Properties

Label 450.3.i.c.101.2
Level $450$
Weight $3$
Character 450.101
Analytic conductor $12.262$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,3,Mod(101,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.101"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 450.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2616118962\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.2
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 450.101
Dual form 450.3.i.c.401.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(1.50000 + 2.59808i) q^{3} +(1.00000 + 1.73205i) q^{4} +4.24264i q^{6} +(5.94949 - 10.3048i) q^{7} +2.82843i q^{8} +(-4.50000 + 7.79423i) q^{9} +(5.57321 + 3.21770i) q^{11} +(-3.00000 + 5.19615i) q^{12} +(5.57321 + 9.65309i) q^{13} +(14.5732 - 8.41385i) q^{14} +(-2.00000 + 3.46410i) q^{16} +20.5775i q^{17} +(-11.0227 + 6.36396i) q^{18} +20.4495 q^{19} +35.6969 q^{21} +(4.55051 + 7.88171i) q^{22} +(-8.05051 + 4.64796i) q^{23} +(-7.34847 + 4.24264i) q^{24} +15.7634i q^{26} -27.0000 q^{27} +23.7980 q^{28} +(11.8485 + 6.84072i) q^{29} +(-26.9217 - 46.6297i) q^{31} +(-4.89898 + 2.82843i) q^{32} +19.3062i q^{33} +(-14.5505 + 25.2022i) q^{34} -18.0000 q^{36} +18.6515 q^{37} +(25.0454 + 14.4600i) q^{38} +(-16.7196 + 28.9593i) q^{39} +(-0.398979 + 0.230351i) q^{41} +(43.7196 + 25.2415i) q^{42} +(-17.5959 + 30.4770i) q^{43} +12.8708i q^{44} -13.1464 q^{46} +(-55.7474 - 32.1858i) q^{47} -12.0000 q^{48} +(-46.2929 - 80.1816i) q^{49} +(-53.4620 + 30.8663i) q^{51} +(-11.1464 + 19.3062i) q^{52} -2.25697i q^{53} +(-33.0681 - 19.0919i) q^{54} +(29.1464 + 16.8277i) q^{56} +(30.6742 + 53.1293i) q^{57} +(9.67423 + 16.7563i) q^{58} +(39.6867 - 22.9131i) q^{59} +(-4.94949 + 8.57277i) q^{61} -76.1460i q^{62} +(53.5454 + 92.7434i) q^{63} -8.00000 q^{64} +(-13.6515 + 23.6451i) q^{66} +(20.9949 + 36.3642i) q^{67} +(-35.6413 + 20.5775i) q^{68} +(-24.1515 - 13.9439i) q^{69} -121.672i q^{71} +(-22.0454 - 12.7279i) q^{72} -11.1010 q^{73} +(22.8434 + 13.1886i) q^{74} +(20.4495 + 35.4196i) q^{76} +(66.3156 - 38.2873i) q^{77} +(-40.9546 + 23.6451i) q^{78} +(72.7423 - 125.993i) q^{79} +(-40.5000 - 70.1481i) q^{81} -0.651531 q^{82} +(18.3990 + 10.6227i) q^{83} +(35.6969 + 61.8289i) q^{84} +(-43.1010 + 24.8844i) q^{86} +41.0443i q^{87} +(-9.10102 + 15.7634i) q^{88} +73.2999i q^{89} +132.631 q^{91} +(-16.1010 - 9.29593i) q^{92} +(80.7650 - 139.889i) q^{93} +(-45.5176 - 78.8388i) q^{94} +(-14.6969 - 8.48528i) q^{96} +(39.3939 - 68.2322i) q^{97} -130.936i q^{98} +(-50.1589 + 28.9593i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 4 q^{4} + 14 q^{7} - 18 q^{9} - 12 q^{11} - 12 q^{12} - 12 q^{13} + 24 q^{14} - 8 q^{16} + 72 q^{19} + 84 q^{21} + 28 q^{22} - 42 q^{23} - 108 q^{27} + 56 q^{28} + 18 q^{29} - 44 q^{31}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.612372 + 0.353553i
\(3\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 4.24264i 0.707107i
\(7\) 5.94949 10.3048i 0.849927 1.47212i −0.0313455 0.999509i \(-0.509979\pi\)
0.881273 0.472608i \(-0.156687\pi\)
\(8\) 2.82843i 0.353553i
\(9\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) 5.57321 + 3.21770i 0.506656 + 0.292518i 0.731458 0.681887i \(-0.238840\pi\)
−0.224802 + 0.974404i \(0.572174\pi\)
\(12\) −3.00000 + 5.19615i −0.250000 + 0.433013i
\(13\) 5.57321 + 9.65309i 0.428709 + 0.742545i 0.996759 0.0804487i \(-0.0256353\pi\)
−0.568050 + 0.822994i \(0.692302\pi\)
\(14\) 14.5732 8.41385i 1.04094 0.600989i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 20.5775i 1.21044i 0.796057 + 0.605221i \(0.206915\pi\)
−0.796057 + 0.605221i \(0.793085\pi\)
\(18\) −11.0227 + 6.36396i −0.612372 + 0.353553i
\(19\) 20.4495 1.07629 0.538144 0.842853i \(-0.319125\pi\)
0.538144 + 0.842853i \(0.319125\pi\)
\(20\) 0 0
\(21\) 35.6969 1.69985
\(22\) 4.55051 + 7.88171i 0.206841 + 0.358260i
\(23\) −8.05051 + 4.64796i −0.350022 + 0.202085i −0.664695 0.747115i \(-0.731439\pi\)
0.314673 + 0.949200i \(0.398105\pi\)
\(24\) −7.34847 + 4.24264i −0.306186 + 0.176777i
\(25\) 0 0
\(26\) 15.7634i 0.606286i
\(27\) −27.0000 −1.00000
\(28\) 23.7980 0.849927
\(29\) 11.8485 + 6.84072i 0.408568 + 0.235887i 0.690174 0.723643i \(-0.257534\pi\)
