\(226\) −6.69217 11.5912i −0.445157 0.771034i
\(227\) −3.69954 + 6.40779i −0.245547 + 0.425300i −0.962285 0.272042i \(-0.912301\pi\)
0.716738 + 0.697342i \(0.245634\pi\)
\(228\) 22.5106 38.9895i 1.49080 2.58214i
\(229\) −2.59589 4.49621i −0.171541 0.297118i 0.767418 0.641147i \(-0.221541\pi\)
−0.938959 + 0.344030i \(0.888208\pi\)
\(230\) 11.8842 0.783624
\(231\) −7.62246 0.687624i −0.501521 0.0452423i
\(232\) −19.1327 −1.25612
\(233\) 0.246030 + 0.426136i 0.0161179 + 0.0279171i 0.873972 0.485977i \(-0.161536\pi\)
−0.857854 + 0.513894i \(0.828203\pi\)
\(234\) 8.50779 14.7359i 0.556172 0.963318i
\(235\) −6.32232 + 10.9506i −0.412422 + 0.714337i
\(236\) −1.14389 1.98128i −0.0744610 0.128970i
\(237\) 12.4982 0.811843
\(238\) 6.44807 9.15608i 0.417966 0.593500i
\(239\) 25.2807 1.63527 0.817636 0.575736i \(-0.195284\pi\)
0.817636 + 0.575736i \(0.195284\pi\)
\(240\) −1.48553 2.57302i −0.0958908 0.166088i
\(241\) −6.94862 + 12.0354i −0.447600 + 0.775266i −0.998229 0.0594838i \(-0.981055\pi\)
0.550629 + 0.834750i \(0.314388\pi\)
\(242\) 11.8744 20.5670i 0.763313 1.32210i
\(243\) 15.2168 + 26.3563i 0.976159 + 1.69076i
\(244\) −16.1889 −1.03639
\(245\) 4.52841 5.33793i 0.289309 0.341028i
\(246\) −77.5802 −4.94633
\(247\) 2.04243 + 3.53760i 0.129957 + 0.225092i
\(248\) 3.39693 5.88365i 0.215705 0.373612i
\(249\) 8.83892 15.3095i 0.560144 0.970198i
\(250\) 1.16558 + 2.01884i 0.0737177 + 0.127683i
\(251\) 9.45803 0.596986 0.298493 0.954412i \(-0.403516\pi\)
0.298493 + 0.954412i \(0.403516\pi\)
\(252\) 38.1877 54.2254i 2.40560 3.41588i
\(253\) 4.59520 0.288898
\(254\) −6.68818 11.5843i −0.419654 0.726861i
\(255\) −2.91353 + 5.04638i −0.182452 + 0.316017i
\(256\) 10.7509 18.6211i 0.671930 1.16382i
\(257\) 4.64742 + 8.04956i 0.289898 + 0.502118i 0.973785 0.227470i \(-0.0730453\pi\)
−0.683887 + 0.729588i \(0.739712\pi\)
\(258\) −70.1793 −4.36917
\(259\) −4.68895 0.422991i −0.291357 0.0262834i
\(260\) 3.43429 0.212986
\(261\) 20.8839 + 36.1720i 1.29268 + 2.23899i
\(262\) −12.1830 + 21.1016i −0.752671 + 1.30366i
\(263\) 10.8244 18.7485i 0.667463 1.15608i −0.311149 0.950361i \(-0.600714\pi\)
0.978611 0.205718i \(-0.0659530\pi\)
\(264\) −4.83599 8.37618i −0.297635 0.515519i
\(265\) −2.17428 −0.133565
\(266\) 10.5858 + 22.8622i 0.649055 + 1.40177i
\(267\) −5.28803 −0.323622
\(268\) 24.5704 + 42.5572i 1.50088 + 2.59959i
\(269\) −4.47886 + 7.75762i −0.273081 + 0.472990i −0.969649 0.244500i \(-0.921376\pi\)
0.696568 + 0.717491i \(0.254709\pi\)
\(270\) −16.0817 + 27.8543i −0.978699 + 1.69516i
\(271\) 12.0882 + 20.9373i 0.734303 + 1.27185i 0.955028 + 0.296514i \(0.0958243\pi\)
−0.220725 + 0.975336i \(0.570842\pi\)
\(272\) 1.68097 0.101923
\(273\) 3.56759 + 7.70498i 0.215921 + 0.466327i
\(274\) −10.2263 −0.617792
\(275\) 0.450686 + 0.780611i 0.0271774 + 0.0470726i
\(276\) −28.0937 + 48.6597i −1.69104 + 2.92897i
\(277\) −8.34923 + 14.4613i −0.501657 + 0.868895i 0.498341 + 0.866981i \(0.333943\pi\)
−0.999998 + 0.00191405i \(0.999391\pi\)
\(278\) 21.9935 + 38.0938i 1.31908 + 2.28472i
\(279\) −14.8314 −0.887932
\(280\) 8.81046 + 0.794794i 0.526526 + 0.0474980i
\(281\) 0.945863 0.0564254 0.0282127 0.999602i \(-0.491018\pi\)
0.0282127 + 0.999602i \(0.491018\pi\)
\(282\) −47.2987 81.9238i −2.81660 4.87849i
\(283\) −10.6077 + 18.3731i −0.630564 + 1.09217i 0.356873 + 0.934153i \(0.383843\pi\)
−0.987437 + 0.158016i \(0.949490\pi\)
\(284\) 28.3542 49.1109i 1.68251 2.91420i
\(285\) −6.55465 11.3530i −0.388264 0.672493i
\(286\) 2.10124 0.124249
\(287\) 15.7975 22.4320i 0.932495 1.32412i
\(288\) −33.0579 −1.94796
\(289\) 6.85159 + 11.8673i 0.403035 + 0.698076i
\(290\) −6.66974 + 11.5523i −0.391660 + 0.678376i
\(291\) −24.2788 + 42.0521i −1.42325 + 2.46514i
\(292\) 26.2738 + 45.5075i 1.53756 + 2.66313i
\(293\) −0.380451 −0.0222262 −0.0111131 0.999938i \(-0.503537\pi\)
−0.0111131 + 0.999938i \(0.503537\pi\)
\(294\) 17.6451 + 49.3064i 1.02908 + 2.87561i
\(295\) −0.666158 −0.0387852
\(296\) −2.97486 5.15260i −0.172910 0.299489i
\(297\) −6.21819 + 10.7702i −0.360816 + 0.624951i
\(298\) −5.66313 + 9.80883i −0.328056 + 0.568210i
\(299\) −2.54900 4.41500i −0.147413 0.255326i
\(300\) −11.0215 −0.636324
\(301\) 14.2905 20.2920i 0.823688 1.16961i
\(302\) 3.26813 0.188060
\(303\) 11.9639 + 20.7221i 0.687310 + 1.19046i
\(304\) −1.89086 + 3.27506i −0.108448 + 0.187837i
\(305\) −2.35694 + 4.08235i −0.134958 + 0.233755i
\(306\) −15.4477 26.7563i −0.883088 1.52955i
\(307\) −1.04030 −0.0593729 −0.0296864 0.999559i \(-0.509451\pi\)
−0.0296864 + 0.999559i \(0.509451\pi\)
\(308\) 8.15700 + 0.735845i 0.464788 + 0.0419287i
\(309\) 44.1446 2.51130
\(310\) −2.36836 4.10212i −0.134514 0.232985i
\(311\) 8.95590 15.5121i 0.507842 0.879609i −0.492116 0.870529i \(-0.663777\pi\)
0.999959 0.00907953i \(-0.00289014\pi\)
\(312\) −5.36515 + 9.29270i −0.303742 + 0.526096i
\(313\) −5.20018 9.00697i −0.293931 0.509104i 0.680804 0.732465i \(-0.261630\pi\)
−0.974736 + 0.223361i \(0.928297\pi\)
\(314\) −17.3907 −0.981417
\(315\) −8.11426 17.5245i −0.457187 0.987392i
\(316\) −13.3746 −0.752382
\(317\) 5.06740 + 8.77699i 0.284613 + 0.492965i 0.972515 0.232839i \(-0.0748015\pi\)
−0.687902 + 0.725804i \(0.741468\pi\)
