Properties

Label 455.2.j.g.261.7
Level $455$
Weight $2$
Character 455.261
Analytic conductor $3.633$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [455,2,Mod(261,455)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("455.261"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(455, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.63319329197\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + 17 x^{18} - 12 x^{17} + 181 x^{16} - 114 x^{15} + 1154 x^{14} - 605 x^{13} + \cdots + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 261.7
Root \(0.633675 + 1.09756i\) of defining polynomial
Character \(\chi\) \(=\) 455.261
Dual form 455.2.j.g.326.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.633675 - 1.09756i) q^{2} +(-0.868620 - 1.50449i) q^{3} +(0.196912 + 0.341062i) q^{4} +(0.500000 - 0.866025i) q^{5} -2.20169 q^{6} +(2.54129 + 0.736100i) q^{7} +3.03381 q^{8} +(-0.00900122 + 0.0155906i) q^{9} +(-0.633675 - 1.09756i) q^{10} +(-0.296227 - 0.513081i) q^{11} +(0.342083 - 0.592506i) q^{12} -1.00000 q^{13} +(2.41826 - 2.32276i) q^{14} -1.73724 q^{15} +(1.52863 - 2.64766i) q^{16} +(0.579124 + 1.00307i) q^{17} +(0.0114077 + 0.0197587i) q^{18} +(2.13104 - 3.69107i) q^{19} +0.393824 q^{20} +(-1.09996 - 4.46275i) q^{21} -0.750848 q^{22} +(-3.36124 + 5.82184i) q^{23} +(-2.63523 - 4.56435i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(-0.633675 + 1.09756i) q^{26} -5.18045 q^{27} +(0.249355 + 1.01168i) q^{28} +0.792739 q^{29} +(-1.10085 + 1.90672i) q^{30} +(-4.37750 - 7.58206i) q^{31} +(1.09651 + 1.89921i) q^{32} +(-0.514618 + 0.891345i) q^{33} +1.46791 q^{34} +(1.90813 - 1.83277i) q^{35} -0.00708979 q^{36} +(0.531172 - 0.920018i) q^{37} +(-2.70077 - 4.67787i) q^{38} +(0.868620 + 1.50449i) q^{39} +(1.51691 - 2.62736i) q^{40} -8.58753 q^{41} +(-5.59514 - 1.62066i) q^{42} +1.48656 q^{43} +(0.116661 - 0.202064i) q^{44} +(0.00900122 + 0.0155906i) q^{45} +(4.25987 + 7.37831i) q^{46} +(-2.41813 + 4.18832i) q^{47} -5.31118 q^{48} +(5.91631 + 3.74129i) q^{49} -1.26735 q^{50} +(1.00608 - 1.74258i) q^{51} +(-0.196912 - 0.341062i) q^{52} +(4.62745 + 8.01498i) q^{53} +(-3.28272 + 5.68584i) q^{54} -0.592455 q^{55} +(7.70980 + 2.23319i) q^{56} -7.40425 q^{57} +(0.502339 - 0.870076i) q^{58} +(7.08234 + 12.2670i) q^{59} +(-0.342083 - 0.592506i) q^{60} +(2.87009 - 4.97115i) q^{61} -11.0957 q^{62} +(-0.0343509 + 0.0329944i) q^{63} +8.89383 q^{64} +(-0.500000 + 0.866025i) q^{65} +(0.652201 + 1.12965i) q^{66} +(0.568626 + 0.984890i) q^{67} +(-0.228073 + 0.395034i) q^{68} +11.6786 q^{69} +(-0.802441 - 3.25566i) q^{70} -6.87452 q^{71} +(-0.0273080 + 0.0472988i) q^{72} +(-1.76014 - 3.04865i) q^{73} +(-0.673181 - 1.16598i) q^{74} +(-0.868620 + 1.50449i) q^{75} +1.67851 q^{76} +(-0.375121 - 1.52194i) q^{77} +2.20169 q^{78} +(-1.55532 + 2.69389i) q^{79} +(-1.52863 - 2.64766i) q^{80} +(4.52684 + 7.84072i) q^{81} +(-5.44170 + 9.42530i) q^{82} +9.21811 q^{83} +(1.30548 - 1.25392i) q^{84} +1.15825 q^{85} +(0.941994 - 1.63158i) q^{86} +(-0.688589 - 1.19267i) q^{87} +(-0.898698 - 1.55659i) q^{88} +(5.50461 - 9.53427i) q^{89} +0.0228154 q^{90} +(-2.54129 - 0.736100i) q^{91} -2.64747 q^{92} +(-7.60477 + 13.1718i) q^{93} +(3.06461 + 5.30807i) q^{94} +(-2.13104 - 3.69107i) q^{95} +(1.90490 - 3.29938i) q^{96} +3.80297 q^{97} +(7.85530 - 4.12273i) q^{98} +0.0106656 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + 4 q^{3} - 13 q^{4} + 10 q^{5} - 18 q^{6} + q^{7} - 6 q^{8} - 14 q^{9} - q^{10} - 7 q^{11} + 7 q^{12} - 20 q^{13} + 3 q^{14} + 8 q^{15} - 7 q^{16} + 6 q^{17} + 5 q^{18} + 10 q^{19} - 26 q^{20}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/455\mathbb{Z}\right)^\times\).

\(n\) \(66\) \(92\) \(106\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.633675 1.09756i 0.448076 0.776090i −0.550185 0.835043i \(-0.685443\pi\)
0.998261 + 0.0589527i \(0.0187761\pi\)
\(3\) −0.868620 1.50449i −0.501498 0.868620i −0.999999 0.00173056i \(-0.999449\pi\)
0.498501 0.866889i \(-0.333884\pi\)
\(4\) 0.196912 + 0.341062i 0.0984560 + 0.170531i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −2.20169 −0.898837
\(7\) 2.54129 + 0.736100i 0.960518 + 0.278220i
\(8\) 3.03381 1.07261
\(9\) −0.00900122 + 0.0155906i −0.00300041 + 0.00519685i
\(10\) −0.633675 1.09756i −0.200386 0.347078i
\(11\) −0.296227 0.513081i −0.0893159 0.154700i 0.817906 0.575352i \(-0.195135\pi\)
−0.907222 + 0.420652i \(0.861801\pi\)
\(12\) 0.342083 0.592506i 0.0987510 0.171042i
\(13\) −1.00000 −0.277350
\(14\) 2.41826 2.32276i 0.646308 0.620785i
\(15\) −1.73724 −0.448553
\(16\) 1.52863 2.64766i 0.382157 0.661915i
\(17\) 0.579124 + 1.00307i 0.140458 + 0.243281i 0.927669 0.373403i \(-0.121809\pi\)
−0.787211 + 0.616684i \(0.788476\pi\)
\(18\) 0.0114077 + 0.0197587i 0.00268882 + 0.00465717i
\(19\) 2.13104 3.69107i 0.488894 0.846788i −0.511025 0.859566i \(-0.670734\pi\)
0.999918 + 0.0127775i \(0.00406732\pi\)
\(20\) 0.393824 0.0880618
\(21\) −1.09996 4.46275i −0.240031 0.973851i
\(22\) −0.750848 −0.160081
\(23\) −3.36124 + 5.82184i −0.700867 + 1.21394i 0.267296 + 0.963615i \(0.413870\pi\)
−0.968162 + 0.250323i \(0.919463\pi\)
\(24\) −2.63523 4.56435i −0.537914 0.931695i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −0.633675 + 1.09756i −0.124274 + 0.215249i
\(27\) −5.18045 −0.996977
\(28\) 0.249355 + 1.01168i 0.0471237 + 0.191190i
\(29\) 0.792739 0.147208 0.0736039 0.997288i \(-0.476550\pi\)
0.0736039 + 0.997288i \(0.476550\pi\)
\(30\) −1.10085 + 1.90672i −0.200986 + 0.348118i
\(31\) −4.37750 7.58206i −0.786223 1.36178i −0.928266 0.371917i \(-0.878701\pi\)
0.142043 0.989860i \(-0.454633\pi\)
\(32\) 1.09651 + 1.89921i 0.193837 + 0.335735i
\(33\) −0.514618 + 0.891345i −0.0895835 + 0.155163i
\(34\) 1.46791 0.251744
\(35\) 1.90813 1.83277i 0.322532 0.309795i
\(36\) −0.00708979 −0.00118163
\(37\) 0.531172 0.920018i 0.0873242 0.151250i −0.819055 0.573715i \(-0.805502\pi\)
0.906379 + 0.422465i \(0.138835\pi\)
\(38\) −2.70077 4.67787i −0.438123 0.758851i
\(39\) 0.868620 + 1.50449i 0.139091 + 0.240912i
\(40\) 1.51691 2.62736i 0.239844 0.415422i
\(41\) −8.58753 −1.34115 −0.670573 0.741843i \(-0.733952\pi\)
−0.670573 + 0.741843i \(0.733952\pi\)
\(42\) −5.59514 1.62066i −0.863348 0.250074i
\(43\) 1.48656 0.226698 0.113349 0.993555i \(-0.463842\pi\)
0.113349 + 0.993555i \(0.463842\pi\)
\(44\) 0.116661 0.202064i 0.0175874 0.0304622i
\(45\) 0.00900122 + 0.0155906i 0.00134182 + 0.00232410i
\(46\) 4.25987 + 7.37831i 0.628083 + 1.08787i
\(47\) −2.41813 + 4.18832i −0.352720 + 0.610929i −0.986725 0.162400i \(-0.948077\pi\)
0.634005 + 0.773329i \(0.281410\pi\)
\(48\) −5.31118 −0.766603
\(49\) 5.91631 + 3.74129i 0.845188 + 0.534469i
\(50\) −1.26735 −0.179230
\(51\) 1.00608 1.74258i 0.140879 0.244010i
\(52\) −0.196912 0.341062i −0.0273068 0.0472967i
\(53\) 4.62745 + 8.01498i 0.635629 + 1.10094i 0.986381 + 0.164474i \(0.0525927\pi\)
−0.350752 + 0.936468i \(0.614074\pi\)
\(54\) −3.28272 + 5.68584i −0.446721 + 0.773744i
\(55\) −0.592455 −0.0798866
\(56\) 7.70980 + 2.23319i 1.03027 + 0.298422i
\(57\) −7.40425 −0.980716
\(58\) 0.502339 0.870076i 0.0659603 0.114247i
\(59\) 7.08234 + 12.2670i 0.922042 + 1.59702i 0.796251 + 0.604966i \(0.206813\pi\)
0.125791 + 0.992057i \(0.459853\pi\)
\(60\) −0.342083 0.592506i −0.0441628 0.0764922i
\(61\) 2.87009 4.97115i 0.367478 0.636490i −0.621693 0.783261i \(-0.713555\pi\)