−0.281606 + 0.959530i \(0.590867\pi\)
\(30\) 0 0
\(31\) −26.9217 46.6297i −0.868441 1.50418i −0.863589 0.504196i \(-0.831789\pi\)
−0.00485238 0.999988i \(-0.501545\pi\)
\(32\) −4.89898 + 2.82843i −0.153093 + 0.0883883i
\(33\) 19.3062i 0.585036i
\(34\) −14.5505 + 25.2022i −0.427956 + 0.741242i
\(35\) 0 0
\(36\) −18.0000 −0.500000
\(37\) 18.6515 0.504095 0.252048 0.967715i \(-0.418896\pi\)
0.252048 + 0.967715i \(0.418896\pi\)
\(38\) 25.0454 + 14.4600i 0.659090 + 0.380526i
\(39\) −16.7196 + 28.9593i −0.428709 + 0.742545i
\(40\) 0 0
\(41\) −0.398979 + 0.230351i −0.00973121 + 0.00561831i −0.504858 0.863203i \(-0.668455\pi\)
0.495127 + 0.868821i \(0.335122\pi\)
\(42\) 43.7196 + 25.2415i 1.04094 + 0.600989i
\(43\) −17.5959 + 30.4770i −0.409207 + 0.708768i −0.994801 0.101837i \(-0.967528\pi\)
0.585594 + 0.810605i \(0.300861\pi\)
\(44\) 12.8708i 0.292518i
\(45\) 0 0
\(46\) −13.1464 −0.285792
\(47\) −55.7474 32.1858i −1.18612 0.684804i −0.228694 0.973498i \(-0.573446\pi\)
−0.957421 + 0.288694i \(0.906779\pi\)
\(48\) −12.0000 −0.250000
\(49\) −46.2929 80.1816i −0.944752 1.63636i
\(50\) 0 0
\(51\) −53.4620 + 30.8663i −1.04827 + 0.605221i
\(52\) −11.1464 + 19.3062i −0.214354 + 0.371273i
\(53\) 2.25697i 0.0425843i −0.999773 0.0212922i \(-0.993222\pi\)
0.999773 0.0212922i \(-0.00677802\pi\)
\(54\) −33.0681 19.0919i −0.612372 0.353553i
\(55\) 0 0
\(56\) 29.1464 + 16.8277i 0.520472 + 0.300495i
\(57\) 30.6742 + 53.1293i 0.538144 + 0.932094i
\(58\) 9.67423 + 16.7563i 0.166797 + 0.288901i
\(59\) 39.6867 22.9131i 0.672656 0.388358i −0.124426 0.992229i \(-0.539709\pi\)
0.797082 + 0.603870i \(0.206376\pi\)
\(60\) 0 0
\(61\) −4.94949 + 8.57277i −0.0811392 + 0.140537i −0.903740 0.428083i \(-0.859189\pi\)
0.822600 + 0.568620i \(0.192522\pi\)
\(62\) 76.1460i 1.22816i
\(63\) 53.5454 + 92.7434i 0.849927 + 1.47212i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) −13.6515 + 23.6451i −0.206841 + 0.358260i
\(67\) 20.9949 + 36.3642i 0.313357 + 0.542750i 0.979087 0.203443i \(-0.0652131\pi\)
−0.665730 + 0.746193i \(0.731880\pi\)
\(68\) −35.6413 + 20.5775i −0.524137 + 0.302611i
\(69\) −24.1515 13.9439i −0.350022 0.202085i
\(70\) 0 0
\(71\) 121.672i 1.71369i −0.515572 0.856846i \(-0.672421\pi\)
0.515572 0.856846i \(-0.327579\pi\)
\(72\) −22.0454 12.7279i −0.306186 0.176777i
\(73\) −11.1010 −0.152069 −0.0760344 0.997105i \(-0.524226\pi\)
−0.0760344 + 0.997105i \(0.524226\pi\)
\(74\) 22.8434 + 13.1886i 0.308694 + 0.178225i
\(75\) 0 0
\(76\) 20.4495 + 35.4196i 0.269072 + 0.466047i
\(77\) 66.3156 38.2873i 0.861241 0.497238i
\(78\) −40.9546 + 23.6451i −0.525059 + 0.303143i
\(79\) 72.7423 125.993i 0.920789 1.59485i 0.122592 0.992457i \(-0.460879\pi\)
0.798197 0.602397i \(-0.205787\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.500000 0.866025i
\(82\) −0.651531 −0.00794550
\(83\) 18.3990 + 10.6227i 0.221674 + 0.127984i 0.606725 0.794912i \(-0.292483\pi\)
−0.385051 + 0.922895i \(0.625816\pi\)
\(84\) 35.6969 + 61.8289i 0.424964 + 0.736058i
\(85\) 0 0
\(86\) −43.1010 + 24.8844i −0.501175 + 0.289353i
\(87\) 41.0443i 0.471774i
\(88\) −9.10102 + 15.7634i −0.103421 + 0.179130i
\(89\) 73.2999i 0.823595i 0.911275 + 0.411797i \(0.135099\pi\)
−0.911275 + 0.411797i \(0.864901\pi\)
\(90\) 0 0
\(91\) 132.631 1.45748
\(92\) −16.1010 9.29593i −0.175011 0.101043i
\(93\) 80.7650 139.889i 0.868441 1.50418i
\(94\) −45.5176 78.8388i −0.484230 0.838711i
\(95\) 0 0
\(96\) −14.6969 8.48528i −0.153093 0.0883883i
\(97\) 39.3939 68.2322i 0.406122 0.703425i −0.588329 0.808622i \(-0.700214\pi\)
0.994451 + 0.105197i \(0.0335473\pi\)
\(98\) 130.936i 1.33608i
\(99\) −50.1589 + 28.9593i −0.506656 + 0.292518i
\(100\) 0 0
\(101\) 124.980 + 72.1570i 1.23742 + 0.714426i 0.968566 0.248755i \(-0.0800214\pi\)
0.268855 + 0.963181i \(0.413355\pi\)
\(102\) −87.3031 −0.855912
\(103\) −49.8888 86.4099i −0.484357 0.838931i 0.515481 0.856901i \(-0.327613\pi\)
−0.999839 + 0.0179697i \(0.994280\pi\)
\(104\) −27.3031 + 15.7634i −0.262529 + 0.151571i
\(105\) 0 0
\(106\) 1.59592 2.76421i 0.0150558 0.0260775i
\(107\) 119.512i 1.11693i 0.829528 + 0.558465i \(0.188609\pi\)
−0.829528 + 0.558465i \(0.811391\pi\)
\(108\) −27.0000 46.7654i −0.250000 0.433013i