\(318\) 8.13314 14.0870i 0.456084 0.789960i
\(319\) −2.57894 + 4.46685i −0.144393 + 0.250096i
\(320\) −6.20466 10.7468i −0.346851 0.600764i
\(321\) 10.8328 0.604630
\(322\) −13.2113 28.5326i −0.736236 1.59006i
\(323\) 7.41695 0.412690
\(324\) −38.4310 66.5645i −2.13506 3.69803i
\(325\) 0.500000 0.866025i 0.0277350 0.0480384i
\(326\) 5.02093 8.69650i 0.278083 0.481654i
\(327\) −19.4333 33.6594i −1.07466 1.86137i
\(328\) 34.6726 1.91448
\(329\) 33.3193 + 3.00574i 1.83695 + 0.165712i
\(330\) −6.74338 −0.371211
\(331\) −4.85871 8.41553i −0.267059 0.462559i 0.701042 0.713120i \(-0.252718\pi\)
−0.968101 + 0.250560i \(0.919385\pi\)
\(332\) −9.45878 + 16.3831i −0.519118 + 0.899138i
\(333\) −6.49429 + 11.2484i −0.355885 + 0.616411i
\(334\) 18.6395 + 32.2845i 1.01991 + 1.76653i
\(335\) 14.3089 0.781776
\(336\) −4.52609 + 6.42692i −0.246918 + 0.350617i
\(337\) 10.5702 0.575797 0.287899 0.957661i \(-0.407043\pi\)
0.287899 + 0.957661i \(0.407043\pi\)
\(338\) −1.16558 2.01884i −0.0633991 0.109810i
\(339\) 9.21292 15.9572i 0.500377 0.866679i
\(340\) 3.11785 5.40028i 0.169089 0.292871i
\(341\) −0.915758 1.58614i −0.0495911 0.0858942i
\(342\) 69.5063 3.75847
\(343\) −17.8498 4.93815i −0.963797 0.266635i
\(344\) 31.3650 1.69109
\(345\) 8.18035 + 14.1688i 0.440415 + 0.762821i
\(346\) −5.53846 + 9.59290i −0.297750 + 0.515718i
\(347\) 9.74281 16.8750i 0.523021 0.905899i −0.476620 0.879110i \(-0.658138\pi\)
0.999641 0.0267899i \(-0.00852850\pi\)
\(348\) −31.5338 54.6181i −1.69039 2.92784i
\(349\) 12.7523 0.682617 0.341309 0.939951i \(-0.389130\pi\)
0.341309 + 0.939951i \(0.389130\pi\)
\(350\) 3.55126 5.04268i 0.189823 0.269543i
\(351\) 13.7972 0.736438
\(352\) −2.04115 3.53537i −0.108793 0.188436i
\(353\) −16.1030 + 27.8912i −0.857076 + 1.48450i 0.0176299 + 0.999845i \(0.494388\pi\)
−0.874706 + 0.484654i \(0.838945\pi\)
\(354\) 2.49184 4.31600i 0.132440 0.229393i
\(355\) −8.25619 14.3001i −0.438193 0.758973i
\(356\) 5.65887 0.299919
\(357\) 15.3546 + 1.38514i 0.812652 + 0.0733096i
\(358\) 54.1074 2.85966
\(359\) 16.7790 + 29.0622i 0.885564 + 1.53384i 0.845066 + 0.534662i \(0.179561\pi\)
0.0404980 + 0.999180i \(0.487106\pi\)
\(360\) 12.2027 21.1357i 0.643137 1.11395i
\(361\) 1.15695 2.00389i 0.0608920 0.105468i
\(362\) −2.37795 4.11872i −0.124982 0.216475i
\(363\) 32.6942 1.71600
\(364\) −3.81778 8.24531i −0.200106 0.432172i
\(365\) 15.3008 0.800882
\(366\) −17.6329 30.5410i −0.921684 1.59640i
\(367\) 2.00030 3.46462i 0.104415 0.180852i −0.809084 0.587693i \(-0.800036\pi\)
0.913499 + 0.406841i \(0.133370\pi\)
\(368\) 2.35983 4.08735i 0.123015 0.213068i
\(369\) −37.8462 65.5516i −1.97020 3.41248i
\(370\) −4.14818 −0.215654
\(371\) 2.41706 + 5.22017i 0.125488 + 0.271018i
\(372\) 22.3947 1.16111
\(373\) −1.88335 3.26207i −0.0975164 0.168903i 0.813140 0.582069i \(-0.197757\pi\)
−0.910656 + 0.413165i \(0.864423\pi\)
\(374\) 1.90763 3.30411i 0.0986411 0.170851i
\(375\) −1.60462 + 2.77928i −0.0828621 + 0.143521i
\(376\) 21.1391 + 36.6139i 1.09016 + 1.88822i
\(377\) 5.72225 0.294711
\(378\) 84.7521 + 7.64551i 4.35918 + 0.393242i
\(379\) −20.3320 −1.04438 −0.522191 0.852828i \(-0.674885\pi\)
−0.522191 + 0.852828i \(0.674885\pi\)
\(380\) 7.01431 + 12.1491i 0.359826 + 0.623238i
\(381\) 9.20742 15.9477i 0.471710 0.817026i
\(382\) −4.88957 + 8.46899i −0.250172 + 0.433311i
\(383\) 4.75254 + 8.23163i 0.242843 + 0.420617i 0.961523 0.274724i \(-0.0885866\pi\)
−0.718680 + 0.695341i \(0.755253\pi\)
\(384\) 63.7680 3.25415
\(385\) 1.37314 1.94982i 0.0699816 0.0993719i
\(386\) −2.73409 −0.139161
\(387\) −34.2359 59.2982i −1.74031 3.01430i
\(388\) 25.9814 45.0012i 1.31901 2.28459i
\(389\) −7.32916 + 12.6945i −0.371603 + 0.643635i −0.989812 0.142378i \(-0.954525\pi\)
0.618209 + 0.786014i \(0.287858\pi\)
\(390\) 3.74062 + 6.47894i 0.189414 + 0.328074i
\(391\) −9.25652 −0.468123
\(392\) −7.88607 22.0364i −0.398307 1.11300i
\(393\) −33.5441 −1.69208
\(394\) −19.0541 33.0027i −0.959932 1.66265i
\(395\) −1.94722 + 3.37268i −0.0979751 + 0.169698i
\(396\) 11.2976 19.5681i 0.567727 0.983332i
\(397\) 7.45342 + 12.9097i 0.374077 + 0.647920i 0.990188 0.139739i \(-0.0446264\pi\)
−0.616112 + 0.787659i \(0.711293\pi\)
\(398\) −19.5600 −0.980452
\(399\) −19.9705 + 28.3576i −0.999777 + 1.41966i
\(400\) 0.925786 0.0462893
\(401\) −10.2632 17.7765i −0.512522 0.887714i −0.999895 0.0145201i \(-0.995378\pi\)
0.487372 0.873194i \(-0.337955\pi\)
\(402\) −53.5239 + 92.7062i −2.66953 + 4.62376i
\(403\) −1.01596 + 1.75969i −0.0506085 + 0.0876566i
\(404\) −12.8029 22.1753i −0.636970 1.10326i
\(405\) −22.3807 −1.11211
\(406\) 35.1502 + 3.17091i 1.74447 + 0.157370i
\(407\) −1.60395 −0.0795048
\(408\) 9.74158 + 16.8729i 0.482280 + 0.835334i
\(409\) −12.7256 + 22.0413i −0.629239 + 1.08987i 0.358465 + 0.933543i \(0.383300\pi\)
−0.987705 + 0.156331i \(0.950033\pi\)
\(410\) 12.0870 20.9353i 0.596935 1.03392i
\(411\) −7.03911 12.1921i −0.347214 0.601392i
\(412\) −47.2404 −2.32737
\(413\) 0.740544 + 1.59936i 0.0364398 + 0.0786995i
\(414\) −86.7455 −4.26331
\(415\) 2.75421 + 4.77044i 0.135199 + 0.234172i
\(416\) −2.26449 + 3.92221i −0.111026 + 0.192302i
\(417\) −30.2778 + 52.4427i −1.48271 + 2.56813i