0.989170 + 0.146771i \(0.0468881\pi\)
\(62\) −11.0957 −1.40915
\(63\) −0.0343509 + 0.0329944i −0.00432781 + 0.00415690i
\(64\) 8.89383 1.11173
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 0.652201 + 1.12965i 0.0802804 + 0.139050i
\(67\) 0.568626 + 0.984890i 0.0694688 + 0.120323i 0.898668 0.438630i \(-0.144536\pi\)
−0.829199 + 0.558954i \(0.811203\pi\)
\(68\) −0.228073 + 0.395034i −0.0276579 + 0.0479049i
\(69\) 11.6786 1.40593
\(70\) −0.802441 3.25566i −0.0959100 0.389126i
\(71\) −6.87452 −0.815855 −0.407927 0.913014i \(-0.633748\pi\)
−0.407927 + 0.913014i \(0.633748\pi\)
\(72\) −0.0273080 + 0.0472988i −0.00321828 + 0.00557422i
\(73\) −1.76014 3.04865i −0.206009 0.356818i 0.744445 0.667684i \(-0.232714\pi\)
−0.950454 + 0.310866i \(0.899381\pi\)
\(74\) −0.673181 1.16598i −0.0782557 0.135543i
\(75\) −0.868620 + 1.50449i −0.100300 + 0.173724i
\(76\) 1.67851 0.192538
\(77\) −0.375121 1.52194i −0.0427490 0.173441i
\(78\) 2.20169 0.249292
\(79\) −1.55532 + 2.69389i −0.174987 + 0.303087i −0.940157 0.340742i \(-0.889322\pi\)
0.765170 + 0.643829i \(0.222655\pi\)
\(80\) −1.52863 2.64766i −0.170906 0.296017i
\(81\) 4.52684 + 7.84072i 0.502982 + 0.871191i
\(82\) −5.44170 + 9.42530i −0.600935 + 1.04085i
\(83\) 9.21811 1.01182 0.505909 0.862587i \(-0.331157\pi\)
0.505909 + 0.862587i \(0.331157\pi\)
\(84\) 1.30548 1.25392i 0.142439 0.136814i
\(85\) 1.15825 0.125630
\(86\) 0.941994 1.63158i 0.101578 0.175938i
\(87\) −0.688589 1.19267i −0.0738245 0.127868i
\(88\) −0.898698 1.55659i −0.0958016 0.165933i
\(89\) 5.50461 9.53427i 0.583488 1.01063i −0.411574 0.911376i \(-0.635021\pi\)
0.995062 0.0992545i \(-0.0316458\pi\)
\(90\) 0.0228154 0.00240495
\(91\) −2.54129 0.736100i −0.266400 0.0771642i
\(92\) −2.64747 −0.276018
\(93\) −7.60477 + 13.1718i −0.788578 + 1.36586i
\(94\) 3.06461 + 5.30807i 0.316091 + 0.547485i
\(95\) −2.13104 3.69107i −0.218640 0.378695i
\(96\) 1.90490 3.29938i 0.194418 0.336741i
\(97\) 3.80297 0.386133 0.193066 0.981186i \(-0.438157\pi\)
0.193066 + 0.981186i \(0.438157\pi\)
\(98\) 7.85530 4.12273i 0.793505 0.416459i
\(99\) 0.0106656 0.00107194
\(100\) 0.196912 0.341062i 0.0196912 0.0341062i
\(101\) 0.742641 + 1.28629i 0.0738955 + 0.127991i 0.900605 0.434638i \(-0.143124\pi\)
−0.826710 + 0.562628i \(0.809790\pi\)
\(102\) −1.27505 2.20846i −0.126249 0.218670i
\(103\) −3.41108 + 5.90817i −0.336104 + 0.582149i −0.983696 0.179838i \(-0.942443\pi\)
0.647592 + 0.761987i \(0.275776\pi\)
\(104\) −3.03381 −0.297490
\(105\) −4.41483 1.27878i −0.430843 0.124796i
\(106\) 11.7292 1.13924
\(107\) −1.57687 + 2.73122i −0.152442 + 0.264037i −0.932125 0.362138i \(-0.882047\pi\)
0.779683 + 0.626175i \(0.215380\pi\)
\(108\) −1.02009 1.76685i −0.0981584 0.170015i
\(109\) 7.47123 + 12.9406i 0.715614 + 1.23948i 0.962722 + 0.270492i \(0.0871865\pi\)
−0.247108 + 0.968988i \(0.579480\pi\)
\(110\) −0.375424 + 0.650253i −0.0357953 + 0.0619992i
\(111\) −1.84555 −0.175172
\(112\) 5.83363 5.60325i 0.551226 0.529457i
\(113\) −1.21550 −0.114345 −0.0571724 0.998364i \(-0.518208\pi\)
−0.0571724 + 0.998364i \(0.518208\pi\)
\(114\) −4.69189 + 8.12658i −0.439435 + 0.761124i
\(115\) 3.36124 + 5.82184i 0.313437 + 0.542889i
\(116\) 0.156100 + 0.270373i 0.0144935 + 0.0251035i
\(117\) 0.00900122 0.0155906i 0.000832163 0.00144135i
\(118\) 17.9516 1.65258
\(119\) 0.733361 + 2.97539i 0.0672271 + 0.272754i
\(120\) −5.27046 −0.481125
\(121\) 5.32450 9.22230i 0.484045 0.838391i
\(122\) −3.63741 6.30018i −0.329316 0.570392i
\(123\) 7.45930 + 12.9199i 0.672582 + 1.16495i
\(124\) 1.72397 2.98600i 0.154817 0.268150i
\(125\) −1.00000 −0.0894427
\(126\) 0.0144459 + 0.0586098i 0.00128694 + 0.00522137i
\(127\) −19.6600 −1.74454 −0.872272 0.489022i \(-0.837354\pi\)
−0.872272 + 0.489022i \(0.837354\pi\)
\(128\) 3.44278 5.96307i 0.304302 0.527066i
\(129\) −1.29125 2.23652i −0.113689 0.196914i
\(130\) 0.633675 + 1.09756i 0.0555770 + 0.0962621i
\(131\) −7.69543 + 13.3289i −0.672353 + 1.16455i 0.304882 + 0.952390i \(0.401383\pi\)
−0.977235 + 0.212160i \(0.931950\pi\)
\(132\) −0.405338 −0.0352801
\(133\) 8.13258 7.81141i 0.705184 0.677335i
\(134\) 1.44130 0.124509
\(135\) −2.59022 + 4.48640i −0.222931 + 0.386128i
\(136\) 1.75695 + 3.04313i 0.150658 + 0.260947i
\(137\) 6.15179 + 10.6552i 0.525583 + 0.910336i 0.999556 + 0.0297970i \(0.00948608\pi\)
−0.473973 + 0.880539i \(0.657181\pi\)
\(138\) 7.40041 12.8179i 0.629965 1.09113i
\(139\) −15.8383 −1.34339 −0.671693 0.740830i \(-0.734433\pi\)
−0.671693 + 0.740830i \(0.734433\pi\)
\(140\) 1.00082 + 0.289894i 0.0845849 + 0.0245005i
\(141\) 8.40173 0.707554
\(142\) −4.35621 + 7.54517i −0.365565 + 0.633177i
\(143\) 0.296227 + 0.513081i 0.0247718 + 0.0429060i
\(144\) 0.0275190 + 0.0476643i 0.00229325 + 0.00397203i
\(145\) 0.396369 0.686532i 0.0329167 0.0570134i
\(146\) −4.46143 −0.369230
\(147\) 0.489713 12.1508i 0.0403909 1.00218i
\(148\) 0.418377 0.0343904
\(149\) −5.80544 + 10.0553i −0.475600 + 0.823763i −0.999609 0.0279493i \(-0.991102\pi\)
0.524009 + 0.851712i \(0.324436\pi\)
\(150\) 1.10085 + 1.90672i 0.0898837 + 0.155683i
\(151\) −8.68058 15.0352i −0.706416 1.22355i −0.966178 0.257875i \(-0.916978\pi\)
0.259763 0.965672i \(-0.416356\pi\)
\(152\) 6.46517 11.1980i 0.524394 0.908278i
\(153\) −0.0208513 −0.00168573
\(154\) −1.90812 0.552699i −0.153761 0.0445377i
\(155\) −8.75500 −0.703219
\(156\) −0.342083 + 0.592506i −0.0273886 + 0.0474384i
\(157\) 5.40499 + 9.36173i 0.431366 + 0.747147i 0.996991 0.0775151i \(-0.0246986\pi\)
−0.565626 + 0.824662i \(0.691365\pi\)
\(158\) 1.97114 + 3.41411i 0.156815 + 0.271612i
\(159\) 8.03899 13.9239i 0.637534 1.10424i
\(160\) 2.19301 0.173373
\(161\) −12.8273 + 12.3208i −1.01094 + 0.971013i
\(162\) 11.4742 0.901497
\(163\) 1.36714 2.36795i 0.107082 0.185472i −0.807505 0.589861i \(-0.799182\pi\)
0.914587 + 0.404389i \(0.132516\pi\)
\(164\) −1.69099 2.92888i −0.132044 0.228707i
\(165\) 0.514618 + 0.891345i 0.0400630 + 0.0693911i
\(166\) 5.84129 10.1174i 0.453372 0.785263i
\(167\) −21.5563 −1.66807 −0.834037 0.551709i \(-0.813976\pi\)
−0.834037 + 0.551709i \(0.813976\pi\)
\(168\) −3.33707 13.5391i −0.257460 1.04457i
\(169\) 1.00000 0.0769231
\(170\) 0.733953 1.27124i 0.0562916 0.0974999i
\(171\) 0.0383639 + 0.0664481i 0.00293376 + 0.00508142i
\(172\) 0.292721 + 0.507008i 0.0223198 + 0.0386590i
\(173\) −0.340464 + 0.589701i −0.0258850 + 0.0448342i −0.878678 0.477415i \(-0.841574\pi\)
0.852793 + 0.522250i \(0.174907\pi\)
\(174\) −1.74537 −0.132316
\(175\) −0.633164 2.56887i −0.0478627 0.194188i
\(176\) −1.81128 −0.136531
\(177\) 12.3037 21.3107i 0.924804 1.60181i
\(178\) −6.97627 12.0833i −0.522894 0.905679i
\(179\) −10.4899 18.1690i −0.784050 1.35802i −0.929565 0.368659i \(-0.879817\pi\)
0.145514 0.989356i \(-0.453516\pi\)
\(180\) −0.00354490 + 0.00613994i −0.000264221 + 0.000457644i
\(181\) −10.4730 −0.778449 −0.389224 0.921143i \(-0.627257\pi\)
−0.389224 + 0.921143i \(0.627257\pi\)
\(182\) −2.41826 + 2.32276i −0.179254 + 0.172175i
\(183\) −9.97208 −0.737157
\(184\) −10.1974 + 17.6624i −0.751760 + 1.30209i
\(185\) −0.531172 0.920018i −0.0390526 0.0676410i
\(186\) 9.63791 + 16.6933i 0.706686 + 1.22402i
\(187\) 0.343105 0.594275i 0.0250903 0.0434577i
\(188\) −1.90463 −0.138910
\(189\) −13.1650 3.81332i −0.957614 0.277378i
\(190\) −5.40154 −0.391869
\(191\) 3.56022 6.16648i 0.257608 0.446191i −0.707992 0.706220i \(-0.750399\pi\)