\(109\) −151.091 −1.38615 −0.693077 0.720863i \(-0.743745\pi\)
−0.693077 + 0.720863i \(0.743745\pi\)
\(110\) 0 0
\(111\) 27.9773 + 48.4581i 0.252048 + 0.436559i
\(112\) 23.7980 + 41.2193i 0.212482 + 0.368029i
\(113\) −98.6969 + 56.9827i −0.873424 + 0.504272i −0.868485 0.495716i \(-0.834906\pi\)
−0.00493960 + 0.999988i \(0.501572\pi\)
\(114\) 86.7598i 0.761051i
\(115\) 0 0
\(116\) 27.3629i 0.235887i
\(117\) −100.318 −0.857418
\(118\) 64.8082 0.549222
\(119\) 212.048 + 122.426i 1.78191 + 1.02879i
\(120\) 0 0
\(121\) −39.7929 68.9232i −0.328867 0.569614i
\(122\) −12.1237 + 6.99964i −0.0993748 + 0.0573741i
\(123\) −1.19694 0.691053i −0.00973121 0.00561831i
\(124\) 53.8434 93.2594i 0.434221 0.752092i
\(125\) 0 0
\(126\) 151.449i 1.20198i
\(127\) −4.68673 −0.0369034 −0.0184517 0.999830i \(-0.505874\pi\)
−0.0184517 + 0.999830i \(0.505874\pi\)
\(128\) −9.79796 5.65685i −0.0765466 0.0441942i
\(129\) −105.576 −0.818415
\(130\) 0 0
\(131\) 4.65153 2.68556i 0.0355079 0.0205005i −0.482141 0.876094i \(-0.660141\pi\)
0.517649 + 0.855593i \(0.326807\pi\)
\(132\) −33.4393 + 19.3062i −0.253328 + 0.146259i
\(133\) 121.664 210.728i 0.914767 1.58442i
\(134\) 59.3825i 0.443153i
\(135\) 0 0
\(136\) −58.2020 −0.427956
\(137\) −72.7423 41.9978i −0.530966 0.306553i 0.210444 0.977606i \(-0.432509\pi\)
−0.741410 + 0.671053i \(0.765842\pi\)
\(138\) −19.7196 34.1554i −0.142896 0.247503i
\(139\) 34.3587 + 59.5110i 0.247185 + 0.428136i 0.962744 0.270416i \(-0.0871612\pi\)
−0.715559 + 0.698552i \(0.753828\pi\)
\(140\) 0 0
\(141\) 193.115i 1.36961i
\(142\) 86.0352 149.017i 0.605882 1.04942i
\(143\) 71.7316i 0.501620i
\(144\) −18.0000 31.1769i −0.125000 0.216506i
\(145\) 0 0
\(146\) −13.5959 7.84961i −0.0931227 0.0537644i
\(147\) 138.879 240.545i 0.944752 1.63636i
\(148\) 18.6515 + 32.3054i 0.126024 + 0.218280i
\(149\) 116.626 67.3341i 0.782725 0.451906i −0.0546702 0.998504i \(-0.517411\pi\)
0.837395 + 0.546598i \(0.184077\pi\)
\(150\) 0 0
\(151\) 41.7753 72.3569i 0.276657 0.479185i −0.693895 0.720077i \(-0.744107\pi\)
0.970552 + 0.240892i \(0.0774400\pi\)
\(152\) 57.8399i 0.380526i
\(153\) −160.386 92.5989i −1.04827 0.605221i
\(154\) 108.293 0.703200
\(155\) 0 0
\(156\) −66.8786 −0.428709
\(157\) −66.6515 115.444i −0.424532 0.735311i 0.571845 0.820362i \(-0.306228\pi\)
−0.996377 + 0.0850509i \(0.972895\pi\)
\(158\) 178.182 102.873i 1.12773 0.651096i
\(159\) 5.86378 3.38545i 0.0368791 0.0212922i
\(160\) 0 0
\(161\) 110.612i 0.687031i
\(162\) 114.551i 0.707107i
\(163\) −196.808 −1.20741 −0.603706 0.797207i \(-0.706310\pi\)
−0.603706 + 0.797207i \(0.706310\pi\)
\(164\) −0.797959 0.460702i −0.00486560 0.00280916i
\(165\) 0 0
\(166\) 15.0227 + 26.0201i 0.0904982 + 0.156748i
\(167\) −13.6362 + 7.87288i −0.0816540 + 0.0471430i −0.540271 0.841491i \(-0.681678\pi\)
0.458617 + 0.888634i \(0.348345\pi\)
\(168\) 100.966i 0.600989i
\(169\) 22.3786 38.7608i 0.132418 0.229354i
\(170\) 0 0
\(171\) −92.0227 + 159.388i −0.538144 + 0.932094i
\(172\) −70.3837 −0.409207
\(173\) −32.3383 18.6705i −0.186926 0.107922i 0.403616 0.914928i \(-0.367753\pi\)
−0.590543 + 0.807006i \(0.701086\pi\)
\(174\) −29.0227 + 50.2688i −0.166797 + 0.288901i
\(175\) 0 0
\(176\) −22.2929 + 12.8708i −0.126664 + 0.0731295i
\(177\) 119.060 + 68.7394i 0.672656 + 0.388358i
\(178\) −51.8309 + 89.7737i −0.291185 + 0.504347i
\(179\) 236.209i 1.31960i −0.751440 0.659802i \(-0.770640\pi\)
0.751440 0.659802i \(-0.229360\pi\)
\(180\) 0 0
\(181\) −265.050 −1.46436 −0.732182 0.681109i \(-0.761498\pi\)
−0.732182 + 0.681109i \(0.761498\pi\)
\(182\) 162.439 + 93.7844i 0.892524 + 0.515299i
\(183\) −29.6969 −0.162278
\(184\) −13.1464 22.7703i −0.0714480 0.123752i
\(185\) 0 0
\(186\) 197.833 114.219i 1.06362 0.614081i
\(187\) −66.2122 + 114.683i −0.354076 + 0.613278i
\(188\) 128.743i 0.684804i
\(189\) −160.636 + 278.230i −0.849927 + 1.47212i
\(190\) 0 0
\(191\) 81.8411 + 47.2510i 0.428487 + 0.247387i 0.698702 0.715413i \(-0.253761\pi\)
−0.270215 + 0.962800i \(0.587095\pi\)
\(192\) −12.0000 20.7846i −0.0625000 0.108253i
\(193\) −21.1895 36.7014i −0.109790 0.190163i 0.805895 0.592059i \(-0.201685\pi\)
−0.915685 + 0.401896i \(0.868351\pi\)
\(194\) 96.4949 55.7114i 0.497396 0.287172i
\(195\) 0 0