\(418\) 4.29164 + 7.43334i 0.209911 + 0.363576i
\(419\) −22.3064 −1.08974 −0.544869 0.838521i \(-0.683421\pi\)
−0.544869 + 0.838521i \(0.683421\pi\)
\(420\) 12.2522 + 26.4612i 0.597844 + 1.29117i
\(421\) −25.2622 −1.23120 −0.615601 0.788058i \(-0.711087\pi\)
−0.615601 + 0.788058i \(0.711087\pi\)
\(422\) −20.0936 34.8032i −0.978143 1.69419i
\(423\) 46.1479 79.9305i 2.24379 3.88635i
\(424\) −3.63492 + 6.29586i −0.176527 + 0.305754i
\(425\) −0.907858 1.57246i −0.0440376 0.0762753i
\(426\) 123.533 5.98520
\(427\) 12.4213 + 1.12053i 0.601111 + 0.0542264i
\(428\) −11.5925 −0.560346
\(429\) 1.44636 + 2.50517i 0.0698308 + 0.120951i
\(430\) 10.9340 18.9382i 0.527282 0.913280i
\(431\) 11.0563 19.1501i 0.532565 0.922429i −0.466712 0.884409i \(-0.654562\pi\)
0.999277 0.0380200i \(-0.0121051\pi\)
\(432\) 6.38661 + 11.0619i 0.307276 + 0.532218i
\(433\) −23.6558 −1.13683 −0.568413 0.822743i \(-0.692443\pi\)
−0.568413 + 0.822743i \(0.692443\pi\)
\(434\) −7.21586 + 10.2463i −0.346373 + 0.491839i
\(435\) −18.3641 −0.880490
\(436\) 20.7961 + 36.0198i 0.995951 + 1.72504i
\(437\) 10.4123 18.0347i 0.498089 0.862715i
\(438\) −57.2346 + 99.1332i −2.73477 + 4.73677i
\(439\) −7.83532 13.5712i −0.373959 0.647716i 0.616211 0.787581i \(-0.288667\pi\)
−0.990171 + 0.139864i \(0.955333\pi\)
\(440\) 3.01380 0.143677
\(441\) −33.0538 + 38.9627i −1.57399 + 1.85536i
\(442\) −4.23272 −0.201330
\(443\) 1.98860 + 3.44436i 0.0944814 + 0.163647i 0.909392 0.415940i \(-0.136547\pi\)
−0.814911 + 0.579587i \(0.803214\pi\)
\(444\) 9.80608 16.9846i 0.465376 0.806055i
\(445\) 0.823877 1.42700i 0.0390555 0.0676461i
\(446\) 0.0724841 + 0.125546i 0.00343222 + 0.00594478i
\(447\) −15.5925 −0.737502
\(448\) −18.9042 + 26.8434i −0.893140 + 1.26823i
\(449\) 23.9806 1.13172 0.565858 0.824503i \(-0.308545\pi\)
0.565858 + 0.824503i \(0.308545\pi\)
\(450\) −8.50779 14.7359i −0.401061 0.694658i
\(451\) 4.67360 8.09491i 0.220071 0.381174i
\(452\) −9.85900 + 17.0763i −0.463728 + 0.803201i
\(453\) 2.24957 + 3.89637i 0.105694 + 0.183067i
\(454\) 17.2484 0.809508
\(455\) −2.63505 0.237709i −0.123533 0.0111440i
\(456\) −43.8318 −2.05261
\(457\) 18.5123 + 32.0642i 0.865967 + 1.49990i 0.866084 + 0.499899i \(0.166630\pi\)
−0.000116463 1.00000i \(0.500037\pi\)
\(458\) −6.05142 + 10.4814i −0.282764 + 0.489762i
\(459\) 12.5259 21.6954i 0.584657 1.01266i
\(460\) −8.75402 15.1624i −0.408158 0.706951i
\(461\) 1.41759 0.0660239 0.0330119 0.999455i \(-0.489490\pi\)
0.0330119 + 0.999455i \(0.489490\pi\)
\(462\) 7.49637 + 16.1900i 0.348763 + 0.753227i
\(463\) 12.6844 0.589495 0.294747 0.955575i \(-0.404764\pi\)
0.294747 + 0.955575i \(0.404764\pi\)
\(464\) 2.64879 + 4.58784i 0.122967 + 0.212985i
\(465\) 3.26045 5.64727i 0.151200 0.261886i
\(466\) 0.573534 0.993389i 0.0265684 0.0460179i
\(467\) 11.9015 + 20.6140i 0.550735 + 0.953901i 0.998222 + 0.0596102i \(0.0189858\pi\)
−0.447487 + 0.894290i \(0.647681\pi\)
\(468\) −25.0676 −1.15875
\(469\) −15.9066 34.3538i −0.734500 1.58631i
\(470\) 29.4766 1.35966
\(471\) −11.9707 20.7338i −0.551579 0.955363i
\(472\) −1.11367 + 1.92894i −0.0512609 + 0.0887865i
\(473\) 4.22776 7.32269i 0.194392 0.336698i
\(474\) −14.5676 25.2318i −0.669111 1.15893i
\(475\) 4.08486 0.187426
\(476\) −16.4314 1.48228i −0.753132 0.0679402i
\(477\) 15.8705 0.726659
\(478\) −29.4666 51.0377i −1.34777 2.33441i
\(479\) −20.6461 + 35.7600i −0.943343 + 1.63392i −0.184307 + 0.982869i \(0.559004\pi\)
−0.759036 + 0.651049i \(0.774329\pi\)
\(480\) 7.26728 12.5873i 0.331704 0.574529i
\(481\) 0.889726 + 1.54105i 0.0405680 + 0.0702659i
\(482\) 32.3967 1.47563
\(483\) 24.9237 35.3909i 1.13407 1.61034i
\(484\) −34.9870 −1.59032
\(485\) −7.56529 13.1035i −0.343522 0.594998i
\(486\) 35.4728 61.4407i 1.60908 2.78701i
\(487\) −14.8641 + 25.7453i −0.673556 + 1.16663i 0.303333 + 0.952885i \(0.401901\pi\)
−0.976889 + 0.213748i \(0.931433\pi\)
\(488\) 7.88059 + 13.6496i 0.356738 + 0.617888i
\(489\) 13.8243 0.625158
\(490\) −16.0547 2.92035i −0.725275 0.131928i
\(491\) −33.6558 −1.51886 −0.759432 0.650586i \(-0.774523\pi\)
−0.759432 + 0.650586i \(0.774523\pi\)
\(492\) 57.1461 + 98.9799i 2.57634 + 4.46236i
\(493\) 5.19499 8.99799i 0.233971 0.405249i
\(494\) 4.76123 8.24669i 0.214218 0.371036i
\(495\) −3.28965 5.69784i −0.147859 0.256099i
\(496\) −1.88112 −0.0844649
\(497\) −25.1548 + 35.7190i −1.12835 + 1.60222i
\(498\) −41.2098 −1.84666
\(499\) −0.934128 1.61796i −0.0418173 0.0724297i 0.844359 0.535777i \(-0.179981\pi\)
−0.886177 + 0.463348i \(0.846648\pi\)
\(500\) 1.71715 2.97419i 0.0767931 0.133010i
\(501\) −25.6604 + 44.4452i −1.14642 + 1.98566i
\(502\) −11.0241 19.0943i −0.492029 0.852219i
\(503\) −29.0713 −1.29623 −0.648113 0.761544i \(-0.724442\pi\)
−0.648113 + 0.761544i \(0.724442\pi\)
\(504\) −64.3093 5.80136i −2.86457 0.258413i
\(505\) −7.45593 −0.331785
\(506\) −5.35606 9.27697i −0.238106 0.412412i
\(507\) 1.60462 2.77928i 0.0712636 0.123432i
\(508\) −9.85312 + 17.0661i −0.437161 + 0.757186i
\(509\) 2.42337 + 4.19740i 0.107414 + 0.186047i 0.914722 0.404084i \(-0.132410\pi\)
−0.807308 + 0.590131i \(0.799076\pi\)
\(510\) 13.5838 0.601501
\(511\) −17.0094 36.7354i −0.752451 1.62508i