0.965601 + 0.260029i \(0.0837322\pi\)
\(192\) −7.72535 13.3807i −0.557529 0.965669i
\(193\) 7.77034 + 13.4586i 0.559321 + 0.968772i 0.997553 + 0.0699106i \(0.0222714\pi\)
−0.438232 + 0.898862i \(0.644395\pi\)
\(194\) 2.40984 4.17397i 0.173017 0.299674i
\(195\) 1.73724 0.124406
\(196\) −0.111016 + 2.75453i −0.00792969 + 0.196752i
\(197\) 11.9733 0.853064 0.426532 0.904472i \(-0.359735\pi\)
0.426532 + 0.904472i \(0.359735\pi\)
\(198\) 0.00675854 0.0117061i 0.000480309 0.000831919i
\(199\) 7.97032 + 13.8050i 0.565001 + 0.978611i 0.997050 + 0.0767603i \(0.0244576\pi\)
−0.432048 + 0.901850i \(0.642209\pi\)
\(200\) −1.51691 2.62736i −0.107261 0.185782i
\(201\) 0.987841 1.71099i 0.0696769 0.120684i
\(202\) 1.88237 0.132443
\(203\) 2.01458 + 0.583535i 0.141396 + 0.0409561i
\(204\) 0.792435 0.0554816
\(205\) −4.29376 + 7.43702i −0.299889 + 0.519424i
\(206\) 4.32304 + 7.48772i 0.301200 + 0.521694i
\(207\) −0.0605105 0.104807i −0.00420577 0.00728461i
\(208\) −1.52863 + 2.64766i −0.105991 + 0.183582i
\(209\) −2.52509 −0.174664
\(210\) −4.20110 + 4.03520i −0.289904 + 0.278455i
\(211\) 0.594297 0.0409131 0.0204565 0.999791i \(-0.493488\pi\)
0.0204565 + 0.999791i \(0.493488\pi\)
\(212\) −1.82240 + 3.15649i −0.125163 + 0.216789i
\(213\) 5.97134 + 10.3427i 0.409150 + 0.708668i
\(214\) 1.99845 + 3.46141i 0.136611 + 0.236617i
\(215\) 0.743279 1.28740i 0.0506912 0.0877997i
\(216\) −15.7165 −1.06937
\(217\) −5.54336 22.4905i −0.376307 1.52675i
\(218\) 18.9373 1.28260
\(219\) −3.05779 + 5.29624i −0.206626 + 0.357887i
\(220\) −0.116661 0.202064i −0.00786532 0.0136231i
\(221\) −0.579124 1.00307i −0.0389561 0.0674740i
\(222\) −1.16948 + 2.02559i −0.0784902 + 0.135949i
\(223\) −26.3653 −1.76555 −0.882776 0.469794i \(-0.844328\pi\)
−0.882776 + 0.469794i \(0.844328\pi\)
\(224\) 1.38854 + 5.63357i 0.0927756 + 0.376409i
\(225\) 0.0180024 0.00120016
\(226\) −0.770234 + 1.33408i −0.0512352 + 0.0887419i
\(227\) 11.7950 + 20.4295i 0.782862 + 1.35596i 0.930268 + 0.366880i \(0.119574\pi\)
−0.147407 + 0.989076i \(0.547093\pi\)
\(228\) −1.45799 2.52531i −0.0965575 0.167242i
\(229\) 14.3829 24.9119i 0.950447 1.64622i 0.205988 0.978554i \(-0.433959\pi\)
0.744459 0.667668i \(-0.232708\pi\)
\(230\) 8.51973 0.561775
\(231\) −1.96391 + 1.88636i −0.129216 + 0.124113i
\(232\) 2.40502 0.157897
\(233\) 1.57069 2.72052i 0.102899 0.178227i −0.809979 0.586459i \(-0.800521\pi\)
0.912878 + 0.408232i \(0.133855\pi\)
\(234\) −0.0114077 0.0197587i −0.000745744 0.00129167i
\(235\) 2.41813 + 4.18832i 0.157741 + 0.273216i
\(236\) −2.78920 + 4.83103i −0.181561 + 0.314473i
\(237\) 5.40393 0.351023
\(238\) 3.73038 + 1.08053i 0.241804 + 0.0700400i
\(239\) 12.6810 0.820264 0.410132 0.912026i \(-0.365483\pi\)
0.410132 + 0.912026i \(0.365483\pi\)
\(240\) −2.65559 + 4.59962i −0.171418 + 0.296904i
\(241\) 10.9699 + 19.0004i 0.706631 + 1.22392i 0.966100 + 0.258169i \(0.0831191\pi\)
−0.259469 + 0.965751i \(0.583548\pi\)
\(242\) −6.74800 11.6879i −0.433778 0.751326i
\(243\) 0.0935421 0.162020i 0.00600073 0.0103936i
\(244\) 2.26062 0.144722
\(245\) 6.19821 3.25304i 0.395989 0.207829i
\(246\) 18.9071 1.20547
\(247\) −2.13104 + 3.69107i −0.135595 + 0.234857i
\(248\) −13.2805 23.0025i −0.843314 1.46066i
\(249\) −8.00703 13.8686i −0.507425 0.878886i
\(250\) −0.633675 + 1.09756i −0.0400771 + 0.0694156i
\(251\) 6.62840 0.418381 0.209190 0.977875i \(-0.432917\pi\)
0.209190 + 0.977875i \(0.432917\pi\)
\(252\) −0.0180172 0.00521879i −0.00113498 0.000328753i
\(253\) 3.98277 0.250394
\(254\) −12.4581 + 21.5780i −0.781688 + 1.35392i
\(255\) −1.00608 1.74258i −0.0630030 0.109124i
\(256\) 4.53062 + 7.84726i 0.283164 + 0.490454i
\(257\) 2.19610 3.80375i 0.136989 0.237272i −0.789367 0.613922i \(-0.789591\pi\)
0.926355 + 0.376650i \(0.122924\pi\)
\(258\) −3.27294 −0.203764
\(259\) 2.02709 1.94704i 0.125957 0.120983i
\(260\) −0.393824 −0.0244239
\(261\) −0.00713561 + 0.0123592i −0.000441683 + 0.000765018i
\(262\) 9.75281 + 16.8924i 0.602531 + 1.04361i
\(263\) −15.2072 26.3396i −0.937714 1.62417i −0.769721 0.638381i \(-0.779605\pi\)
−0.167993 0.985788i \(-0.553729\pi\)
\(264\) −1.56125 + 2.70417i −0.0960886 + 0.166430i
\(265\) 9.25490 0.568524
\(266\) −3.42006 13.8759i −0.209697 0.850784i
\(267\) −19.1257 −1.17047
\(268\) −0.223939 + 0.387873i −0.0136792 + 0.0236931i
\(269\) −9.46940 16.4015i −0.577360 1.00002i −0.995781 0.0917630i \(-0.970750\pi\)
0.418421 0.908253i \(-0.362584\pi\)
\(270\) 3.28272 + 5.68584i 0.199780 + 0.346029i
\(271\) 9.94216 17.2203i 0.603943 1.04606i −0.388274 0.921544i \(-0.626929\pi\)
0.992218 0.124516i \(-0.0397379\pi\)
\(272\) 3.54106 0.214708
\(273\) 1.09996 + 4.46275i 0.0665725 + 0.270098i
\(274\) 15.5929 0.942004
\(275\) −0.296227 + 0.513081i −0.0178632 + 0.0309399i
\(276\) 2.29965 + 3.98311i 0.138423 + 0.239755i
\(277\) −10.9688 18.9986i −0.659054 1.14151i −0.980861 0.194710i \(-0.937624\pi\)
0.321807 0.946805i \(-0.395710\pi\)
\(278\) −10.0363 + 17.3834i −0.601939 + 1.04259i
\(279\) 0.157611 0.00943594
\(280\) 5.78890 5.56029i 0.345953 0.332291i
\(281\) −15.8032 −0.942738 −0.471369 0.881936i \(-0.656240\pi\)
−0.471369 + 0.881936i \(0.656240\pi\)
\(282\) 5.32397 9.22138i 0.317038 0.549125i
\(283\) −4.45262 7.71216i −0.264681 0.458440i 0.702799 0.711388i \(-0.251933\pi\)
−0.967480 + 0.252948i \(0.918600\pi\)
\(284\) −1.35367 2.34463i −0.0803258 0.139128i
\(285\) −3.70212 + 6.41227i −0.219295 + 0.379830i
\(286\) 0.750848 0.0443985
\(287\) −21.8234 6.32128i −1.28819 0.373133i
\(288\) −0.0394796 −0.00232636
\(289\) 7.82923 13.5606i 0.460543 0.797684i
\(290\) −0.502339 0.870076i −0.0294983 0.0510926i
\(291\) −3.30333 5.72154i −0.193645 0.335403i
\(292\) 0.693186 1.20063i 0.0405656 0.0702617i
\(293\) 3.39480 0.198326 0.0991632 0.995071i \(-0.468383\pi\)
0.0991632 + 0.995071i \(0.468383\pi\)
\(294\) −13.0259 8.23716i −0.759686 0.480401i
\(295\) 14.1647 0.824699
\(296\) 1.61148 2.79116i 0.0936652 0.162233i
\(297\) 1.53459 + 2.65799i 0.0890459 + 0.154232i
\(298\) 7.35752 + 12.7436i 0.426210 + 0.738217i
\(299\) 3.36124 5.82184i 0.194386 0.336686i
\(300\) −0.684167 −0.0395004
\(301\) 3.77778 + 1.09425i 0.217747 + 0.0630718i
\(302\) −22.0027 −1.26611
\(303\) 1.29014 2.23460i 0.0741169 0.128374i
\(304\) −6.51512 11.2845i −0.373668 0.647212i
\(305\) −2.87009 4.97115i −0.164341 0.284647i
\(306\) −0.0132129 + 0.0228855i −0.000755333 + 0.00130828i
\(307\) 1.67003 0.0953135 0.0476567 0.998864i \(-0.484825\pi\)
0.0476567 + 0.998864i \(0.484825\pi\)
\(308\) 0.445210 0.427628i 0.0253682 0.0243664i
\(309\) 11.8517 0.674222
\(310\) −5.54783 + 9.60912i −0.315095 + 0.545761i
\(311\) −5.69952 9.87186i −0.323190 0.559782i 0.657954 0.753058i \(-0.271422\pi\)
−0.981144 + 0.193276i \(0.938089\pi\)
\(312\) 2.63523 + 4.56435i 0.149191 + 0.258406i
\(313\) 3.54764 6.14470i 0.200525 0.347319i −0.748173 0.663504i \(-0.769069\pi\)
0.948698 + 0.316185i \(0.102402\pi\)
\(314\) 13.7000 0.773138
\(315\) 0.0113985 + 0.0462459i 0.000642232 + 0.00260566i
\(316\) −1.22505 −0.0689142
\(317\) 12.2516 21.2204i 0.688119 1.19186i −0.284327 0.958727i \(-0.591770\pi\)
0.972446 0.233129i \(-0.0748966\pi\)
\(318\) −10.1882 17.6465i −0.571327 0.989567i
\(319\) −0.234831 0.406739i −0.0131480 0.0227730i
\(320\) 4.44691 7.70228i 0.248590 0.430570i
\(321\) 5.47880 0.305797
\(322\) 5.39439 + 21.8861i 0.300618 + 1.21967i
\(323\) 4.93654 0.274676