\(196\) 92.5857 160.363i 0.472376 0.818179i
\(197\) 120.765i 0.613021i −0.951867 0.306511i \(-0.900839\pi\)
0.951867 0.306511i \(-0.0991615\pi\)
\(198\) −81.9092 −0.413683
\(199\) 29.4801 0.148141 0.0740706 0.997253i \(-0.476401\pi\)
0.0740706 + 0.997253i \(0.476401\pi\)
\(200\) 0 0
\(201\) −62.9847 + 109.093i −0.313357 + 0.542750i
\(202\) 102.045 + 176.748i 0.505175 + 0.874989i
\(203\) 140.985 81.3976i 0.694506 0.400973i
\(204\) −106.924 61.7326i −0.524137 0.302611i
\(205\) 0 0
\(206\) 141.107i 0.684984i
\(207\) 83.6634i 0.404171i
\(208\) −44.5857 −0.214354
\(209\) 113.969 + 65.8003i 0.545308 + 0.314834i
\(210\) 0 0
\(211\) −15.1237 26.1951i −0.0716764 0.124147i 0.827960 0.560788i \(-0.189502\pi\)
−0.899636 + 0.436640i \(0.856168\pi\)
\(212\) 3.90918 2.25697i 0.0184396 0.0106461i
\(213\) 316.114 182.508i 1.48410 0.856846i
\(214\) −84.5074 + 146.371i −0.394894 + 0.683977i
\(215\) 0 0
\(216\) 76.3675i 0.353553i
\(217\) −640.681 −2.95245
\(218\) −185.048 106.837i −0.848843 0.490080i
\(219\) −16.6515 28.8413i −0.0760344 0.131695i
\(220\) 0 0
\(221\) −198.637 + 114.683i −0.898809 + 0.518927i
\(222\) 79.1317i 0.356449i
\(223\) 7.05051 12.2118i 0.0316166 0.0547616i −0.849784 0.527131i \(-0.823268\pi\)
0.881401 + 0.472369i \(0.156601\pi\)
\(224\) 67.3108i 0.300495i
\(225\) 0 0
\(226\) −161.171 −0.713148
\(227\) 223.596 + 129.093i 0.985004 + 0.568692i 0.903777 0.428003i \(-0.140783\pi\)
0.0812269 + 0.996696i \(0.474116\pi\)
\(228\) −61.3485 + 106.259i −0.269072 + 0.466047i
\(229\) −46.2628 80.1294i −0.202021 0.349910i 0.747159 0.664646i \(-0.231418\pi\)
−0.949179 + 0.314735i \(0.898084\pi\)
\(230\) 0 0
\(231\) 198.947 + 114.862i 0.861241 + 0.497238i
\(232\) −19.3485 + 33.5125i −0.0833986 + 0.144451i
\(233\) 320.619i 1.37605i 0.725689 + 0.688023i \(0.241521\pi\)
−0.725689 + 0.688023i \(0.758479\pi\)
\(234\) −122.864 70.9354i −0.525059 0.303143i
\(235\) 0 0
\(236\) 79.3735 + 45.8263i 0.336328 + 0.194179i
\(237\) 436.454 1.84158
\(238\) 173.136 + 299.881i 0.727463 + 1.26000i
\(239\) −281.914 + 162.763i −1.17956 + 0.681017i −0.955912 0.293654i \(-0.905129\pi\)
−0.223644 + 0.974671i \(0.571795\pi\)
\(240\) 0 0
\(241\) 42.3786 73.4018i 0.175845 0.304572i −0.764609 0.644495i \(-0.777068\pi\)
0.940453 + 0.339923i \(0.110401\pi\)
\(242\) 112.551i 0.465088i
\(243\) 121.500 210.444i 0.500000 0.866025i
\(244\) −19.7980 −0.0811392
\(245\) 0 0
\(246\) −0.977296 1.69273i −0.00397275 0.00688100i
\(247\) 113.969 + 197.401i 0.461415 + 0.799193i
\(248\) 131.889 76.1460i 0.531810 0.307040i
\(249\) 63.7359i 0.255968i
\(250\) 0 0
\(251\) 77.5314i 0.308890i −0.988001 0.154445i \(-0.950641\pi\)
0.988001 0.154445i \(-0.0493589\pi\)
\(252\) −107.091 + 185.487i −0.424964 + 0.736058i
\(253\) −59.8230 −0.236454
\(254\) −5.74005 3.31402i −0.0225986 0.0130473i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −237.167 + 136.928i −0.922828 + 0.532795i −0.884536 0.466472i \(-0.845525\pi\)
−0.0382919 + 0.999267i \(0.512192\pi\)
\(258\) −129.303 74.6532i −0.501175 0.289353i
\(259\) 110.967 192.201i 0.428444 0.742087i
\(260\) 0 0
\(261\) −106.636 + 61.5665i −0.408568 + 0.235887i
\(262\) 7.59592 0.0289921
\(263\) 32.7775 + 18.9241i 0.124629 + 0.0719549i 0.561019 0.827803i \(-0.310410\pi\)
−0.436389 + 0.899758i \(0.643743\pi\)
\(264\) −54.6061 −0.206841
\(265\) 0 0
\(266\) 298.015 172.059i 1.12036 0.646838i
\(267\) −190.439 + 109.950i −0.713254 + 0.411797i
\(268\) −41.9898 + 72.7285i −0.156678 + 0.271375i
\(269\) 135.240i 0.502749i −0.967890 0.251375i \(-0.919117\pi\)
0.967890 0.251375i \(-0.0808826\pi\)
\(270\) 0 0
\(271\) 147.914 0.545807 0.272904 0.962041i \(-0.412016\pi\)
0.272904 + 0.962041i \(0.412016\pi\)
\(272\) −71.2827 41.1551i −0.262069 0.151305i
\(273\) 198.947 + 344.586i 0.728742 + 1.26222i
\(274\) −59.3939 102.873i −0.216766 0.375450i
\(275\) 0 0
\(276\) 55.7756i 0.202085i
\(277\) 232.406 402.540i 0.839012 1.45321i −0.0517093 0.998662i \(-0.516467\pi\)
0.890721 0.454550i \(-0.150200\pi\)
\(278\) 97.1810i 0.349572i
\(279\) 484.590 1.73688
\(280\) 0 0
\(281\) −7.46938 4.31245i −0.0265814 0.0153468i 0.486650 0.873597i \(-0.338219\pi\)
−0.513232 + 0.858250i \(0.671552\pi\)
\(282\) 136.553 236.516i 0.484230 0.838711i