\(512\) −10.3837 −0.458900
\(513\) 28.1797 + 48.8088i 1.24417 + 2.15496i
\(514\) 10.8339 18.7648i 0.477861 0.827680i
\(515\) −6.87775 + 11.9126i −0.303070 + 0.524932i
\(516\) 51.6946 + 89.5376i 2.27573 + 3.94167i
\(517\) 11.3975 0.501262
\(518\) 4.61138 + 9.95927i 0.202613 + 0.437585i
\(519\) −15.2493 −0.669369
\(520\) −1.67178 2.89561i −0.0733125 0.126981i
\(521\) −16.8364 + 29.1614i −0.737614 + 1.27759i 0.215952 + 0.976404i \(0.430714\pi\)
−0.953567 + 0.301182i \(0.902619\pi\)
\(522\) 48.6837 84.3227i 2.13083 3.69071i
\(523\) −13.1048 22.6982i −0.573033 0.992522i −0.996252 0.0864950i \(-0.972433\pi\)
0.423219 0.906027i \(-0.360900\pi\)
\(524\) 35.8965 1.56814
\(525\) 8.45650 + 0.762863i 0.369072 + 0.0332941i
\(526\) −50.4669 −2.20046
\(527\) 1.84469 + 3.19510i 0.0803561 + 0.139181i
\(528\) −1.33902 + 2.31925i −0.0582733 + 0.100932i
\(529\) −1.49481 + 2.58909i −0.0649918 + 0.112569i
\(530\) 2.53429 + 4.38952i 0.110083 + 0.190669i
\(531\) 4.86242 0.211011
\(532\) 21.3710 30.3462i 0.926551 1.31568i
\(533\) −10.3700 −0.449173
\(534\) 6.16362 + 10.6757i 0.266726 + 0.461982i
\(535\) −1.68776 + 2.92329i −0.0729682 + 0.126385i
\(536\) 23.9213 41.4329i 1.03324 1.78963i
\(537\) 37.2440 + 64.5086i 1.60720 + 2.78375i
\(538\) 20.8819 0.900281
\(539\) −6.20774 1.12919i −0.267386 0.0486378i
\(540\) 47.3835 2.03906
\(541\) 6.84491 + 11.8557i 0.294286 + 0.509718i 0.974818 0.223000i \(-0.0715849\pi\)
−0.680533 + 0.732718i \(0.738252\pi\)
\(542\) 28.1794 48.8081i 1.21041 2.09649i
\(543\) 3.27365 5.67013i 0.140486 0.243328i
\(544\) 4.11167 + 7.12161i 0.176286 + 0.305337i
\(545\) 12.1108 0.518771
\(546\) 11.3968 16.1832i 0.487739 0.692575i
\(547\) 26.2312 1.12157 0.560783 0.827963i \(-0.310500\pi\)
0.560783 + 0.827963i \(0.310500\pi\)
\(548\) 7.53275 + 13.0471i 0.321783 + 0.557345i
\(549\) 17.2038 29.7979i 0.734241 1.27174i
\(550\) 1.05062 1.81973i 0.0447986 0.0775934i
\(551\) 11.6873 + 20.2430i 0.497896 + 0.862381i
\(552\) 54.7030 2.32832
\(553\) 10.2620 + 0.925740i 0.436386 + 0.0393665i
\(554\) 38.9267 1.65384
\(555\) −2.85534 4.94560i −0.121202 0.209929i
\(556\) 32.4011 56.1204i 1.37411 2.38003i
\(557\) 2.85616 4.94702i 0.121019 0.209612i −0.799151 0.601131i \(-0.794717\pi\)
0.920170 + 0.391519i \(0.128050\pi\)
\(558\) 17.2871 + 29.9422i 0.731823 + 1.26756i
\(559\) −9.38071 −0.396762
\(560\) −1.02916 2.22270i −0.0434901 0.0939261i
\(561\) 5.25235 0.221754
\(562\) −1.10248 1.90955i −0.0465052 0.0805494i
\(563\) −8.32630 + 14.4216i −0.350912 + 0.607797i −0.986409 0.164306i \(-0.947462\pi\)
0.635498 + 0.772103i \(0.280795\pi\)
\(564\) −69.6812 + 120.691i −2.93411 + 5.08202i
\(565\) 2.87075 + 4.97229i 0.120773 + 0.209186i
\(566\) 49.4566 2.07881
\(567\) 24.8799 + 53.7334i 1.04486 + 2.25659i
\(568\) −55.2102 −2.31657
\(569\) −14.8705 25.7564i −0.623403 1.07977i −0.988847 0.148933i \(-0.952416\pi\)
0.365444 0.930833i \(-0.380917\pi\)
\(570\) −15.2799 + 26.4656i −0.640005 + 1.10852i
\(571\) −3.43094 + 5.94256i −0.143580 + 0.248688i −0.928842 0.370475i \(-0.879195\pi\)
0.785262 + 0.619164i \(0.212528\pi\)
\(572\) −1.54779 2.68085i −0.0647163 0.112092i
\(573\) −13.4627 −0.562411
\(574\) −63.6998 5.74637i −2.65878 0.239849i
\(575\) −5.09800 −0.212601
\(576\) 45.2891 + 78.4430i 1.88705 + 3.26846i
\(577\) 8.50664 14.7339i 0.354136 0.613382i −0.632834 0.774288i \(-0.718108\pi\)
0.986970 + 0.160906i \(0.0514416\pi\)
\(578\) 15.9721 27.6645i 0.664353 1.15069i
\(579\) −1.88197 3.25967i −0.0782120 0.135467i
\(580\) 19.6519 0.816001
\(581\) 8.39147 11.9156i 0.348137 0.494344i
\(582\) 113.195 4.69210
\(583\) 0.979916 + 1.69726i 0.0405840 + 0.0702935i
\(584\) 25.5797 44.3053i 1.05849 1.83337i
\(585\) −3.64960 + 6.32129i −0.150892 + 0.261353i
\(586\) 0.443445 + 0.768069i 0.0183185 + 0.0317286i
\(587\) −18.8520 −0.778104 −0.389052 0.921216i \(-0.627197\pi\)
−0.389052 + 0.921216i \(0.627197\pi\)
\(588\) 49.9097 58.8318i 2.05824 2.42618i
\(589\) −8.30011 −0.342000
\(590\) 0.776460 + 1.34487i 0.0319663 + 0.0553673i
\(591\) 26.2312 45.4339i 1.07901 1.86890i
\(592\) −0.823696 + 1.42668i −0.0338537 + 0.0586363i
\(593\) −14.0049 24.2572i −0.575111 0.996122i −0.996030 0.0890232i \(-0.971625\pi\)
0.420918 0.907099i \(-0.361708\pi\)
\(594\) 28.9911 1.18952
\(595\) −2.76604 + 3.92770i −0.113397 + 0.161020i
\(596\) 16.6860 0.683486
\(597\) −13.4638 23.3200i −0.551037 0.954424i
\(598\) −5.94212 + 10.2921i −0.242991 + 0.420874i
\(599\) 2.85373 4.94280i 0.116600 0.201957i −0.801818 0.597568i \(-0.796134\pi\)
0.918418 + 0.395611i \(0.129467\pi\)
\(600\) 5.36515 + 9.29270i 0.219031 + 0.379373i
\(601\) −28.6217 −1.16750 −0.583752 0.811932i \(-0.698416\pi\)
−0.583752 + 0.811932i \(0.698416\pi\)
\(602\) −57.6231 5.19819i −2.34854 0.211863i
\(603\) −104.443 −4.25326
\(604\) −2.40733 4.16961i −0.0979528 0.169659i
\(605\) −5.09376 + 8.82266i −0.207091 + 0.358692i
\(606\) 27.8898 48.3066i 1.13295 1.96232i
\(607\) 17.2033 + 29.7970i 0.698261 + 1.20942i 0.969069 + 0.246790i \(0.0793759\pi\)
−0.270808 + 0.962633i \(0.587291\pi\)
\(608\) −18.5002 −0.750284
\(609\) 20.4147 + 44.0898i 0.827244 + 1.78661i
\(610\) 10.9888 0.444924
\(611\) −6.32232 10.9506i −0.255774 0.443013i
\(612\) −22.7578 + 39.4177i −0.919931 + 1.59337i