\(324\) −1.78278 + 3.08786i −0.0990433 + 0.171548i
\(325\) 0.500000 + 0.866025i 0.0277350 + 0.0480384i
\(326\) −1.73264 3.00102i −0.0959621 0.166211i
\(327\) 12.9793 22.4808i 0.717758 1.24319i
\(328\) −26.0530 −1.43853
\(329\) −9.22818 + 8.86375i −0.508766 + 0.488675i
\(330\) 1.30440 0.0718050
\(331\) −3.62560 + 6.27973i −0.199281 + 0.345165i −0.948296 0.317389i \(-0.897194\pi\)
0.749014 + 0.662554i \(0.230527\pi\)
\(332\) 1.81516 + 3.14394i 0.0996197 + 0.172546i
\(333\) 0.00956239 + 0.0165626i 0.000524016 + 0.000907622i
\(334\) −13.6597 + 23.6592i −0.747423 + 1.29458i
\(335\) 1.13725 0.0621348
\(336\) −13.4973 3.90956i −0.736336 0.213284i
\(337\) 14.4260 0.785835 0.392918 0.919574i \(-0.371466\pi\)
0.392918 + 0.919574i \(0.371466\pi\)
\(338\) 0.633675 1.09756i 0.0344674 0.0596992i
\(339\) 1.05581 + 1.82872i 0.0573437 + 0.0993222i
\(340\) 0.228073 + 0.395034i 0.0123690 + 0.0214237i
\(341\) −2.59347 + 4.49202i −0.140444 + 0.243257i
\(342\) 0.0972409 0.00525818
\(343\) 12.2811 + 13.8627i 0.663118 + 0.748515i
\(344\) 4.50994 0.243160
\(345\) 5.83928 10.1139i 0.314376 0.544516i
\(346\) 0.431487 + 0.747358i 0.0231969 + 0.0401782i
\(347\) 0.169742 + 0.294001i 0.00911222 + 0.0157828i 0.870546 0.492088i \(-0.163766\pi\)
−0.861433 + 0.507871i \(0.830433\pi\)
\(348\) 0.271183 0.469702i 0.0145369 0.0251787i
\(349\) 18.3725 0.983459 0.491729 0.870748i \(-0.336365\pi\)
0.491729 + 0.870748i \(0.336365\pi\)
\(350\) −3.22070 0.932896i −0.172154 0.0498654i
\(351\) 5.18045 0.276512
\(352\) 0.649631 1.12519i 0.0346254 0.0599730i
\(353\) 8.74824 + 15.1524i 0.465622 + 0.806480i 0.999229 0.0392518i \(-0.0124974\pi\)
−0.533608 + 0.845732i \(0.679164\pi\)
\(354\) −15.5931 27.0081i −0.828765 1.43546i
\(355\) −3.43726 + 5.95350i −0.182431 + 0.315979i
\(356\) 4.33570 0.229792
\(357\) 3.83945 3.68782i 0.203205 0.195180i
\(358\) −26.5887 −1.40526
\(359\) −5.07337 + 8.78734i −0.267762 + 0.463778i −0.968284 0.249853i \(-0.919618\pi\)
0.700521 + 0.713632i \(0.252951\pi\)
\(360\) 0.0273080 + 0.0472988i 0.00143926 + 0.00249287i
\(361\) 0.417358 + 0.722886i 0.0219662 + 0.0380466i
\(362\) −6.63645 + 11.4947i −0.348804 + 0.604146i
\(363\) −18.4999 −0.970991
\(364\) −0.249355 1.01168i −0.0130698 0.0530266i
\(365\) −3.52028 −0.184260
\(366\) −6.31906 + 10.9449i −0.330302 + 0.572101i
\(367\) 7.79248 + 13.4970i 0.406764 + 0.704536i 0.994525 0.104498i \(-0.0333237\pi\)
−0.587761 + 0.809035i \(0.699990\pi\)
\(368\) 10.2762 + 17.7988i 0.535682 + 0.927829i
\(369\) 0.0772982 0.133884i 0.00402398 0.00696974i
\(370\) −1.34636 −0.0699941
\(371\) 5.85987 + 23.7747i 0.304230 + 1.23432i
\(372\) −5.98988 −0.310561
\(373\) −3.87479 + 6.71134i −0.200629 + 0.347500i −0.948731 0.316084i \(-0.897632\pi\)
0.748102 + 0.663584i \(0.230965\pi\)
\(374\) −0.434834 0.753154i −0.0224847 0.0389447i
\(375\) 0.868620 + 1.50449i 0.0448553 + 0.0776917i
\(376\) −7.33615 + 12.7066i −0.378333 + 0.655292i
\(377\) −0.792739 −0.0408281
\(378\) −12.5277 + 12.0330i −0.644354 + 0.618908i
\(379\) 22.6740 1.16469 0.582343 0.812943i \(-0.302136\pi\)
0.582343 + 0.812943i \(0.302136\pi\)
\(380\) 0.839254 1.45363i 0.0430528 0.0745697i
\(381\) 17.0771 + 29.5784i 0.874885 + 1.51535i
\(382\) −4.51204 7.81509i −0.230856 0.399855i
\(383\) −0.935006 + 1.61948i −0.0477766 + 0.0827514i −0.888925 0.458053i \(-0.848547\pi\)
0.841148 + 0.540805i \(0.181880\pi\)
\(384\) −11.9619 −0.610427
\(385\) −1.50560 0.436106i −0.0767325 0.0222260i
\(386\) 19.6955 1.00247
\(387\) −0.0133808 + 0.0231763i −0.000680186 + 0.00117812i
\(388\) 0.748850 + 1.29705i 0.0380171 + 0.0658476i
\(389\) −13.5749 23.5124i −0.688274 1.19212i −0.972396 0.233337i \(-0.925036\pi\)
0.284122 0.958788i \(-0.408298\pi\)
\(390\) 1.10085 1.90672i 0.0557435 0.0965505i
\(391\) −7.78630 −0.393770
\(392\) 17.9490 + 11.3504i 0.906561 + 0.573280i
\(393\) 26.7376 1.34874
\(394\) 7.58720 13.1414i 0.382238 0.662055i
\(395\) 1.55532 + 2.69389i 0.0782567 + 0.135545i
\(396\) 0.00210019 + 0.00363764i 0.000105539 + 0.000182798i
\(397\) −3.16012 + 5.47349i −0.158602 + 0.274706i −0.934365 0.356318i \(-0.884032\pi\)
0.775763 + 0.631024i \(0.217365\pi\)
\(398\) 20.2024 1.01265
\(399\) −18.8163 5.45026i −0.941995 0.272854i
\(400\) −3.05725 −0.152863
\(401\) 8.16164 14.1364i 0.407573 0.705937i −0.587044 0.809555i \(-0.699709\pi\)
0.994617 + 0.103618i \(0.0330418\pi\)
\(402\) −1.25194 2.16842i −0.0624411 0.108151i
\(403\) 4.37750 + 7.58206i 0.218059 + 0.377689i
\(404\) −0.292470 + 0.506573i −0.0145509 + 0.0252029i
\(405\) 9.05368 0.449881
\(406\) 1.91705 1.84134i 0.0951417 0.0913844i
\(407\) −0.629391 −0.0311978
\(408\) 3.05225 5.28665i 0.151109 0.261728i
\(409\) 4.92271 + 8.52639i 0.243412 + 0.421603i 0.961684 0.274160i \(-0.0883998\pi\)
−0.718272 + 0.695763i \(0.755066\pi\)
\(410\) 5.44170 + 9.42530i 0.268746 + 0.465483i
\(411\) 10.6871 18.5107i 0.527158 0.913064i
\(412\) −2.68673 −0.132366
\(413\) 8.96856 + 36.3872i 0.441314 + 1.79050i
\(414\) −0.153376 −0.00753802
\(415\) 4.60905 7.98312i 0.226250 0.391876i
\(416\) −1.09651 1.89921i −0.0537607 0.0931163i
\(417\) 13.7575 + 23.8286i 0.673705 + 1.16689i
\(418\) −1.60008 + 2.77143i −0.0782627 + 0.135555i
\(419\) −3.53691 −0.172789 −0.0863946 0.996261i \(-0.527535\pi\)
−0.0863946 + 0.996261i \(0.527535\pi\)
\(420\) −0.433190 1.75754i −0.0211375 0.0857590i
\(421\) −12.6472 −0.616388 −0.308194 0.951323i \(-0.599725\pi\)
−0.308194 + 0.951323i \(0.599725\pi\)
\(422\) 0.376591 0.652275i 0.0183322 0.0317522i
\(423\) −0.0435322 0.0753999i −0.00211661 0.00366607i
\(424\) 14.0388 + 24.3160i 0.681786 + 1.18089i
\(425\) 0.579124 1.00307i 0.0280916 0.0486562i
\(426\) 15.1356 0.733320
\(427\) 10.9530 10.5205i 0.530053 0.509121i
\(428\) −1.24202 −0.0600352
\(429\) 0.514618 0.891345i 0.0248460 0.0430345i
\(430\) −0.941994 1.63158i −0.0454270 0.0786819i
\(431\) −13.2060 22.8735i −0.636112 1.10178i −0.986278 0.165091i \(-0.947208\pi\)
0.350167 0.936687i \(-0.386125\pi\)
\(432\) −7.91897 + 13.7161i −0.381002 + 0.659914i
\(433\) −18.1877 −0.874045 −0.437023 0.899450i \(-0.643967\pi\)
−0.437023 + 0.899450i \(0.643967\pi\)
\(434\) −28.1973 8.16751i −1.35351 0.392053i
\(435\) −1.37718 −0.0660306
\(436\) −2.94235 + 5.09630i −0.140913 + 0.244069i
\(437\) 14.3259 + 24.8131i 0.685299 + 1.18697i
\(438\) 3.87528 + 6.71219i 0.185168 + 0.320721i
\(439\) 4.96032 8.59153i 0.236743 0.410051i −0.723035 0.690812i \(-0.757253\pi\)
0.959778 + 0.280760i \(0.0905866\pi\)
\(440\) −1.79740 −0.0856875
\(441\) −0.111583 + 0.0585626i −0.00531347 + 0.00278869i
\(442\) −1.46791 −0.0698212
\(443\) 17.6506 30.5718i 0.838606 1.45251i −0.0524536 0.998623i \(-0.516704\pi\)
0.891060 0.453886i \(-0.149963\pi\)
\(444\) −0.363411 0.629446i −0.0172467 0.0298722i
\(445\) −5.50461 9.53427i −0.260944 0.451968i
\(446\) −16.7070 + 28.9374i −0.791101 + 1.37023i
\(447\) 20.1709 0.954050
\(448\) 22.6018 + 6.54674i 1.06783 + 0.309304i
\(449\) −15.1260 −0.713840 −0.356920 0.934135i \(-0.616173\pi\)
−0.356920 + 0.934135i \(0.616173\pi\)
\(450\) 0.0114077 0.0197587i 0.000537764 0.000931434i
\(451\) 2.54386 + 4.40610i 0.119786 + 0.207475i
\(452\) −0.239347 0.414561i −0.0112579 0.0194993i
\(453\) −15.0802 + 26.1198i −0.708532 + 1.22721i
\(454\) 29.8968 1.40313
\(455\) −1.90813 + 1.83277i −0.0894543 + 0.0859217i
\(456\) −22.4631 −1.05193
\(457\) 16.7714 29.0489i 0.784534 1.35885i −0.144743 0.989469i \(-0.546236\pi\)