\(283\) −40.7122 70.5157i −0.143860 0.249172i 0.785087 0.619385i \(-0.212618\pi\)
−0.928947 + 0.370213i \(0.879285\pi\)
\(284\) 210.742 121.672i 0.742051 0.428423i
\(285\) 0 0
\(286\) −50.7219 + 87.8530i −0.177349 + 0.307178i
\(287\) 5.48188i 0.0191006i
\(288\) 50.9117i 0.176777i
\(289\) −134.435 −0.465172
\(290\) 0 0
\(291\) 236.363 0.812245
\(292\) −11.1010 19.2275i −0.0380172 0.0658477i
\(293\) −448.386 + 258.876i −1.53033 + 0.883535i −0.530981 + 0.847384i \(0.678177\pi\)
−0.999346 + 0.0361514i \(0.988490\pi\)
\(294\) 340.182 196.404i 1.15708 0.668041i
\(295\) 0 0
\(296\) 52.7545i 0.178225i
\(297\) −150.477 86.8778i −0.506656 0.292518i
\(298\) 190.449 0.639092
\(299\) −89.7344 51.8082i −0.300115 0.173272i
\(300\) 0 0
\(301\) 209.373 + 362.645i 0.695593 + 1.20480i
\(302\) 102.328 59.0791i 0.338835 0.195626i
\(303\) 432.942i 1.42885i
\(304\) −40.8990 + 70.8391i −0.134536 + 0.233023i
\(305\) 0 0
\(306\) −130.955 226.820i −0.427956 0.741242i
\(307\) −4.59592 −0.0149704 −0.00748521 0.999972i \(-0.502383\pi\)
−0.00748521 + 0.999972i \(0.502383\pi\)
\(308\) 132.631 + 76.5746i 0.430621 + 0.248619i
\(309\) 149.666 259.230i 0.484357 0.838931i
\(310\) 0 0
\(311\) 29.3258 16.9312i 0.0942951 0.0544413i −0.452111 0.891962i \(-0.649329\pi\)
0.546406 + 0.837520i \(0.315996\pi\)
\(312\) −81.9092 47.2903i −0.262529 0.151571i
\(313\) −58.5380 + 101.391i −0.187022 + 0.323932i −0.944256 0.329212i \(-0.893217\pi\)
0.757234 + 0.653144i \(0.226550\pi\)
\(314\) 188.519i 0.600379i
\(315\) 0 0
\(316\) 290.969 0.920789
\(317\) 386.543 + 223.170i 1.21938 + 0.704008i 0.964785 0.263041i \(-0.0847253\pi\)
0.254593 + 0.967048i \(0.418059\pi\)
\(318\) 9.57551 0.0301117
\(319\) 44.0227 + 76.2496i 0.138002 + 0.239027i
\(320\) 0 0
\(321\) −310.500 + 179.267i −0.967290 + 0.558465i
\(322\) −78.2145 + 135.472i −0.242902 + 0.420719i
\(323\) 420.800i 1.30279i
\(324\) 81.0000 140.296i 0.250000 0.433013i
\(325\) 0 0
\(326\) −241.040 139.164i −0.739386 0.426885i
\(327\) −226.636 392.545i −0.693077 1.20044i
\(328\) −0.651531 1.12848i −0.00198637 0.00344050i
\(329\) −663.338 + 382.978i −2.01622 + 1.16407i
\(330\) 0 0
\(331\) −259.666 + 449.755i −0.784490 + 1.35878i 0.144813 + 0.989459i \(0.453742\pi\)
−0.929303 + 0.369318i \(0.879591\pi\)
\(332\) 42.4906i 0.127984i
\(333\) −83.9319 + 145.374i −0.252048 + 0.436559i
\(334\) −22.2679 −0.0666702
\(335\) 0 0
\(336\) −71.3939 + 123.658i −0.212482 + 0.368029i
\(337\) 290.297 + 502.810i 0.861417 + 1.49202i 0.870562 + 0.492059i \(0.163756\pi\)
−0.00914489 + 0.999958i \(0.502911\pi\)
\(338\) 54.8161 31.6481i 0.162178 0.0936334i
\(339\) −296.091 170.948i −0.873424 0.504272i
\(340\) 0 0
\(341\) 346.503i 1.01614i
\(342\) −225.409 + 130.140i −0.659090 + 0.380526i
\(343\) −518.626 −1.51203
\(344\) −86.2020 49.7688i −0.250587 0.144677i
\(345\) 0 0
\(346\) −26.4041 45.7332i −0.0763124 0.132177i
\(347\) −225.545 + 130.218i −0.649985 + 0.375269i −0.788451 0.615098i \(-0.789116\pi\)
0.138465 + 0.990367i \(0.455783\pi\)
\(348\) −71.0908 + 41.0443i −0.204284 + 0.117943i
\(349\) −320.585 + 555.270i −0.918582 + 1.59103i −0.117012 + 0.993131i \(0.537332\pi\)
−0.801570 + 0.597901i \(0.796002\pi\)
\(350\) 0 0
\(351\) −150.477 260.633i −0.428709 0.742545i
\(352\) −36.4041 −0.103421
\(353\) 306.767 + 177.112i 0.869029 + 0.501734i 0.867026 0.498264i \(-0.166029\pi\)
0.00200376 + 0.999998i \(0.499362\pi\)
\(354\) 97.2122 + 168.377i 0.274611 + 0.475640i
\(355\) 0 0
\(356\) −126.959 + 73.2999i −0.356627 + 0.205899i
\(357\) 734.555i 2.05758i
\(358\) 167.025 289.296i 0.466550 0.808089i
\(359\) 388.215i 1.08138i 0.841222 + 0.540690i \(0.181837\pi\)
−0.841222 + 0.540690i \(0.818163\pi\)
\(360\) 0 0
\(361\) 57.1816 0.158398
\(362\) −324.619 187.419i −0.896737 0.517731i
\(363\) 119.379 206.770i 0.328867 0.569614i
\(364\) 132.631 + 229.724i 0.364371 + 0.631109i
\(365\) 0 0
\(366\) −36.3712 20.9989i −0.0993748 0.0573741i
\(367\) 237.646 411.615i 0.647537 1.12157i −0.336173 0.941800i \(-0.609133\pi\)
0.983709 0.179766i \(-0.0575340\pi\)
\(368\) 37.1837i 0.101043i
\(369\) 4.14632i 0.0112366i
\(370\) 0 0
\(371\) −23.2577 13.4278i −0.0626891 0.0361936i
\(372\) 323.060 0.868441
\(373\) 186.656 + 323.298i 0.500419 + 0.866750i 1.00000 0.000483363i \(0.000153859\pi\)