\(613\) 15.5342 26.9060i 0.627420 1.08672i −0.360647 0.932702i \(-0.617444\pi\)
0.988067 0.154022i \(-0.0492225\pi\)
\(614\) 1.21255 + 2.10019i 0.0489344 + 0.0847569i
\(615\) 33.2797 1.34197
\(616\) −3.35033 7.23575i −0.134989 0.291537i
\(617\) 20.0335 0.806518 0.403259 0.915086i \(-0.367877\pi\)
0.403259 + 0.915086i \(0.367877\pi\)
\(618\) −51.4541 89.1210i −2.06979 3.58497i
\(619\) −10.8958 + 18.8721i −0.437941 + 0.758536i −0.997531 0.0702342i \(-0.977625\pi\)
0.559590 + 0.828770i \(0.310959\pi\)
\(620\) −3.48910 + 6.04330i −0.140126 + 0.242705i
\(621\) −35.1690 60.9144i −1.41128 2.44441i
\(622\) −41.7552 −1.67423
\(623\) −4.34191 0.391685i −0.173955 0.0156925i
\(624\) 2.97107 0.118938
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −12.1224 + 20.9967i −0.484510 + 0.839195i
\(627\) −5.90818 + 10.2333i −0.235950 + 0.408677i
\(628\) 12.8101 + 22.1878i 0.511181 + 0.885391i
\(629\) 3.23098 0.128828
\(630\) −25.9213 + 36.8076i −1.03273 + 1.46645i
\(631\) −23.5386 −0.937057 −0.468529 0.883448i \(-0.655216\pi\)
−0.468529 + 0.883448i \(0.655216\pi\)
\(632\) 6.51064 + 11.2768i 0.258979 + 0.448566i
\(633\) 27.6623 47.9126i 1.09948 1.90435i
\(634\) 11.8129 20.4605i 0.469150 0.812592i
\(635\) 2.86904 + 4.96932i 0.113854 + 0.197201i
\(636\) −23.9637 −0.950223
\(637\) 2.35858 + 6.59068i 0.0934504 + 0.261132i
\(638\) 12.0238 0.476028
\(639\) 60.2636 + 104.380i 2.38399 + 4.12919i
\(640\) −9.93507 + 17.2080i −0.392718 + 0.680208i
\(641\) −12.0378 + 20.8501i −0.475465 + 0.823529i −0.999605 0.0281029i \(-0.991053\pi\)
0.524140 + 0.851632i \(0.324387\pi\)
\(642\) −12.6265 21.8698i −0.498329 0.863132i
\(643\) 8.34273 0.329005 0.164503 0.986377i \(-0.447398\pi\)
0.164503 + 0.986377i \(0.447398\pi\)
\(644\) −26.6715 + 37.8728i −1.05101 + 1.49240i
\(645\) 30.1049 1.18538
\(646\) −8.64504 14.9736i −0.340135 0.589130i
\(647\) −10.5292 + 18.2372i −0.413947 + 0.716978i −0.995317 0.0966616i \(-0.969184\pi\)
0.581370 + 0.813639i \(0.302517\pi\)
\(648\) −37.4157 + 64.8059i −1.46983 + 2.54582i
\(649\) 0.300228 + 0.520011i 0.0117850 + 0.0204122i
\(650\) −2.33116 −0.0914355
\(651\) −17.1829 1.55008i −0.673452 0.0607523i
\(652\) −14.7938 −0.579370
\(653\) 3.47340 + 6.01610i 0.135924 + 0.235428i 0.925950 0.377646i \(-0.123266\pi\)
−0.790026 + 0.613074i \(0.789933\pi\)
\(654\) −45.3020 + 78.4653i −1.77145 + 3.06824i
\(655\) 5.22618 9.05200i 0.204204 0.353691i
\(656\) −4.80019 8.31417i −0.187416 0.324614i
\(657\) −111.684 −4.35720
\(658\) −32.7681 70.7697i −1.27743 2.75889i
\(659\) 47.5865 1.85371 0.926853 0.375425i \(-0.122503\pi\)
0.926853 + 0.375425i \(0.122503\pi\)
\(660\) 4.96722 + 8.60348i 0.193349 + 0.334890i
\(661\) −23.5828 + 40.8466i −0.917264 + 1.58875i −0.113711 + 0.993514i \(0.536274\pi\)
−0.803553 + 0.595234i \(0.797060\pi\)
\(662\) −11.3264 + 19.6179i −0.440214 + 0.762472i
\(663\) −2.91353 5.04638i −0.113152 0.195985i
\(664\) 18.4178 0.714748
\(665\) −4.54099 9.80725i −0.176092 0.380309i
\(666\) 30.2784 1.17326
\(667\) −14.5860 25.2637i −0.564773 0.978216i
\(668\) 27.4599 47.5620i 1.06246 1.84023i
\(669\) −0.0997868 + 0.172836i −0.00385798 + 0.00668222i
\(670\) −16.6781 28.8873i −0.644331 1.11601i
\(671\) 4.24897 0.164030
\(672\) −38.2993 3.45499i −1.47743 0.133279i
\(673\) 16.4016 0.632235 0.316118 0.948720i \(-0.397621\pi\)
0.316118 + 0.948720i \(0.397621\pi\)
\(674\) −12.3204 21.3396i −0.474566 0.821972i
\(675\) 6.89858 11.9487i 0.265526 0.459905i
\(676\) −1.71715 + 2.97419i −0.0660441 + 0.114392i
\(677\) 7.35487 + 12.7390i 0.282671 + 0.489600i 0.972042 0.234808i \(-0.0754463\pi\)
−0.689371 + 0.724409i \(0.742113\pi\)
\(678\) −42.9535 −1.64962
\(679\) −23.0497 + 32.7300i −0.884568 + 1.25606i
\(680\) −6.07096 −0.232811
\(681\) 11.8727 + 20.5641i 0.454963 + 0.788019i
\(682\) −2.13477 + 3.69754i −0.0817448 + 0.141586i
\(683\) 9.91744 17.1775i 0.379480 0.657279i −0.611507 0.791239i \(-0.709436\pi\)
0.990987 + 0.133960i \(0.0427695\pi\)
\(684\) −51.1989 88.6790i −1.95764 3.39073i
\(685\) 4.38678 0.167610
\(686\) 10.8360 + 41.7917i 0.413719 + 1.59561i
\(687\) −16.6616 −0.635681
\(688\) −4.34227 7.52103i −0.165547 0.286736i
\(689\) 1.08714 1.88298i 0.0414167 0.0717358i
\(690\) 19.0697 33.0296i 0.725970 1.25742i
\(691\) 2.21156 + 3.83054i 0.0841319 + 0.145721i 0.905021 0.425367i \(-0.139855\pi\)
−0.820889 + 0.571088i \(0.806522\pi\)
\(692\) 16.3187 0.620343
\(693\) −10.0228 + 14.2321i −0.380735 + 0.540633i
\(694\) −45.4240 −1.72427
\(695\) −9.43458 16.3412i −0.357874 0.619856i
\(696\) −30.7007 + 53.1752i −1.16371 + 2.01560i
\(697\) −9.41446 + 16.3063i −0.356598 + 0.617646i
\(698\) −14.8639 25.7450i −0.562605 0.974461i
\(699\) 1.57913 0.0597283
\(700\) −9.04954 0.816361i −0.342040 0.0308556i
\(701\) 17.4977 0.660879 0.330439 0.943827i \(-0.392803\pi\)
0.330439 + 0.943827i \(0.392803\pi\)
\(702\) −16.0817 27.8543i −0.606964 1.05129i
\(703\) −3.63441 + 6.29498i −0.137074 + 0.237420i
\(704\) −5.59271 + 9.68686i −0.210783 + 0.365087i
\(705\) 20.2898 + 35.1430i 0.764159 + 1.32356i
\(706\) 75.0772 2.82557
\(707\) 8.28849 + 17.9008i 0.311721 + 0.673228i
\(708\) −7.34204 −0.275931
\(709\) −6.13499 10.6261i −0.230404 0.399072i 0.727523 0.686084i \(-0.240672\pi\)