0.929277 0.369383i \(-0.120431\pi\)
\(458\) −18.2281 31.5721i −0.851745 1.47527i
\(459\) −3.00012 5.19636i −0.140034 0.242545i
\(460\) −1.32374 + 2.29278i −0.0617196 + 0.106901i
\(461\) −22.1077 −1.02966 −0.514830 0.857292i \(-0.672145\pi\)
−0.514830 + 0.857292i \(0.672145\pi\)
\(462\) 0.825901 + 3.35084i 0.0384244 + 0.155895i
\(463\) −34.9430 −1.62394 −0.811970 0.583699i \(-0.801605\pi\)
−0.811970 + 0.583699i \(0.801605\pi\)
\(464\) 1.21180 2.09890i 0.0562565 0.0974391i
\(465\) 7.60477 + 13.1718i 0.352663 + 0.610830i
\(466\) −1.99061 3.44785i −0.0922134 0.159718i
\(467\) −18.1741 + 31.4785i −0.840998 + 1.45665i 0.0480538 + 0.998845i \(0.484698\pi\)
−0.889052 + 0.457807i \(0.848635\pi\)
\(468\) 0.00708979 0.000327726
\(469\) 0.720068 + 2.92146i 0.0332496 + 0.134900i
\(470\) 6.12923 0.282720
\(471\) 9.38977 16.2636i 0.432658 0.749385i
\(472\) 21.4865 + 37.2157i 0.988996 + 1.71299i
\(473\) −0.440359 0.762724i −0.0202477 0.0350701i
\(474\) 3.42434 5.93112i 0.157285 0.272426i
\(475\) −4.26207 −0.195557
\(476\) −0.870384 + 0.836012i −0.0398940 + 0.0383185i
\(477\) −0.166611 −0.00762858
\(478\) 8.03562 13.9181i 0.367541 0.636599i
\(479\) 8.38811 + 14.5286i 0.383262 + 0.663830i 0.991526 0.129905i \(-0.0414672\pi\)
−0.608264 + 0.793735i \(0.708134\pi\)
\(480\) −1.90490 3.29938i −0.0869462 0.150595i
\(481\) −0.531172 + 0.920018i −0.0242194 + 0.0419492i
\(482\) 27.8053 1.26650
\(483\) 29.6786 + 8.59658i 1.35042 + 0.391158i
\(484\) 4.19383 0.190629
\(485\) 1.90148 3.29347i 0.0863419 0.149549i
\(486\) −0.118551 0.205336i −0.00537756 0.00931421i
\(487\) 7.60142 + 13.1660i 0.344453 + 0.596610i 0.985254 0.171097i \(-0.0547310\pi\)
−0.640801 + 0.767707i \(0.721398\pi\)
\(488\) 8.70733 15.0815i 0.394162 0.682709i
\(489\) −4.75009 −0.214806
\(490\) 0.357255 8.86425i 0.0161391 0.400446i
\(491\) 13.5771 0.612726 0.306363 0.951915i \(-0.400888\pi\)
0.306363 + 0.951915i \(0.400888\pi\)
\(492\) −2.93765 + 5.08816i −0.132440 + 0.229392i
\(493\) 0.459094 + 0.795174i 0.0206766 + 0.0358129i
\(494\) 2.70077 + 4.67787i 0.121513 + 0.210467i
\(495\) 0.00533281 0.00923670i 0.000239692 0.000415159i
\(496\) −26.7663 −1.20184
\(497\) −17.4701 5.06033i −0.783643 0.226987i
\(498\) −20.2954 −0.909460
\(499\) −8.22686 + 14.2493i −0.368285 + 0.637888i −0.989298 0.145912i \(-0.953388\pi\)
0.621013 + 0.783801i \(0.286722\pi\)
\(500\) −0.196912 0.341062i −0.00880618 0.0152527i
\(501\) 18.7242 + 32.4313i 0.836535 + 1.44892i
\(502\) 4.20025 7.27505i 0.187466 0.324701i
\(503\) −18.2607 −0.814205 −0.407102 0.913383i \(-0.633461\pi\)
−0.407102 + 0.913383i \(0.633461\pi\)
\(504\) −0.104214 + 0.100099i −0.00464207 + 0.00445875i
\(505\) 1.48528 0.0660941
\(506\) 2.52378 4.37131i 0.112196 0.194329i
\(507\) −0.868620 1.50449i −0.0385768 0.0668169i
\(508\) −3.87129 6.70528i −0.171761 0.297498i
\(509\) −17.2903 + 29.9476i −0.766378 + 1.32741i 0.173137 + 0.984898i \(0.444610\pi\)
−0.939515 + 0.342508i \(0.888724\pi\)
\(510\) −2.55010 −0.112921
\(511\) −2.22892 9.04315i −0.0986014 0.400045i
\(512\) 25.2549 1.11612
\(513\) −11.0397 + 19.1214i −0.487416 + 0.844229i
\(514\) −2.78323 4.82069i −0.122763 0.212631i
\(515\) 3.41108 + 5.90817i 0.150310 + 0.260345i
\(516\) 0.508527 0.880794i 0.0223866 0.0387748i
\(517\) 2.86526 0.126014
\(518\) −0.852469 3.45863i −0.0374553 0.151964i
\(519\) 1.18294 0.0519251
\(520\) −1.51691 + 2.62736i −0.0665207 + 0.115217i
\(521\) −15.8775 27.5006i −0.695604 1.20482i −0.969977 0.243198i \(-0.921803\pi\)
0.274372 0.961624i \(-0.411530\pi\)
\(522\) 0.00904332 + 0.0156635i 0.000395815 + 0.000685572i
\(523\) 0.142515 0.246843i 0.00623174 0.0107937i −0.862893 0.505387i \(-0.831350\pi\)
0.869124 + 0.494593i \(0.164683\pi\)
\(524\) −6.06130 −0.264789
\(525\) −3.31487 + 3.18397i −0.144673 + 0.138960i
\(526\) −38.5456 −1.68067
\(527\) 5.07023 8.78190i 0.220863 0.382546i
\(528\) 1.57332 + 2.72507i 0.0684699 + 0.118593i
\(529\) −11.0959 19.2186i −0.482429 0.835592i
\(530\) 5.86460 10.1578i 0.254742 0.441226i
\(531\) −0.254999 −0.0110660
\(532\) 4.26558 + 1.23555i 0.184936 + 0.0535678i
\(533\) 8.58753 0.371967
\(534\) −12.1195 + 20.9915i −0.524460 + 0.908392i
\(535\) 1.57687 + 2.73122i 0.0681740 + 0.118081i
\(536\) 1.72511 + 2.98797i 0.0745132 + 0.129061i
\(537\) −18.2234 + 31.5639i −0.786399 + 1.36208i
\(538\) −24.0021 −1.03480
\(539\) 0.167008 4.14382i 0.00719354 0.178487i
\(540\) −2.04018 −0.0877956
\(541\) −0.127643 + 0.221085i −0.00548781 + 0.00950517i −0.868756 0.495240i \(-0.835080\pi\)
0.863268 + 0.504745i \(0.168413\pi\)
\(542\) −12.6002 21.8242i −0.541225 0.937429i
\(543\) 9.09702 + 15.7565i 0.390390 + 0.676176i
\(544\) −1.27003 + 2.19975i −0.0544520 + 0.0943136i
\(545\) 14.9425 0.640065
\(546\) 5.59514 + 1.62066i 0.239450 + 0.0693580i
\(547\) 34.6935 1.48339 0.741694 0.670738i \(-0.234023\pi\)
0.741694 + 0.670738i \(0.234023\pi\)
\(548\) −2.42272 + 4.19628i −0.103494 + 0.179256i
\(549\) 0.0516687 + 0.0894927i 0.00220516 + 0.00381946i
\(550\) 0.375424 + 0.650253i 0.0160081 + 0.0277269i
\(551\) 1.68936 2.92605i 0.0719690 0.124654i
\(552\) 35.4306 1.50803
\(553\) −5.93550 + 5.70110i −0.252403 + 0.242435i
\(554\) −27.8027 −1.18122
\(555\) −0.922774 + 1.59829i −0.0391696 + 0.0678437i
\(556\) −3.11875 5.40183i −0.132264 0.229089i
\(557\) 16.0806 + 27.8524i 0.681357 + 1.18014i 0.974567 + 0.224097i \(0.0719431\pi\)
−0.293210 + 0.956048i \(0.594724\pi\)
\(558\) 0.0998744 0.172987i 0.00422802 0.00732314i
\(559\) −1.48656 −0.0628747
\(560\) −1.93574 7.85369i −0.0818001 0.331879i
\(561\) −1.19211 −0.0503310
\(562\) −10.0141 + 17.3449i −0.422418 + 0.731650i
\(563\) −9.10209 15.7653i −0.383608 0.664428i 0.607967 0.793962i \(-0.291985\pi\)
−0.991575 + 0.129534i \(0.958652\pi\)
\(564\) 1.65440 + 2.86551i 0.0696629 + 0.120660i
\(565\) −0.607751 + 1.05266i −0.0255683 + 0.0442856i
\(566\) −11.2860 −0.474388
\(567\) 5.73247 + 23.2578i 0.240741 + 0.976734i
\(568\) −20.8560 −0.875098
\(569\) −6.65539 + 11.5275i −0.279008 + 0.483257i −0.971139 0.238516i \(-0.923339\pi\)
0.692130 + 0.721773i \(0.256672\pi\)
\(570\) 4.69189 + 8.12658i 0.196521 + 0.340385i
\(571\) −18.3271 31.7435i −0.766967 1.32843i −0.939200 0.343370i \(-0.888432\pi\)
0.172233 0.985056i \(-0.444902\pi\)
\(572\) −0.116661 + 0.202064i −0.00487786 + 0.00844871i
\(573\) −12.3699 −0.516760
\(574\) −20.7669 + 19.9468i −0.866794 + 0.832563i
\(575\) 6.72248 0.280347
\(576\) −0.0800552 + 0.138660i −0.00333564 + 0.00577749i
\(577\) −1.82112 3.15427i −0.0758142 0.131314i 0.825626 0.564218i \(-0.190822\pi\)
−0.901440 + 0.432904i \(0.857489\pi\)
\(578\) −9.92237 17.1861i −0.412716 0.714846i
\(579\) 13.4989 23.3808i 0.560997 0.971675i
\(580\) 0.312200 0.0129634
\(581\) 23.4259 + 6.78545i 0.971870 + 0.281508i
\(582\) −8.37296 −0.347070
\(583\) 2.74156 4.74851i 0.113544 0.196663i
\(584\) −5.33994 9.24904i −0.220968 0.382728i
\(585\) −0.00900122 0.0155906i −0.000372154 0.000644590i
\(586\) 2.15120 3.72599i 0.0888653 0.153919i
\(587\) 28.7909 1.18833 0.594163 0.804345i \(-0.297483\pi\)
0.594163 + 0.804345i \(0.297483\pi\)
\(588\) 4.24061 2.22562i 0.174880 0.0917830i
\(589\) −37.3145 −1.53752
\(590\) 8.97580 15.5465i 0.369528 0.640041i
\(591\) −10.4003 18.0138i −0.427810 0.740989i
\(592\) −1.62393 2.81273i −0.0667431 0.115602i
\(593\) −2.51211 + 4.35111i −0.103160 + 0.178679i −0.912985 0.407993i \(-0.866229\pi\)
0.809825 + 0.586672i \(0.199562\pi\)
\(594\) 3.88972 0.159597