−0.499581 + 0.866267i \(0.666513\pi\)
\(374\) −162.186 + 93.6383i −0.433653 + 0.250370i
\(375\) 0 0
\(376\) 91.0352 157.678i 0.242115 0.419355i
\(377\) 152.499i 0.404507i
\(378\) −393.477 + 227.174i −1.04094 + 0.600989i
\(379\) 348.899 0.920578 0.460289 0.887769i \(-0.347746\pi\)
0.460289 + 0.887769i \(0.347746\pi\)
\(380\) 0 0
\(381\) −7.03010 12.1765i −0.0184517 0.0319593i
\(382\) 66.8230 + 115.741i 0.174929 + 0.302986i
\(383\) 298.868 172.552i 0.780335 0.450527i −0.0562139 0.998419i \(-0.517903\pi\)
0.836549 + 0.547892i \(0.184570\pi\)
\(384\) 33.9411i 0.0883883i
\(385\) 0 0
\(386\) 59.9331i 0.155267i
\(387\) −158.363 274.293i −0.409207 0.708768i
\(388\) 157.576 0.406122
\(389\) −277.464 160.194i −0.713274 0.411809i 0.0989978 0.995088i \(-0.468436\pi\)
−0.812272 + 0.583278i \(0.801770\pi\)
\(390\) 0 0
\(391\) −95.6436 165.660i −0.244613 0.423682i
\(392\) 226.788 130.936i 0.578540 0.334020i
\(393\) 13.9546 + 8.05669i 0.0355079 + 0.0205005i
\(394\) 85.3939 147.907i 0.216736 0.375397i
\(395\) 0 0
\(396\) −100.318 57.9185i −0.253328 0.146259i
\(397\) 205.344 0.517239 0.258619 0.965979i \(-0.416732\pi\)
0.258619 + 0.965979i \(0.416732\pi\)
\(398\) 36.1056 + 20.8456i 0.0907176 + 0.0523758i
\(399\) 729.984 1.82953
\(400\) 0 0
\(401\) −356.221 + 205.665i −0.888333 + 0.512879i −0.873397 0.487009i \(-0.838088\pi\)
−0.0149359 + 0.999888i \(0.504754\pi\)
\(402\) −154.280 + 89.0738i −0.383782 + 0.221577i
\(403\) 300.081 519.755i 0.744617 1.28971i
\(404\) 288.628i 0.714426i
\(405\) 0 0
\(406\) 230.227 0.567062
\(407\) 103.949 + 60.0150i 0.255403 + 0.147457i
\(408\) −87.3031 151.213i −0.213978 0.370621i
\(409\) 165.980 + 287.485i 0.405818 + 0.702898i 0.994416 0.105528i \(-0.0336533\pi\)
−0.588598 + 0.808426i \(0.700320\pi\)
\(410\) 0 0
\(411\) 251.987i 0.613107i
\(412\) 99.7775 172.820i 0.242179 0.419465i
\(413\) 545.286i 1.32031i
\(414\) 59.1589 102.466i 0.142896 0.247503i
\(415\) 0 0
\(416\) −54.6061 31.5269i −0.131265 0.0757857i
\(417\) −103.076 + 178.533i −0.247185 + 0.428136i
\(418\) 93.0556 + 161.177i 0.222621 + 0.385591i
\(419\) 630.229 363.863i 1.50413 0.868408i 0.504139 0.863623i \(-0.331810\pi\)
0.999989 0.00478561i \(-0.00152331\pi\)
\(420\) 0 0
\(421\) −70.5857 + 122.258i −0.167662 + 0.290399i −0.937597 0.347723i \(-0.886955\pi\)
0.769935 + 0.638122i \(0.220288\pi\)
\(422\) 42.7764i 0.101366i
\(423\) 501.727 289.672i 1.18612 0.684804i
\(424\) 6.38367 0.0150558
\(425\) 0 0
\(426\) 516.211 1.21176
\(427\) 58.8939 + 102.007i 0.137925 + 0.238893i
\(428\) −207.000 + 119.512i −0.483645 + 0.279232i
\(429\) −186.364 + 107.597i −0.434416 + 0.250810i
\(430\) 0 0
\(431\) 650.423i 1.50910i 0.656242 + 0.754551i \(0.272145\pi\)
−0.656242 + 0.754551i \(0.727855\pi\)
\(432\) 54.0000 93.5307i 0.125000 0.216506i
\(433\) −68.3179 −0.157778 −0.0788890 0.996883i \(-0.525137\pi\)
−0.0788890 + 0.996883i \(0.525137\pi\)
\(434\) −784.671 453.030i −1.80800 1.04385i
\(435\) 0 0
\(436\) −151.091 261.697i −0.346539 0.600222i
\(437\) −164.629 + 95.0485i −0.376725 + 0.217502i
\(438\) 47.0976i 0.107529i
\(439\) −220.454 + 381.838i −0.502173 + 0.869790i 0.497824 + 0.867278i \(0.334133\pi\)
−0.999997 + 0.00251133i \(0.999201\pi\)
\(440\) 0 0
\(441\) 833.271 1.88950
\(442\) −324.372 −0.733874
\(443\) −649.378 374.918i −1.46586 0.846317i −0.466592 0.884473i \(-0.654518\pi\)
−0.999272 + 0.0381561i \(0.987852\pi\)
\(444\) −55.9546 + 96.9162i −0.126024 + 0.218280i
\(445\) 0 0
\(446\) 17.2702 9.97093i 0.0387223 0.0223563i
\(447\) 349.878 + 202.002i 0.782725 + 0.451906i
\(448\) −47.5959 + 82.4385i −0.106241 + 0.184015i
\(449\) 802.901i 1.78820i −0.447869 0.894099i \(-0.647817\pi\)
0.447869 0.894099i \(-0.352183\pi\)
\(450\) 0 0
\(451\) −2.96480 −0.00657383
\(452\) −197.394 113.965i −0.436712 0.252136i
\(453\) 250.652 0.553315
\(454\) 182.565 + 316.212i 0.402126 + 0.696503i
\(455\) 0 0
\(456\) −150.272 + 86.7598i −0.329545 + 0.190263i
\(457\) 227.012 393.197i 0.496745 0.860388i −0.503248 0.864142i \(-0.667862\pi\)
0.999993 + 0.00375440i \(0.00119506\pi\)
\(458\) 130.851i 0.285701i
\(459\) 555.593i 1.21044i
\(460\) 0 0
\(461\) −438.424 253.124i −0.951028 0.549076i −0.0576280 0.998338i \(-0.518354\pi\)