−0.957927 + 0.287011i \(0.907338\pi\)
\(710\) −19.2465 + 33.3359i −0.722308 + 1.25107i
\(711\) 14.2131 24.6179i 0.533034 0.923242i
\(712\) −2.75468 4.77125i −0.103236 0.178810i
\(713\) 10.3587 0.387937
\(714\) −15.1006 32.6130i −0.565126 1.22051i
\(715\) −0.901372 −0.0337094
\(716\) −39.8559 69.0324i −1.48948 2.57986i
\(717\) 40.5659 70.2621i 1.51496 2.62399i
\(718\) 39.1146 67.7484i 1.45974 2.52835i
\(719\) −4.30624 7.45863i −0.160596 0.278160i 0.774487 0.632590i \(-0.218008\pi\)
−0.935082 + 0.354430i \(0.884675\pi\)
\(720\) −6.75750 −0.251837
\(721\) 36.2464 + 3.26980i 1.34989 + 0.121774i
\(722\) −5.39405 −0.200746
\(723\) 22.2998 + 38.6243i 0.829338 + 1.43646i
\(724\) −3.50322 + 6.06776i −0.130196 + 0.225507i
\(725\) 2.86113 4.95562i 0.106260 0.184047i
\(726\) −38.1077 66.0044i −1.41431 2.44965i
\(727\) −32.1671 −1.19301 −0.596506 0.802608i \(-0.703445\pi\)
−0.596506 + 0.802608i \(0.703445\pi\)
\(728\) −5.09354 + 7.23269i −0.188779 + 0.268061i
\(729\) 30.5265 1.13061
\(730\) −17.8343 30.8900i −0.660078 1.14329i
\(731\) −8.51635 + 14.7508i −0.314989 + 0.545576i
\(732\) −25.9770 + 44.9934i −0.960137 + 1.66301i
\(733\) −5.09483 8.82451i −0.188182 0.325941i 0.756462 0.654037i \(-0.226926\pi\)
−0.944644 + 0.328097i \(0.893593\pi\)
\(734\) −9.32603 −0.344230
\(735\) −7.56925 21.1511i −0.279196 0.780169i
\(736\) 23.0887 0.851062
\(737\) −6.44880 11.1696i −0.237545 0.411439i
\(738\) −88.2255 + 152.811i −3.24763 + 5.62505i
\(739\) −5.10193 + 8.83680i −0.187677 + 0.325067i −0.944475 0.328582i \(-0.893429\pi\)
0.756798 + 0.653649i \(0.226763\pi\)
\(740\) 3.05558 + 5.29242i 0.112325 + 0.194553i
\(741\) 13.1093 0.481582
\(742\) 7.72141 10.9642i 0.283462 0.402508i
\(743\) 1.13749 0.0417304 0.0208652 0.999782i \(-0.493358\pi\)
0.0208652 + 0.999782i \(0.493358\pi\)
\(744\) −10.9015 18.8820i −0.399670 0.692249i
\(745\) 2.42932 4.20771i 0.0890035 0.154159i
\(746\) −4.39040 + 7.60439i −0.160744 + 0.278416i
\(747\) −20.1036 34.8204i −0.735551 1.27401i
\(748\) −5.62069 −0.205513
\(749\) 8.89467 + 0.802390i 0.325004 + 0.0293187i
\(750\) 7.48124 0.273176
\(751\) −4.92844 8.53631i −0.179841 0.311495i 0.761985 0.647595i \(-0.224225\pi\)
−0.941826 + 0.336101i \(0.890892\pi\)
\(752\) 5.85311 10.1379i 0.213441 0.369691i
\(753\) 15.1765 26.2865i 0.553063 0.957934i
\(754\) −6.66974 11.5523i −0.242897 0.420711i
\(755\) −1.40193 −0.0510216
\(756\) −52.6745 113.762i −1.91575 4.13748i
\(757\) 17.9256 0.651517 0.325759 0.945453i \(-0.394380\pi\)
0.325759 + 0.945453i \(0.394380\pi\)
\(758\) 23.6985 + 41.0470i 0.860768 + 1.49089i
\(759\) 7.37354 12.7713i 0.267642 0.463570i
\(760\) 6.82900 11.8282i 0.247714 0.429053i
\(761\) −12.9813 22.4843i −0.470573 0.815056i 0.528861 0.848708i \(-0.322619\pi\)
−0.999434 + 0.0336528i \(0.989286\pi\)
\(762\) −42.9279 −1.55511
\(763\) −13.4632 29.0766i −0.487399 1.05264i
\(764\) 14.4068 0.521219
\(765\) 6.62664 + 11.4777i 0.239587 + 0.414976i
\(766\) 11.0789 19.1892i 0.400297 0.693335i
\(767\) 0.333079 0.576910i 0.0120268 0.0208310i
\(768\) −34.5021 59.7594i −1.24499 2.15638i
\(769\) 10.9599 0.395224 0.197612 0.980280i \(-0.436681\pi\)
0.197612 + 0.980280i \(0.436681\pi\)
\(770\) −5.53688 0.499483i −0.199535 0.0180001i
\(771\) 29.8293 1.07428
\(772\) 2.01395 + 3.48826i 0.0724835 + 0.125545i
\(773\) 8.18958 14.1848i 0.294559 0.510191i −0.680323 0.732912i \(-0.738161\pi\)
0.974882 + 0.222721i \(0.0714940\pi\)
\(774\) −79.8092 + 138.234i −2.86868 + 4.96870i
\(775\) 1.01596 + 1.75969i 0.0364943 + 0.0632101i
\(776\) −50.5901 −1.81608
\(777\) −8.69958 + 12.3532i −0.312096 + 0.443167i
\(778\) 34.1708 1.22508
\(779\) −21.1799 36.6847i −0.758850 1.31437i
\(780\) 5.51073 9.54487i 0.197316 0.341761i
\(781\) −7.44190 + 12.8898i −0.266292 + 0.461232i
\(782\) 10.7892 + 18.6875i 0.385821 + 0.668262i
\(783\) 78.9508 2.82147
\(784\) −4.19234 + 4.94179i −0.149726 + 0.176492i
\(785\) 7.46013 0.266264
\(786\) 39.0983 + 67.7202i 1.39459 + 2.41550i
\(787\) 14.7390 25.5287i 0.525388 0.909999i −0.474175 0.880431i \(-0.657253\pi\)
0.999563 0.0295681i \(-0.00941319\pi\)
\(788\) −28.0708 + 48.6200i −0.999980 + 1.73202i
\(789\) −34.7382 60.1682i −1.23671 2.14205i
\(790\) 9.07854 0.323000
\(791\) 8.74653 12.4198i 0.310991 0.441598i
\(792\) −21.9983 −0.781676
\(793\) −2.35694 4.08235i −0.0836975 0.144968i
\(794\) 17.3751 30.0946i 0.616619 1.06802i
\(795\) −3.48888 + 6.04292i −0.123738 + 0.214320i
\(796\) 14.4080 + 24.9554i 0.510678 + 0.884520i
\(797\) −0.809099 −0.0286598 −0.0143299 0.999897i \(-0.504561\pi\)
−0.0143299 + 0.999897i \(0.504561\pi\)
\(798\) 80.5267 + 7.26433i 2.85061 + 0.257155i
\(799\) −22.9591 −0.812233
\(800\) 2.26449 + 3.92221i 0.0800617 + 0.138671i
\(801\) −6.01364 + 10.4159i −0.212482 + 0.368029i
\(802\) −23.9252 + 41.4397i −0.844830 + 1.46329i
\(803\) −6.89587 11.9440i −0.243350 0.421495i
\(804\) 157.704 5.56181
\(805\) 5.66726 + 12.2397i 0.199745 + 0.431392i
\(806\) 4.73672 0.166844
\(807\) 14.3737 + 24.8960i 0.505979 + 0.876382i
\(808\) −12.4647 + 21.5895i −0.438507 + 0.759516i
\(809\) 1.67445 2.90023i 0.0588705 0.101967i −0.835088 0.550116i \(-0.814583\pi\)
0.893959 + 0.448150i \(0.147917\pi\)