\(595\) 2.94345 + 0.852586i 0.120669 + 0.0349526i
\(596\) −4.57264 −0.187303
\(597\) 13.8464 23.9826i 0.566694 0.981543i
\(598\) −4.25987 7.37831i −0.174199 0.301721i
\(599\) −7.03799 12.1901i −0.287564 0.498076i 0.685664 0.727919i \(-0.259512\pi\)
−0.973228 + 0.229843i \(0.926179\pi\)
\(600\) −2.63523 + 4.56435i −0.107583 + 0.186339i
\(601\) 6.52858 0.266306 0.133153 0.991095i \(-0.457490\pi\)
0.133153 + 0.991095i \(0.457490\pi\)
\(602\) 3.59489 3.45292i 0.146517 0.140731i
\(603\) −0.0204733 −0.000833738
\(604\) 3.41862 5.92123i 0.139102 0.240931i
\(605\) −5.32450 9.22230i −0.216472 0.374940i
\(606\) −1.63507 2.83202i −0.0664200 0.115043i
\(607\) 3.28677 5.69285i 0.133406 0.231066i −0.791582 0.611064i \(-0.790742\pi\)
0.924987 + 0.379998i \(0.124075\pi\)
\(608\) 9.34679 0.379063
\(609\) −0.871979 3.53779i −0.0353344 0.143359i
\(610\) −7.27483 −0.294549
\(611\) 2.41813 4.18832i 0.0978270 0.169441i
\(612\) −0.00410587 0.00711157i −0.000165970 0.000287468i
\(613\) −3.93667 6.81851i −0.159001 0.275397i 0.775508 0.631338i \(-0.217494\pi\)
−0.934509 + 0.355941i \(0.884161\pi\)
\(614\) 1.05825 1.83295i 0.0427077 0.0739718i
\(615\) 14.9186 0.601576
\(616\) −1.13805 4.61728i −0.0458532 0.186036i
\(617\) −28.0147 −1.12783 −0.563915 0.825833i \(-0.690705\pi\)
−0.563915 + 0.825833i \(0.690705\pi\)
\(618\) 7.51015 13.0080i 0.302103 0.523257i
\(619\) 2.53268 + 4.38673i 0.101797 + 0.176317i 0.912425 0.409244i \(-0.134207\pi\)
−0.810628 + 0.585561i \(0.800874\pi\)
\(620\) −1.72397 2.98600i −0.0692361 0.119921i
\(621\) 17.4127 30.1597i 0.698748 1.21027i
\(622\) −14.4466 −0.579255
\(623\) 21.0070 20.1774i 0.841628 0.808391i
\(624\) 5.31118 0.212618
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −4.49610 7.78748i −0.179700 0.311250i
\(627\) 2.19334 + 3.79898i 0.0875936 + 0.151717i
\(628\) −2.12862 + 3.68687i −0.0849411 + 0.147122i
\(629\) 1.23046 0.0490616
\(630\) 0.0579805 + 0.0167944i 0.00231000 + 0.000669105i
\(631\) 37.1478 1.47883 0.739415 0.673250i \(-0.235102\pi\)
0.739415 + 0.673250i \(0.235102\pi\)
\(632\) −4.71855 + 8.17277i −0.187694 + 0.325095i
\(633\) −0.516218 0.894116i −0.0205178 0.0355379i
\(634\) −15.5271 26.8937i −0.616659 1.06808i
\(635\) −9.83000 + 17.0261i −0.390092 + 0.675659i
\(636\) 6.33190 0.251076
\(637\) −5.91631 3.74129i −0.234413 0.148235i
\(638\) −0.595226 −0.0235652
\(639\) 0.0618790 0.107178i 0.00244790 0.00423988i
\(640\) −3.44278 5.96307i −0.136088 0.235711i
\(641\) −11.2851 19.5464i −0.445734 0.772035i 0.552369 0.833600i \(-0.313724\pi\)
−0.998103 + 0.0615652i \(0.980391\pi\)
\(642\) 3.47178 6.01330i 0.137020 0.237326i
\(643\) −13.7935 −0.543963 −0.271982 0.962302i \(-0.587679\pi\)
−0.271982 + 0.962302i \(0.587679\pi\)
\(644\) −6.72800 1.94881i −0.265120 0.0767937i
\(645\) −2.58251 −0.101686
\(646\) 3.12816 5.41814i 0.123076 0.213174i
\(647\) 1.29095 + 2.23599i 0.0507524 + 0.0879057i 0.890286 0.455403i \(-0.150505\pi\)
−0.839533 + 0.543308i \(0.817171\pi\)
\(648\) 13.7336 + 23.7873i 0.539506 + 0.934452i
\(649\) 4.19596 7.26762i 0.164706 0.285279i
\(650\) 1.26735 0.0497096
\(651\) −29.0217 + 27.8756i −1.13745 + 1.09253i
\(652\) 1.07682 0.0421716
\(653\) 22.0215 38.1424i 0.861769 1.49263i −0.00845059 0.999964i \(-0.502690\pi\)
0.870220 0.492664i \(-0.163977\pi\)
\(654\) −16.4493 28.4911i −0.643220 1.11409i
\(655\) 7.69543 + 13.3289i 0.300686 + 0.520803i
\(656\) −13.1271 + 22.7369i −0.512528 + 0.887725i
\(657\) 0.0633736 0.00247244
\(658\) 3.88081 + 15.7452i 0.151290 + 0.613812i
\(659\) 16.2970 0.634841 0.317420 0.948285i \(-0.397183\pi\)
0.317420 + 0.948285i \(0.397183\pi\)
\(660\) −0.202669 + 0.351033i −0.00788888 + 0.0136639i
\(661\) −19.5031 33.7804i −0.758583 1.31390i −0.943573 0.331164i \(-0.892559\pi\)
0.184990 0.982740i \(-0.440775\pi\)
\(662\) 4.59491 + 7.95862i 0.178586 + 0.309320i
\(663\) −1.00608 + 1.74258i −0.0390728 + 0.0676761i
\(664\) 27.9660 1.08529
\(665\) −2.69859 10.9487i −0.104647 0.424573i
\(666\) 0.0242378 0.000939196
\(667\) −2.66458 + 4.61520i −0.103173 + 0.178701i
\(668\) −4.24469 7.35201i −0.164232 0.284458i
\(669\) 22.9014 + 39.6664i 0.885421 + 1.53359i
\(670\) 0.720649 1.24820i 0.0278411 0.0482222i
\(671\) −3.40080 −0.131286
\(672\) 7.26957 6.98248i 0.280430 0.269355i
\(673\) −34.2222 −1.31917 −0.659585 0.751630i \(-0.729268\pi\)
−0.659585 + 0.751630i \(0.729268\pi\)
\(674\) 9.14141 15.8334i 0.352114 0.609879i
\(675\) 2.59022 + 4.48640i 0.0996977 + 0.172682i
\(676\) 0.196912 + 0.341062i 0.00757354 + 0.0131178i
\(677\) 10.8156 18.7331i 0.415676 0.719971i −0.579823 0.814742i \(-0.696878\pi\)
0.995499 + 0.0947708i \(0.0302118\pi\)
\(678\) 2.67616 0.102777
\(679\) 9.66444 + 2.79936i 0.370887 + 0.107430i
\(680\) 3.51391 0.134752
\(681\) 20.4907 35.4910i 0.785207 1.36002i
\(682\) 3.28684 + 5.69297i 0.125859 + 0.217995i
\(683\) −16.7440 29.0015i −0.640691 1.10971i −0.985279 0.170956i \(-0.945315\pi\)
0.344587 0.938754i \(-0.388019\pi\)
\(684\) −0.0151086 + 0.0261689i −0.000577692 + 0.00100059i
\(685\) 12.3036 0.470096
\(686\) 22.9973 4.69479i 0.878042 0.179248i
\(687\) −49.9730 −1.90659
\(688\) 2.27239 3.93590i 0.0866342 0.150055i
\(689\) −4.62745 8.01498i −0.176292 0.305347i
\(690\) −7.40041 12.8179i −0.281729 0.487969i
\(691\) 23.5904 40.8598i 0.897422 1.55438i 0.0666443 0.997777i \(-0.478771\pi\)
0.830778 0.556604i \(-0.187896\pi\)
\(692\) −0.268166 −0.0101941
\(693\) 0.0271045 + 0.00785096i 0.00102961 + 0.000298233i
\(694\) 0.430245 0.0163319
\(695\) −7.91914 + 13.7164i −0.300390 + 0.520291i
\(696\) −2.08905 3.61834i −0.0791852 0.137153i
\(697\) −4.97325 8.61391i −0.188375 0.326275i
\(698\) 11.6422 20.1649i 0.440664 0.763253i
\(699\) −5.45733 −0.206415
\(700\) 0.751466 0.721790i 0.0284028 0.0272811i
\(701\) 20.0423 0.756985 0.378493 0.925604i \(-0.376443\pi\)
0.378493 + 0.925604i \(0.376443\pi\)
\(702\) 3.28272 5.68584i 0.123898 0.214598i
\(703\) −2.26390 3.92118i −0.0853845 0.147890i
\(704\) −2.63459 4.56325i −0.0992950 0.171984i
\(705\) 4.20087 7.27611i 0.158214 0.274034i
\(706\) 22.1742 0.834535
\(707\) 0.940427 + 3.81550i 0.0353684 + 0.143497i
\(708\) 9.69100 0.364210
\(709\) −16.6567 + 28.8503i −0.625556 + 1.08349i 0.362878 + 0.931837i \(0.381794\pi\)
−0.988433 + 0.151657i \(0.951539\pi\)
\(710\) 4.35621 + 7.54517i 0.163486 + 0.283165i
\(711\) −0.0279996 0.0484967i −0.00105007 0.00181877i
\(712\) 16.7000 28.9252i 0.625858 1.08402i
\(713\) 58.8553 2.20415
\(714\) −1.61464 6.55089i −0.0604262 0.245161i
\(715\) 0.592455 0.0221566
\(716\) 4.13117 7.15539i 0.154389 0.267410i
\(717\) −11.0149 19.0785i −0.411361 0.712498i
\(718\) 6.42974 + 11.1366i 0.239956 + 0.415616i
\(719\) −25.0484 + 43.3850i −0.934146 + 1.61799i −0.157998 + 0.987440i \(0.550504\pi\)
−0.776149 + 0.630550i \(0.782830\pi\)
\(720\) 0.0550380 0.00205115
\(721\) −13.0176 + 12.5035i −0.484799 + 0.465654i
\(722\) 1.05788 0.0393702
\(723\) 19.0573 33.0082i 0.708748 1.22759i
\(724\) −2.06225 3.57192i −0.0766430 0.132750i
\(725\) −0.396369 0.686532i −0.0147208 0.0254972i
\(726\) −11.7229 + 20.3047i −0.435078 + 0.753577i
\(727\) −53.5421 −1.98577 −0.992883 0.119090i \(-0.962002\pi\)
−0.992883 + 0.119090i \(0.962002\pi\)
\(728\) −7.70980 2.23319i −0.285744 0.0827675i
\(729\) 26.8360 0.993927
\(730\) −2.23071 + 3.86371i −0.0825624 + 0.143002i
\(731\) 0.860902 + 1.49113i 0.0318416 + 0.0551513i
\(732\) −1.96362 3.40110i −0.0725776 0.125708i
