Properties

Label 455.2.j
Level $455$
Weight $2$
Character orbit 455.j
Rep. character $\chi_{455}(261,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $7$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(455, [\chi])\).

Total New Old
Modular forms 120 64 56
Cusp forms 104 64 40
Eisenstein series 16 0 16

Trace form

\( 64 q + 4 q^{2} - 28 q^{4} + 4 q^{5} + 8 q^{6} - 24 q^{8} - 36 q^{9} + 8 q^{11} - 20 q^{12} - 8 q^{13} + 16 q^{14} - 4 q^{16} - 4 q^{17} - 24 q^{20} - 20 q^{21} - 40 q^{22} - 4 q^{23} + 28 q^{24} - 32 q^{25}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(455, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
455.2.j.a 455.j 7.c $2$ $3.633$ \(\Q(\sqrt{-3}) \) None 455.2.j.a \(-1\) \(-3\) \(-1\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-3+3\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
455.2.j.b 455.j 7.c $2$ $3.633$ \(\Q(\sqrt{-3}) \) None 455.2.j.b \(1\) \(-2\) \(-1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
455.2.j.c 455.j 7.c $2$ $3.633$ \(\Q(\sqrt{-3}) \) None 455.2.j.c \(1\) \(3\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(3-3\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
455.2.j.d 455.j 7.c $8$ $3.633$ 8.0.42575625.1 None 455.2.j.d \(-1\) \(3\) \(-4\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{2}-\beta _{3}+\beta _{4}-\beta _{5}+\beta _{6}+\beta _{7})q^{2}+\cdots\)
455.2.j.e 455.j 7.c $14$ $3.633$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 455.2.j.e \(2\) \(-1\) \(-7\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{9}q^{2}-\beta _{10}q^{3}+(\beta _{5}-\beta _{10})q^{4}+\cdots\)
455.2.j.f 455.j 7.c $16$ $3.633$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 455.2.j.f \(1\) \(-4\) \(8\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{2}+(-\beta _{4}+\beta _{5})q^{3}+(-\beta _{2}-\beta _{6}+\cdots)q^{4}+\cdots\)
455.2.j.g 455.j 7.c $20$ $3.633$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 455.2.j.g \(1\) \(4\) \(10\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{3})q^{2}-\beta _{12}q^{3}+(-1-\beta _{9}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(455, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(455, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)