\(810\) 26.0865 + 45.1832i 0.916587 + 1.58757i
\(811\) −38.7624 −1.36113 −0.680566 0.732687i \(-0.738266\pi\)
−0.680566 + 0.732687i \(0.738266\pi\)
\(812\) −21.8463 47.1818i −0.766655 1.65576i
\(813\) 77.5875 2.72111
\(814\) 1.86953 + 3.23812i 0.0655269 + 0.113496i
\(815\) −2.15383 + 3.73055i −0.0754455 + 0.130675i
\(816\) 2.69731 4.67187i 0.0944247 0.163548i
\(817\) −19.1595 33.1852i −0.670305 1.16100i
\(818\) 59.3306 2.07445
\(819\) 19.2338 + 1.73508i 0.672082 + 0.0606287i
\(820\) −35.6135 −1.24368
\(821\) −0.820826 1.42171i −0.0286470 0.0496181i 0.851346 0.524604i \(-0.175787\pi\)
−0.879993 + 0.474986i \(0.842453\pi\)
\(822\) −16.4093 + 28.4217i −0.572339 + 0.991320i
\(823\) −4.64213 + 8.04040i −0.161814 + 0.280271i −0.935519 0.353275i \(-0.885068\pi\)
0.773705 + 0.633546i \(0.218401\pi\)
\(824\) 22.9962 + 39.8306i 0.801110 + 1.38756i
\(825\) 2.89272 0.100711
\(826\) 2.36570 3.35922i 0.0823132 0.116882i
\(827\) −50.0529 −1.74051 −0.870254 0.492602i \(-0.836046\pi\)
−0.870254 + 0.492602i \(0.836046\pi\)
\(828\) 63.8973 + 110.673i 2.22059 + 3.84617i
\(829\) 7.06768 12.2416i 0.245471 0.425168i −0.716793 0.697286i \(-0.754391\pi\)
0.962264 + 0.272118i \(0.0877242\pi\)
\(830\) 6.42050 11.1206i 0.222859 0.386003i
\(831\) 26.7947 + 46.4097i 0.929497 + 1.60994i
\(832\) 12.4093 0.430216
\(833\) 12.5048 + 2.27464i 0.433266 + 0.0788115i
\(834\) 141.165 4.88813
\(835\) −7.99580 13.8491i −0.276706 0.479269i
\(836\) 6.32250 10.9509i 0.218668 0.378745i
\(837\) −14.0174 + 24.2788i −0.484511 + 0.839197i
\(838\) 25.9998 + 45.0330i 0.898149 + 1.55564i
\(839\) −50.7636 −1.75255 −0.876276 0.481809i \(-0.839980\pi\)
−0.876276 + 0.481809i \(0.839980\pi\)
\(840\) 16.3464 23.2114i 0.564004 0.800870i
\(841\) 3.74418 0.129110
\(842\) 29.4450 + 51.0003i 1.01474 + 1.75759i
\(843\) 1.51775 2.62882i 0.0522740 0.0905413i
\(844\) −29.6022 + 51.2726i −1.01895 + 1.76487i
\(845\) 0.500000 + 0.866025i 0.0172005 + 0.0297922i
\(846\) −215.156 −7.39721
\(847\) 26.8447 + 2.42166i 0.922393 + 0.0832094i
\(848\) 2.01292 0.0691238
\(849\) 34.0427 + 58.9637i 1.16834 + 2.02363i
\(850\) −2.11636 + 3.66564i −0.0725905 + 0.125730i
\(851\) 4.53582 7.85628i 0.155486 0.269310i
\(852\) −90.9953 157.609i −3.11745 5.39958i
\(853\) 21.4362 0.733962 0.366981 0.930228i \(-0.380391\pi\)
0.366981 + 0.930228i \(0.380391\pi\)
\(854\) −12.2159 26.3828i −0.418018 0.902800i
\(855\) −29.8162 −1.01969
\(856\) 5.64313 + 9.77419i 0.192878 + 0.334075i
\(857\) 0.436493 0.756028i 0.0149103 0.0258254i −0.858474 0.512857i \(-0.828587\pi\)
0.873384 + 0.487032i \(0.161920\pi\)
\(858\) 3.37169 5.83994i 0.115108 0.199372i
\(859\) 16.0962 + 27.8794i 0.549195 + 0.951234i 0.998330 + 0.0577698i \(0.0183989\pi\)
−0.449135 + 0.893464i \(0.648268\pi\)
\(860\) −32.2161 −1.09856
\(861\) −36.9958 79.9004i −1.26081 2.72300i
\(862\) −51.5481 −1.75574
\(863\) −14.5939 25.2774i −0.496782 0.860452i 0.503211 0.864164i \(-0.332152\pi\)
−0.999993 + 0.00371138i \(0.998819\pi\)
\(864\) −31.2435 + 54.1153i −1.06293 + 1.84104i
\(865\) 2.37584 4.11508i 0.0807811 0.139917i
\(866\) 27.5727 + 47.7574i 0.936959 + 1.62286i
\(867\) 43.9767 1.49353
\(868\) 18.3879 + 1.65878i 0.624127 + 0.0563027i
\(869\) 3.51033 0.119080
\(870\) 21.4048 + 37.0741i 0.725689 + 1.25693i
\(871\) −7.15443 + 12.3918i −0.242418 + 0.419881i
\(872\) 20.2467 35.0682i 0.685638 1.18756i
\(873\) 55.2206 + 95.6449i 1.86893 + 3.23709i
\(874\) −48.5455 −1.64208
\(875\) −1.52339 + 2.16317i −0.0514999 + 0.0731284i
\(876\) 168.638 5.69774
\(877\) −22.3034 38.6307i −0.753133 1.30446i −0.946297 0.323298i \(-0.895208\pi\)
0.193164 0.981166i \(-0.438125\pi\)
\(878\) −18.2654 + 31.6365i −0.616426 + 1.06768i
\(879\) −0.610478 + 1.05738i −0.0205909 + 0.0356645i
\(880\) −0.417239 0.722679i −0.0140651 0.0243615i
\(881\) −12.5678 −0.423421 −0.211711 0.977332i \(-0.567903\pi\)
−0.211711 + 0.977332i \(0.567903\pi\)
\(882\) 117.186 + 21.3163i 3.94586 + 0.717756i
\(883\) −29.7736 −1.00196 −0.500981 0.865458i \(-0.667027\pi\)
−0.500981 + 0.865458i \(0.667027\pi\)
\(884\) 3.11785 + 5.40028i 0.104865 + 0.181631i
\(885\) −1.06893 + 1.85144i −0.0359317 + 0.0622355i
\(886\) 4.63574 8.02935i 0.155741 0.269751i
\(887\) 14.7932 + 25.6226i 0.496708 + 0.860324i 0.999993 0.00379670i \(-0.00120853\pi\)
−0.503284 + 0.864121i \(0.667875\pi\)
\(888\) −19.0940 −0.640754
\(889\) 8.74131 12.4124i 0.293174 0.416299i
\(890\) −3.84117 −0.128756
\(891\) 10.0867 + 17.4707i 0.337917 + 0.585289i
\(892\) 0.106785 0.184956i 0.00357541 0.00619280i
\(893\) 25.8258 44.7316i 0.864227 1.49689i
\(894\) 18.1743 + 31.4789i 0.607841 + 1.05281i
\(895\) −23.2105 −0.775843
\(896\) 52.3588 + 4.72330i 1.74919 + 0.157795i
\(897\) −16.3607 −0.546268
\(898\) −27.9513 48.4131i −0.932747 1.61556i
\(899\) −5.81358 + 10.0694i −0.193894 + 0.335834i
\(900\) −12.5338 + 21.7092i −0.417793 + 0.723639i
\(901\) −1.97393 3.41895i −0.0657613 0.113902i
\(902\) −21.7898 −0.725521
\(903\) −33.4666 72.2782i −1.11370 2.40527i
\(904\) 19.1971 0.638485
\(905\) 1.02007 + 1.76681i 0.0339083 + 0.0587309i
\(906\) 5.24410 9.08305i 0.174224 0.301764i
\(907\) 15.4069 26.6855i 0.511577 0.886077i −0.488333 0.872657i \(-0.662395\pi\)