−0.893400 + 0.449262i \(0.851687\pi\)
\(462\) 162.439 + 281.353i 0.351600 + 0.608989i
\(463\) 247.182 + 428.131i 0.533870 + 0.924689i 0.999217 + 0.0395612i \(0.0125960\pi\)
−0.465348 + 0.885128i \(0.654071\pi\)
\(464\) −47.3939 + 27.3629i −0.102142 + 0.0589717i
\(465\) 0 0
\(466\) −226.712 + 392.676i −0.486506 + 0.842653i
\(467\) 390.044i 0.835211i −0.908628 0.417606i \(-0.862869\pi\)
0.908628 0.417606i \(-0.137131\pi\)
\(468\) −100.318 173.756i −0.214354 0.371273i
\(469\) 499.636 1.06532
\(470\) 0 0
\(471\) 199.955 346.332i 0.424532 0.735311i
\(472\) 64.8082 + 112.251i 0.137305 + 0.237820i
\(473\) −196.132 + 113.237i −0.414655 + 0.239401i
\(474\) 534.545 + 308.620i 1.12773 + 0.651096i
\(475\) 0 0
\(476\) 489.703i 1.02879i
\(477\) 17.5913 + 10.1564i 0.0368791 + 0.0212922i
\(478\) −460.363 −0.963103
\(479\) 160.960 + 92.9304i 0.336034 + 0.194009i 0.658517 0.752566i \(-0.271184\pi\)
−0.322483 + 0.946575i \(0.604517\pi\)
\(480\) 0 0
\(481\) 103.949 + 180.045i 0.216110 + 0.374314i
\(482\) 103.806 59.9323i 0.215365 0.124341i
\(483\) −287.379 + 165.918i −0.594987 + 0.343516i
\(484\) 79.5857 137.846i 0.164433 0.284807i
\(485\) 0 0
\(486\) 297.613 171.827i 0.612372 0.353553i
\(487\) −828.261 −1.70074 −0.850371 0.526184i \(-0.823622\pi\)
−0.850371 + 0.526184i \(0.823622\pi\)
\(488\) −24.2474 13.9993i −0.0496874 0.0286870i
\(489\) −295.212 511.323i −0.603706 1.04565i
\(490\) 0 0
\(491\) 219.167 126.536i 0.446368 0.257711i −0.259927 0.965628i \(-0.583698\pi\)
0.706295 + 0.707917i \(0.250365\pi\)
\(492\) 2.76421i 0.00561831i
\(493\) −140.765 + 243.812i −0.285527 + 0.494548i
\(494\) 322.354i 0.652539i
\(495\) 0 0
\(496\) 215.373 0.434221
\(497\) −1253.81 723.887i −2.52276 1.45651i
\(498\) −45.0681 + 78.0603i −0.0904982 + 0.156748i
\(499\) 487.807 + 844.907i 0.977569 + 1.69320i 0.671181 + 0.741293i \(0.265787\pi\)
0.306388 + 0.951907i \(0.400879\pi\)
\(500\) 0 0
\(501\) −40.9087 23.6186i −0.0816540 0.0471430i
\(502\) 54.8230 94.9561i 0.109209 0.189156i
\(503\) 440.360i 0.875467i −0.899105 0.437733i \(-0.855781\pi\)
0.899105 0.437733i \(-0.144219\pi\)
\(504\) −262.318 + 151.449i −0.520472 + 0.300495i
\(505\) 0 0
\(506\) −73.2679 42.3012i −0.144798 0.0835992i
\(507\) 134.271 0.264835
\(508\) −4.68673 8.11766i −0.00922585 0.0159796i
\(509\) −618.696 + 357.205i −1.21551 + 0.701777i −0.963955 0.266065i \(-0.914276\pi\)
−0.251559 + 0.967842i \(0.580943\pi\)
\(510\) 0 0
\(511\) −66.0454 + 114.394i −0.129247 + 0.223863i
\(512\) 22.6274i 0.0441942i
\(513\) −552.136 −1.07629
\(514\) −387.292 −0.753486
\(515\) 0 0
\(516\) −105.576 182.862i −0.204604 0.354384i
\(517\) −207.128 358.757i −0.400635 0.693920i
\(518\) 271.813 156.931i 0.524735 0.302956i
\(519\) 112.023i 0.215844i
\(520\) 0 0
\(521\) 328.944i 0.631370i −0.948864 0.315685i \(-0.897766\pi\)
0.948864 0.315685i \(-0.102234\pi\)
\(522\) −174.136 −0.333594
\(523\) 416.535 0.796433 0.398217 0.917291i \(-0.369629\pi\)
0.398217 + 0.917291i \(0.369629\pi\)
\(524\) 9.30306 + 5.37113i 0.0177539 + 0.0102502i
\(525\) 0 0
\(526\) 26.7628 + 46.3545i 0.0508798 + 0.0881263i
\(527\) 959.524 553.982i 1.82073 1.05120i
\(528\) −66.8786 38.6124i −0.126664 0.0731295i
\(529\) −221.293 + 383.290i −0.418323 + 0.724557i
\(530\) 0 0
\(531\) 412.437i 0.776717i
\(532\) 486.656 0.914767
\(533\) −4.44720 2.56759i −0.00834371 0.00481724i
\(534\) −310.985 −0.582369
\(535\) 0 0
\(536\) −102.854 + 59.3825i −0.191891 + 0.110788i
\(537\) 613.689 354.314i 1.14281 0.659802i
\(538\) 95.6288 165.634i 0.177749 0.307870i
\(539\) 595.825i 1.10543i
\(540\) 0 0
\(541\) 161.070 0.297727 0.148864 0.988858i \(-0.452438\pi\)
0.148864 + 0.988858i \(0.452438\pi\)
\(542\) 181.157 + 104.591i 0.334237 + 0.192972i
\(543\) −397.575 688.620i −0.732182 1.26818i
\(544\) −58.2020 100.809i −0.106989 0.185310i
\(545\) 0 0
\(546\) 562.706i 1.03060i
\(547\) −237.187 + 410.819i −0.433614 + 0.751041i −0.997181 0.0750289i \(-0.976095\pi\)
0.563568 + 0.826070i \(0.309428\pi\)
\(548\) 167.991i 0.306553i
\(549\) −44.5454 77.1549i −0.0811392 0.140537i
\(550\) 0 0
\(551\) 242.295 + 139.889i 0.439737 + 0.253882i
\(552\) 39.4393 68.3108i 0.0714480 0.123752i
\(553\) −865.560 1499.19i −1.56521 2.71102i