\(733\) −6.38991 + 11.0676i −0.236017 + 0.408793i −0.959568 0.281478i \(-0.909175\pi\)
0.723551 + 0.690271i \(0.242509\pi\)
\(734\) 19.7516 0.729045
\(735\) −10.2781 6.49951i −0.379112 0.239738i
\(736\) −14.7425 −0.543416
\(737\) 0.336885 0.583503i 0.0124093 0.0214936i
\(738\) −0.0979639 0.169678i −0.00360610 0.00624595i
\(739\) −26.7056 46.2555i −0.982383 1.70154i −0.653033 0.757329i \(-0.726504\pi\)
−0.329350 0.944208i \(-0.606830\pi\)
\(740\) 0.209188 0.362325i 0.00768992 0.0133193i
\(741\) 7.40425 0.272002
\(742\) 29.8073 + 8.63386i 1.09426 + 0.316959i
\(743\) 39.1593 1.43662 0.718308 0.695725i \(-0.244917\pi\)
0.718308 + 0.695725i \(0.244917\pi\)
\(744\) −23.0715 + 39.9609i −0.845840 + 1.46504i
\(745\) 5.80544 + 10.0553i 0.212695 + 0.368398i
\(746\) 4.91072 + 8.50562i 0.179794 + 0.311413i
\(747\) −0.0829742 + 0.143716i −0.00303587 + 0.00525828i
\(748\) 0.270246 0.00988117
\(749\) −6.01773 + 5.78009i −0.219883 + 0.211200i
\(750\) 2.20169 0.0803944
\(751\) −6.27462 + 10.8680i −0.228964 + 0.396577i −0.957501 0.288429i \(-0.906867\pi\)
0.728537 + 0.685006i \(0.240200\pi\)
\(752\) 7.39283 + 12.8048i 0.269589 + 0.466941i
\(753\) −5.75756 9.97238i −0.209817 0.363414i
\(754\) −0.502339 + 0.870076i −0.0182941 + 0.0316863i
\(755\) −17.3612 −0.631837
\(756\) −1.29177 5.24097i −0.0469813 0.190612i
\(757\) 46.5833 1.69310 0.846550 0.532309i \(-0.178676\pi\)
0.846550 + 0.532309i \(0.178676\pi\)
\(758\) 14.3680 24.8860i 0.521868 0.903901i
\(759\) −3.45951 5.99205i −0.125572 0.217497i
\(760\) −6.46517 11.1980i −0.234516 0.406194i
\(761\) 5.04536 8.73881i 0.182894 0.316782i −0.759971 0.649957i \(-0.774787\pi\)
0.942865 + 0.333175i \(0.108120\pi\)
\(762\) 43.2853 1.56806
\(763\) 9.46103 + 38.3853i 0.342512 + 1.38964i
\(764\) 2.80420 0.101452
\(765\) −0.0104256 + 0.0180577i −0.000376940 + 0.000652879i
\(766\) 1.18498 + 2.05244i 0.0428150 + 0.0741578i
\(767\) −7.08234 12.2670i −0.255728 0.442935i
\(768\) 7.87077 13.6326i 0.284012 0.491923i
\(769\) −5.38474 −0.194179 −0.0970893 0.995276i \(-0.530953\pi\)
−0.0970893 + 0.995276i \(0.530953\pi\)
\(770\) −1.43271 + 1.37613i −0.0516314 + 0.0495924i
\(771\) −7.63030 −0.274799
\(772\) −3.06015 + 5.30033i −0.110137 + 0.190763i
\(773\) 17.4734 + 30.2648i 0.628473 + 1.08855i 0.987858 + 0.155358i \(0.0496532\pi\)
−0.359385 + 0.933189i \(0.617013\pi\)
\(774\) 0.0169582 + 0.0293724i 0.000609550 + 0.00105577i
\(775\) −4.37750 + 7.58206i −0.157245 + 0.272355i
\(776\) 11.5375 0.414172
\(777\) −4.69007 1.35851i −0.168255 0.0487362i
\(778\) −34.4082 −1.23360
\(779\) −18.3003 + 31.6971i −0.655678 + 1.13567i
\(780\) 0.342083 + 0.592506i 0.0122486 + 0.0212151i
\(781\) 2.03642 + 3.52718i 0.0728688 + 0.126213i
\(782\) −4.93398 + 8.54591i −0.176439 + 0.305601i
\(783\) −4.10674 −0.146763
\(784\) 18.9495 9.94536i 0.676768 0.355191i
\(785\) 10.8100 0.385825
\(786\) 16.9430 29.3461i 0.604336 1.04674i
\(787\) −14.7376 25.5262i −0.525338 0.909912i −0.999565 0.0295090i \(-0.990606\pi\)
0.474227 0.880403i \(-0.342728\pi\)
\(788\) 2.35769 + 4.08364i 0.0839893 + 0.145474i
\(789\) −26.4185 + 45.7582i −0.940524 + 1.62903i
\(790\) 3.94227 0.140260
\(791\) −3.08895 0.894731i −0.109830 0.0318130i
\(792\) 0.0323575 0.00114977
\(793\) −2.87009 + 4.97115i −0.101920 + 0.176531i
\(794\) 4.00498 + 6.93682i 0.142131 + 0.246179i
\(795\) −8.03899 13.9239i −0.285114 0.493832i
\(796\) −3.13891 + 5.43674i −0.111256 + 0.192700i
\(797\) −1.74984 −0.0619824 −0.0309912 0.999520i \(-0.509866\pi\)
−0.0309912 + 0.999520i \(0.509866\pi\)
\(798\) −17.9054 + 17.1983i −0.633845 + 0.608814i
\(799\) −5.60158 −0.198170
\(800\) 1.09651 1.89921i 0.0387674 0.0671471i
\(801\) 0.0990964 + 0.171640i 0.00350140 + 0.00606460i
\(802\) −10.3437 17.9157i −0.365247 0.632627i
\(803\) −1.04280 + 1.80619i −0.0367997 + 0.0637390i
\(804\) 0.778071 0.0274404
\(805\) 4.25643 + 17.2692i 0.150020 + 0.608659i
\(806\) 11.0957 0.390828
\(807\) −16.4506 + 28.4933i −0.579089 + 1.00301i
\(808\) 2.25303 + 3.90237i 0.0792614 + 0.137285i
\(809\) 1.11561 + 1.93229i 0.0392226 + 0.0679355i 0.884970 0.465647i \(-0.154179\pi\)
−0.845748 + 0.533583i \(0.820845\pi\)
\(810\) 5.73709 9.93694i 0.201581 0.349148i
\(811\) 50.8443 1.78539 0.892693 0.450666i \(-0.148813\pi\)
0.892693 + 0.450666i \(0.148813\pi\)
\(812\) 0.197674 + 0.802001i 0.00693699 + 0.0281447i
\(813\) −34.5438 −1.21151
\(814\) −0.398829 + 0.690793i −0.0139790 + 0.0242123i
\(815\) −1.36714 2.36795i −0.0478887 0.0829457i
\(816\) −3.07583 5.32750i −0.107676 0.186500i
\(817\) 3.16791 5.48698i 0.110831 0.191965i
\(818\) 12.4776 0.436269
\(819\) 0.0343509 0.0329944i 0.00120032 0.00115292i
\(820\) −3.38198 −0.118104
\(821\) −10.9845 + 19.0258i −0.383363 + 0.664004i −0.991541 0.129797i \(-0.958567\pi\)
0.608178 + 0.793801i \(0.291901\pi\)
\(822\) −13.5443 23.4595i −0.472413 0.818244i
\(823\) −14.4639 25.0522i −0.504180 0.873265i −0.999988 0.00483312i \(-0.998462\pi\)
0.495809 0.868432i \(-0.334872\pi\)
\(824\) −10.3486 + 17.9243i −0.360510 + 0.624422i
\(825\) 1.02924 0.0358334
\(826\) 45.6202 + 13.2142i 1.58733 + 0.459780i
\(827\) −30.6557 −1.06600 −0.533002 0.846114i \(-0.678936\pi\)
−0.533002 + 0.846114i \(0.678936\pi\)
\(828\) 0.0238305 0.0412756i 0.000828167 0.00143443i
\(829\) −10.5965 18.3536i −0.368030 0.637447i 0.621227 0.783631i \(-0.286634\pi\)
−0.989258 + 0.146183i \(0.953301\pi\)
\(830\) −5.84129 10.1174i −0.202754 0.351180i
\(831\) −19.0555 + 33.0051i −0.661028 + 1.14493i
\(832\) −8.89383 −0.308338
\(833\) −0.326500 + 8.10116i −0.0113126 + 0.280689i
\(834\) 34.8710 1.20748
\(835\) −10.7781 + 18.6683i −0.372993 + 0.646042i
\(836\) −0.497220 0.861210i −0.0171967 0.0297856i
\(837\) 22.6774 + 39.2784i 0.783846 + 1.35766i
\(838\) −2.24125 + 3.88196i −0.0774226 + 0.134100i
\(839\) 42.7695 1.47657 0.738284 0.674490i \(-0.235637\pi\)
0.738284 + 0.674490i \(0.235637\pi\)
\(840\) −13.3938 3.87958i −0.462129 0.133858i
\(841\) −28.3716 −0.978330
\(842\) −8.01423 + 13.8811i −0.276189 + 0.478373i
\(843\) 13.7270 + 23.7758i 0.472781 + 0.818881i
\(844\) 0.117024 + 0.202692i 0.00402814 + 0.00697694i
\(845\) 0.500000 0.866025i 0.0172005 0.0297922i
\(846\) −0.110341 −0.00379360
\(847\) 20.3196 19.5172i 0.698191 0.670618i
\(848\) 28.2946 0.971640
\(849\) −7.73526 + 13.3979i −0.265474 + 0.459814i
\(850\) −0.733953 1.27124i −0.0251744 0.0436033i
\(851\) 3.57080 + 6.18480i 0.122405 + 0.212012i
\(852\) −2.35166 + 4.07319i −0.0805665 + 0.139545i
\(853\) −49.3099 −1.68834 −0.844169 0.536078i \(-0.819905\pi\)
−0.844169 + 0.536078i \(0.819905\pi\)
\(854\) −4.60616 18.6881i −0.157620 0.639493i
\(855\) 0.0767277 0.00262403
\(856\) −4.78393 + 8.28601i −0.163511 + 0.283210i
\(857\) −17.2016 29.7940i −0.587594 1.01774i −0.994547 0.104293i \(-0.966742\pi\)
0.406953 0.913449i \(-0.366591\pi\)
\(858\) −0.652201 1.12965i −0.0222658 0.0385655i
\(859\) 15.7745 27.3222i 0.538218 0.932221i −0.460782 0.887513i \(-0.652431\pi\)
0.999000 0.0447079i \(-0.0142357\pi\)
\(860\) 0.585442 0.0199634
\(861\) 9.44592 + 38.3240i 0.321916 + 1.30608i
\(862\) −33.4733 −1.14011
\(863\) −7.00975 + 12.1412i −0.238615 + 0.413293i −0.960317 0.278911i \(-0.910027\pi\)
0.721702 + 0.692203i \(0.243360\pi\)
\(864\) −5.68040 9.83873i −0.193251 0.334721i
\(865\) 0.340464 + 0.589701i 0.0115761 + 0.0200505i
\(866\) −11.5251 + 19.9620i −0.391639 + 0.678338i
\(867\) −27.2025 −0.923845