0.999910 0.0134199i \(-0.00427181\pi\)
\(908\) −12.7053 22.0062i −0.421640 0.730303i
\(909\) 54.4224 1.80508
\(910\) 2.59146 + 5.59682i 0.0859062 + 0.185533i
\(911\) 10.3932 0.344344 0.172172 0.985067i \(-0.444922\pi\)
0.172172 + 0.985067i \(0.444922\pi\)
\(912\) 6.06820 + 10.5104i 0.200938 + 0.348035i
\(913\) 2.48257 4.29994i 0.0821611 0.142307i
\(914\) 43.1550 74.7466i 1.42744 2.47240i
\(915\) 7.56399 + 13.1012i 0.250058 + 0.433113i
\(916\) 17.8301 0.589122
\(917\) −27.5425 2.48462i −0.909533 0.0820492i
\(918\) −58.3995 −1.92747
\(919\) 24.5383 + 42.5017i 0.809445 + 1.40200i 0.913249 + 0.407403i \(0.133565\pi\)
−0.103803 + 0.994598i \(0.533101\pi\)
\(920\) −8.52275 + 14.7618i −0.280987 + 0.486683i
\(921\) −1.66928 + 2.89128i −0.0550046 + 0.0952708i
\(922\) −1.65232 2.86189i −0.0544161 0.0942515i
\(923\) 16.5124 0.543512
\(924\) 15.1340 21.4899i 0.497872 0.706964i
\(925\) 1.77945 0.0585080
\(926\) −14.7847 25.6078i −0.485855 0.841525i
\(927\) 50.2021 86.9525i 1.64885 2.85590i
\(928\) −12.9580 + 22.4439i −0.425366 + 0.736756i
\(929\) 10.0942 + 17.4836i 0.331180 + 0.573620i 0.982743 0.184974i \(-0.0592201\pi\)
−0.651564 + 0.758594i \(0.725887\pi\)
\(930\) −15.2013 −0.498469
\(931\) −18.4979 + 21.8047i −0.606245 + 0.714621i
\(932\) −1.68988 −0.0553537
\(933\) −28.7416 49.7819i −0.940958 1.62979i
\(934\) 27.7442 48.0544i 0.907819 1.57239i
\(935\) −0.818318 + 1.41737i −0.0267619 + 0.0463529i
\(936\) 12.2027 + 21.1357i 0.398857 + 0.690840i
\(937\) 30.6186 1.00027 0.500133 0.865948i \(-0.333284\pi\)
0.500133 + 0.865948i \(0.333284\pi\)
\(938\) −50.8144 + 72.1550i −1.65915 + 2.35594i
\(939\) −33.3772 −1.08922
\(940\) −21.7127 37.6075i −0.708190 1.22662i
\(941\) 26.7189 46.2785i 0.871012 1.50864i 0.0100604 0.999949i \(-0.496798\pi\)
0.860951 0.508687i \(-0.169869\pi\)
\(942\) −27.9055 + 48.3338i −0.909211 + 1.57480i
\(943\) 26.4331 + 45.7834i 0.860779 + 1.49091i
\(944\) 0.616720 0.0200725
\(945\) −36.3562 3.27970i −1.18267 0.106689i
\(946\) −19.7111 −0.640864
\(947\) 8.61196 + 14.9163i 0.279851 + 0.484716i 0.971347 0.237664i \(-0.0763816\pi\)
−0.691497 + 0.722380i \(0.743048\pi\)
\(948\) −21.4612 + 37.1718i −0.697026 + 1.20729i
\(949\) −7.65042 + 13.2509i −0.248343 + 0.430143i
\(950\) −4.76123 8.24669i −0.154475 0.267558i
\(951\) 32.5249 1.05469
\(952\) 6.74887 + 14.5756i 0.218732 + 0.472399i
\(953\) −3.93429 −0.127444 −0.0637221 0.997968i \(-0.520297\pi\)
−0.0637221 + 0.997968i \(0.520297\pi\)
\(954\) −18.4983 32.0400i −0.598904 1.03733i
\(955\) 2.09749 3.63295i 0.0678731 0.117560i
\(956\) −43.4107 + 75.1895i −1.40400 + 2.43180i
\(957\) 8.27643 + 14.3352i 0.267539 + 0.463391i
\(958\) 96.2584 3.10997
\(959\) −4.87663 10.5321i −0.157474 0.340100i
\(960\) −39.8245 −1.28533
\(961\) 13.4357 + 23.2712i 0.433408 + 0.750685i
\(962\) 2.07409 3.59243i 0.0668714 0.115825i
\(963\) 12.3193 21.3377i 0.396984 0.687596i
\(964\) −23.8636 41.3330i −0.768595 1.33125i
\(965\) 1.17285 0.0377552
\(966\) −100.499 9.06606i −3.23351 0.291696i
\(967\) 48.5386 1.56090 0.780449 0.625220i \(-0.214991\pi\)
0.780449 + 0.625220i \(0.214991\pi\)
\(968\) 17.0313 + 29.4991i 0.547408 + 0.948138i
\(969\) 11.9014 20.6138i 0.382327 0.662210i
\(970\) −17.6359 + 30.5463i −0.566254 + 0.980781i
\(971\) −10.2831 17.8108i −0.330000 0.571577i 0.652511 0.757779i \(-0.273715\pi\)
−0.982511 + 0.186202i \(0.940382\pi\)
\(972\) −104.518 −3.35242
\(973\) −28.7450 + 40.8171i −0.921524 + 1.30854i
\(974\) 69.3010 2.22055
\(975\) −1.60462 2.77928i −0.0513889 0.0890082i
\(976\) 2.18203 3.77938i 0.0698450 0.120975i
\(977\) −15.2593 + 26.4299i −0.488188 + 0.845567i −0.999908 0.0135859i \(-0.995675\pi\)
0.511720 + 0.859153i \(0.329009\pi\)
\(978\) −16.1133 27.9091i −0.515248 0.892435i
\(979\) −1.48524 −0.0474684
\(980\) 8.10006 + 22.6343i 0.258747 + 0.723027i
\(981\) −88.3993 −2.82237
\(982\) 39.2285 + 67.9457i 1.25183 + 2.16823i
\(983\) −3.26711 + 5.65881i −0.104205 + 0.180488i −0.913413 0.407034i \(-0.866563\pi\)
0.809208 + 0.587522i \(0.199896\pi\)
\(984\) 55.6364 96.3650i 1.77362 3.07200i
\(985\) 8.17367 + 14.1572i 0.260435 + 0.451086i
\(986\) −24.2207 −0.771344
\(987\) 61.8185 87.7805i 1.96770 2.79408i
\(988\) −14.0286 −0.446310
\(989\) 23.9114 + 41.4158i 0.760340 + 1.31695i
\(990\) −7.66869 + 13.2826i −0.243727 + 0.422147i
\(991\) −23.6245 + 40.9189i −0.750458 + 1.29983i 0.197142 + 0.980375i \(0.436834\pi\)
−0.947601 + 0.319457i \(0.896499\pi\)
\(992\) −4.60126 7.96961i −0.146090 0.253035i
\(993\) −31.1855 −0.989642
\(994\) 101.431 + 9.15011i 3.21719 + 0.290224i
\(995\) 8.39066 0.266002
\(996\) 30.3555 + 52.5772i 0.961849 + 1.66597i
\(997\) 16.5829 28.7224i 0.525186 0.909648i −0.474384 0.880318i \(-0.657329\pi\)
0.999570 0.0293303i \(-0.00933746\pi\)
\(998\) −2.17760 + 3.77171i −0.0689307 + 0.119391i
\(999\) 12.2757 + 21.2621i 0.388386 + 0.672704i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 455.2.j.g.326.2 yes 20
7.2 even 3 inner 455.2.j.g.261.2 20
7.3 odd 6 3185.2.a.bc.1.9 10
7.4 even 3 3185.2.a.bb.1.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
455.2.j.g.261.2 20 7.2 even 3 inner
455.2.j.g.326.2 yes 20 1.1 even 1 trivial
3185.2.a.bb.1.9 10 7.4 even 3
3185.2.a.bc.1.9 10 7.3 odd 6