\(868\) 6.57909 6.31927i 0.223309 0.214490i
\(869\) 1.84291 0.0625166
\(870\) −0.872683 + 1.51153i −0.0295867 + 0.0512457i
\(871\) −0.568626 0.984890i −0.0192672 0.0333717i
\(872\) 22.6663 + 39.2592i 0.767579 + 1.32949i
\(873\) −0.0342313 + 0.0592904i −0.00115855 + 0.00200668i
\(874\) 36.3117 1.22826
\(875\) −2.54129 0.736100i −0.0859113 0.0248847i
\(876\) −2.40846 −0.0813743
\(877\) −5.14983 + 8.91977i −0.173897 + 0.301199i −0.939779 0.341782i \(-0.888969\pi\)
0.765882 + 0.642981i \(0.222303\pi\)
\(878\) −6.28647 10.8885i −0.212158 0.367468i
\(879\) −2.94879 5.10746i −0.0994603 0.172270i
\(880\) −0.905642 + 1.56862i −0.0305292 + 0.0528781i
\(881\) −10.5642 −0.355916 −0.177958 0.984038i \(-0.556949\pi\)
−0.177958 + 0.984038i \(0.556949\pi\)
\(882\) −0.00643146 + 0.159578i −0.000216559 + 0.00537327i
\(883\) 47.5619 1.60059 0.800293 0.599608i \(-0.204677\pi\)
0.800293 + 0.599608i \(0.204677\pi\)
\(884\) 0.228073 0.395034i 0.00767093 0.0132864i
\(885\) −12.3037 21.3107i −0.413585 0.716350i
\(886\) −22.3695 38.7451i −0.751519 1.30167i
\(887\) −13.3571 + 23.1353i −0.448489 + 0.776806i −0.998288 0.0584913i \(-0.981371\pi\)
0.549799 + 0.835297i \(0.314704\pi\)
\(888\) −5.59905 −0.187892
\(889\) −49.9618 14.4717i −1.67566 0.485366i
\(890\) −13.9525 −0.467690
\(891\) 2.68195 4.64527i 0.0898487 0.155622i
\(892\) −5.19165 8.99220i −0.173829 0.301081i
\(893\) 10.3062 + 17.8509i 0.344885 + 0.597359i
\(894\) 12.7818 22.1387i 0.427487 0.740428i
\(895\) −20.9798 −0.701276
\(896\) 13.1385 12.6197i 0.438927 0.421593i
\(897\) −11.6786 −0.389936
\(898\) −9.58497 + 16.6017i −0.319855 + 0.554004i
\(899\) −3.47022 6.01059i −0.115738 0.200464i
\(900\) 0.00354490 + 0.00613994i 0.000118163 + 0.000204665i
\(901\) −5.35974 + 9.28334i −0.178559 + 0.309273i
\(902\) 6.44792 0.214692
\(903\) −1.63515 6.63413i −0.0544144 0.220770i
\(904\) −3.68761 −0.122648
\(905\) −5.23648 + 9.06985i −0.174066 + 0.301492i
\(906\) 19.1120 + 33.1029i 0.634952 + 1.09977i
\(907\) −27.6457 47.8838i −0.917961 1.58995i −0.802508 0.596642i \(-0.796501\pi\)
−0.115453 0.993313i \(-0.536832\pi\)
\(908\) −4.64516 + 8.04564i −0.154155 + 0.267004i
\(909\) −0.0267387 −0.000886866
\(910\) 0.802441 + 3.25566i 0.0266006 + 0.107924i
\(911\) −16.5736 −0.549109 −0.274555 0.961571i \(-0.588530\pi\)
−0.274555 + 0.961571i \(0.588530\pi\)
\(912\) −11.3183 + 19.6039i −0.374787 + 0.649151i
\(913\) −2.73066 4.72964i −0.0903715 0.156528i
\(914\) −21.2553 36.8152i −0.703061 1.21774i
\(915\) −4.98604 + 8.63608i −0.164833 + 0.285500i
\(916\) 11.3286 0.374309
\(917\) −29.3677 + 28.2080i −0.969808 + 0.931509i
\(918\) −7.60441 −0.250983
\(919\) −4.26930 + 7.39464i −0.140831 + 0.243927i −0.927810 0.373053i \(-0.878311\pi\)
0.786979 + 0.616980i \(0.211644\pi\)
\(920\) 10.1974 + 17.6624i 0.336197 + 0.582311i
\(921\) −1.45062 2.51254i −0.0477995 0.0827912i
\(922\) −14.0091 + 24.2645i −0.461366 + 0.799109i
\(923\) 6.87452 0.226277
\(924\) −1.03008 0.298369i −0.0338872 0.00981562i
\(925\) −1.06234 −0.0349297
\(926\) −22.1425 + 38.3520i −0.727648 + 1.26032i
\(927\) −0.0614078 0.106361i −0.00201690 0.00349337i
\(928\) 0.869244 + 1.50557i 0.0285343 + 0.0494229i
\(929\) 13.6500 23.6425i 0.447842 0.775685i −0.550403 0.834899i \(-0.685526\pi\)
0.998245 + 0.0592138i \(0.0188594\pi\)
\(930\) 19.2758 0.632079
\(931\) 26.4172 13.8647i 0.865789 0.454397i
\(932\) 1.23715 0.0405243
\(933\) −9.90144 + 17.1498i −0.324158 + 0.561459i
\(934\) 23.0330 + 39.8943i 0.753662 + 1.30538i
\(935\) −0.343105 0.594275i −0.0112207 0.0194349i
\(936\) 0.0273080 0.0472988i 0.000892590 0.00154601i
\(937\) 26.1032 0.852754 0.426377 0.904546i \(-0.359790\pi\)
0.426377 + 0.904546i \(0.359790\pi\)
\(938\) 3.66276 + 1.06094i 0.119593 + 0.0346409i
\(939\) −12.3262 −0.402251
\(940\) −0.952317 + 1.64946i −0.0310612 + 0.0537995i
\(941\) −18.6483 32.2999i −0.607919 1.05295i −0.991583 0.129474i \(-0.958671\pi\)
0.383664 0.923473i \(-0.374662\pi\)
\(942\) −11.9001 20.6116i −0.387727 0.671563i
\(943\) 28.8647 49.9952i 0.939965 1.62807i
\(944\) 43.3050 1.40946
\(945\) −9.88494 + 9.49458i −0.321557 + 0.308859i
\(946\) −1.11618 −0.0362901
\(947\) 20.5613 35.6132i 0.668153 1.15728i −0.310267 0.950649i \(-0.600418\pi\)
0.978420 0.206626i \(-0.0662482\pi\)
\(948\) 1.06410 + 1.84307i 0.0345603 + 0.0598603i
\(949\) 1.76014 + 3.04865i 0.0571366 + 0.0989634i
\(950\) −2.70077 + 4.67787i −0.0876246 + 0.151770i
\(951\) −42.5680 −1.38036
\(952\) 2.22488 + 9.02678i 0.0721088 + 0.292560i
\(953\) 16.3831 0.530701 0.265350 0.964152i \(-0.414512\pi\)
0.265350 + 0.964152i \(0.414512\pi\)
\(954\) −0.105577 + 0.182865i −0.00341818 + 0.00592047i
\(955\) −3.56022 6.16648i −0.115206 0.199543i
\(956\) 2.49704 + 4.32500i 0.0807600 + 0.139880i
\(957\) −0.407958 + 0.706603i −0.0131874 + 0.0228412i
\(958\) 21.2613 0.686923
\(959\) 7.79019 + 31.6063i 0.251558 + 1.02062i
\(960\) −15.4507 −0.498669
\(961\) −22.8250 + 39.5341i −0.736292 + 1.27529i
\(962\) 0.673181 + 1.16598i 0.0217042 + 0.0375928i
\(963\) −0.0283875 0.0491686i −0.000914774 0.00158444i
\(964\) −4.32020 + 7.48280i −0.139144 + 0.241005i
\(965\) 15.5407 0.500272
\(966\) 28.2418 27.1265i 0.908666 0.872782i
\(967\) −47.8673 −1.53931 −0.769654 0.638461i \(-0.779571\pi\)
−0.769654 + 0.638461i \(0.779571\pi\)
\(968\) 16.1535 27.9787i 0.519194 0.899271i
\(969\) −4.28798 7.42700i −0.137750 0.238589i
\(970\) −2.40984 4.17397i −0.0773755 0.134018i
\(971\) −28.0299 + 48.5492i −0.899522 + 1.55802i −0.0714159 + 0.997447i \(0.522752\pi\)
−0.828106 + 0.560571i \(0.810582\pi\)
\(972\) 0.0736783 0.00236323
\(973\) −40.2497 11.6586i −1.29035 0.373756i
\(974\) 19.2673 0.617365
\(975\) 0.868620 1.50449i 0.0278181 0.0481824i
\(976\) −8.77461 15.1981i −0.280868 0.486478i
\(977\) −10.4422 18.0865i −0.334076 0.578637i 0.649231 0.760591i \(-0.275091\pi\)
−0.983307 + 0.181955i \(0.941758\pi\)
\(978\) −3.01001 + 5.21349i −0.0962496 + 0.166709i
\(979\) −6.52247 −0.208459
\(980\) 2.32999 + 1.47341i 0.0744287 + 0.0470663i
\(981\) −0.269001 −0.00858853
\(982\) 8.60347 14.9016i 0.274548 0.475530i
\(983\) 16.0909 + 27.8703i 0.513220 + 0.888924i 0.999882 + 0.0153336i \(0.00488102\pi\)
−0.486662 + 0.873590i \(0.661786\pi\)
\(984\) 22.6301 + 39.1965i 0.721422 + 1.24954i
\(985\) 5.98666 10.3692i 0.190751 0.330390i
\(986\) 1.16367 0.0370587
\(987\) 21.3512 + 6.18451i 0.679618 + 0.196855i
\(988\) −1.67851 −0.0534005
\(989\) −4.99668 + 8.65450i −0.158885 + 0.275197i
\(990\) −0.00675854 0.0117061i −0.000214801 0.000372045i
\(991\) 19.8249 + 34.3378i 0.629760 + 1.09078i 0.987600 + 0.156993i \(0.0501802\pi\)
−0.357839 + 0.933783i \(0.616487\pi\)
\(992\) 9.59993 16.6276i 0.304798 0.527926i
\(993\) 12.5971 0.399756
\(994\) −16.6244 + 15.9679i −0.527294 + 0.506470i
\(995\) 15.9406 0.505352
\(996\) 3.15336 5.46179i 0.0999181 0.173063i
\(997\) 13.7808 + 23.8690i 0.436442 + 0.755940i 0.997412 0.0718960i \(-0.0229050\pi\)
−0.560970 + 0.827836i \(0.689572\pi\)
\(998\) 10.4263 + 18.0589i 0.330039 + 0.571645i
\(999\) −2.75171 + 4.76610i −0.0870602 + 0.150793i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 455.2.j.g.261.7 20
7.2 even 3 3185.2.a.bb.1.4 10
7.4 even 3 inner 455.2.j.g.326.7 yes 20
7.5 odd 6 3185.2.a.bc.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
455.2.j.g.261.7 20 1.1 even 1 trivial
455.2.j.g.326.7 yes 20 7.4 even 3 inner
3185.2.a.bb.1.4 10 7.2 even 3
3185.2.a.bc.1.4 10 7.5 odd 6