\(554\) 569.277 328.672i 1.02758 0.593271i
\(555\) 0 0
\(556\) −68.7173 + 119.022i −0.123592 + 0.214068i
\(557\) 4.98583i 0.00895122i 0.999990 + 0.00447561i \(0.00142464\pi\)
−0.999990 + 0.00447561i \(0.998575\pi\)
\(558\) 593.499 + 342.657i 1.06362 + 0.614081i
\(559\) −392.263 −0.701723
\(560\) 0 0
\(561\) −397.273 −0.708152
\(562\) −6.09873 10.5633i −0.0108518 0.0187959i
\(563\) 244.005 140.876i 0.433402 0.250225i −0.267393 0.963588i \(-0.586162\pi\)
0.700795 + 0.713363i \(0.252829\pi\)
\(564\) 334.485 193.115i 0.593058 0.342402i
\(565\) 0 0
\(566\) 115.152i 0.203448i
\(567\) −963.817 −1.69985
\(568\) 344.141 0.605882
\(569\) −408.464 235.827i −0.717863 0.414459i 0.0961024 0.995371i \(-0.469362\pi\)
−0.813966 + 0.580913i \(0.802696\pi\)
\(570\) 0 0
\(571\) −232.202 402.186i −0.406659 0.704353i 0.587854 0.808967i \(-0.299973\pi\)
−0.994513 + 0.104613i \(0.966639\pi\)
\(572\) −124.243 + 71.7316i −0.217208 + 0.125405i
\(573\) 283.506i 0.494775i
\(574\) −3.87628 + 6.71391i −0.00675309 + 0.0116967i
\(575\) 0 0
\(576\) 36.0000 62.3538i 0.0625000 0.108253i
\(577\) 393.090 0.681265 0.340632 0.940197i \(-0.389359\pi\)
0.340632 + 0.940197i \(0.389359\pi\)
\(578\) −164.648 95.0597i −0.284858 0.164463i
\(579\) 63.5686 110.104i 0.109790 0.190163i
\(580\) 0 0
\(581\) 218.929 126.399i 0.376814 0.217554i
\(582\) 289.485 + 167.134i 0.497396 + 0.287172i
\(583\) 7.26224 12.5786i 0.0124567 0.0215756i
\(584\) 31.3984i 0.0537644i
\(585\) 0 0
\(586\) −732.211 −1.24951
\(587\) −41.9541 24.2222i −0.0714720 0.0412644i 0.463838 0.885920i \(-0.346472\pi\)
−0.535310 + 0.844656i \(0.679805\pi\)
\(588\) 555.514 0.944752
\(589\) −550.535 953.554i −0.934694 1.61894i
\(590\) 0 0
\(591\) 313.757 181.148i 0.530892 0.306511i
\(592\) −37.3031 + 64.6108i −0.0630119 + 0.109140i
\(593\) 474.853i 0.800764i −0.916348 0.400382i \(-0.868877\pi\)
0.916348 0.400382i \(-0.131123\pi\)
\(594\) −122.864 212.806i −0.206841 0.358260i
\(595\) 0 0
\(596\) 233.252 + 134.668i 0.391362 + 0.225953i
\(597\) 44.2202 + 76.5916i 0.0740706 + 0.128294i
\(598\) −73.2679 126.904i −0.122522 0.212213i
\(599\) −237.576 + 137.164i −0.396620 + 0.228989i −0.685025 0.728520i \(-0.740209\pi\)
0.288404 + 0.957509i \(0.406875\pi\)
\(600\) 0 0
\(601\) 582.565 1009.03i 0.969327 1.67892i 0.271815 0.962350i \(-0.412376\pi\)
0.697512 0.716573i \(-0.254291\pi\)
\(602\) 592.198i 0.983717i
\(603\) −377.908 −0.626713
\(604\) 167.101 0.276657
\(605\) 0 0
\(606\) −306.136 + 530.243i −0.505175 + 0.874989i
\(607\) 421.808 + 730.592i 0.694906 + 1.20361i 0.970213 + 0.242255i \(0.0778872\pi\)
−0.275307 + 0.961356i \(0.588780\pi\)
\(608\) −100.182 + 57.8399i −0.164772 + 0.0951314i
\(609\) 422.954 + 244.193i 0.694506 + 0.400973i
\(610\) 0 0
\(611\) 717.514i 1.17433i
\(612\) 370.396i 0.605221i
\(613\) 443.551 0.723573 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(614\) −5.62883 3.24980i −0.00916747 0.00529284i
\(615\) 0 0
\(616\) 108.293 + 187.569i 0.175800 + 0.304495i
\(617\) −716.141 + 413.464i −1.16068 + 0.670120i −0.951467 0.307750i \(-0.900424\pi\)
−0.209215 + 0.977870i \(0.567091\pi\)
\(618\) 366.606 211.660i 0.593214 0.342492i
\(619\) 106.876 185.115i 0.172660 0.299055i −0.766689 0.642018i \(-0.778097\pi\)
0.939349 + 0.342963i \(0.111431\pi\)
\(620\) 0 0
\(621\) 217.364 125.495i 0.350022 0.202085i
\(622\) 47.8888 0.0769916
\(623\) 755.342 + 436.097i 1.21243 + 0.699995i
\(624\) −66.8786 115.837i −0.107177 0.185636i
\(625\) 0 0
\(626\) −143.388 + 82.7852i −0.229055 + 0.132245i
\(627\) 394.802i 0.629668i
\(628\) 133.303 230.888i 0.212266 0.367656i
\(629\) 383.802i 0.610179i
\(630\) 0 0
\(631\) −292.150 −0.462995 −0.231498 0.972835i \(-0.574363\pi\)
−0.231498 + 0.972835i \(0.574363\pi\)
\(632\) 356.363 + 205.746i 0.563866 + 0.325548i
\(633\) 45.3712 78.5852i 0.0716764 0.124147i
\(634\) 315.611 + 546.654i 0.497809 + 0.862230i
\(635\) 0 0
\(636\) 11.7276 + 6.77091i 0.0184396 + 0.0106461i
\(637\) 516.000 893.738i 0.810047 1.40304i
\(638\) 124.515i 0.195165i
\(639\) 948.341 + 547.525i 1.48410 + 0.856846i
\(640\) 0 0
\(641\) 140.520 + 81.1295i 0.219221 + 0.126567i 0.605589 0.795777i \(-0.292937\pi\)
−0.386369 + 0.922344i \(0.626271\pi\)
\(642\) −507.044 −0.789789
\(643\) 366.510 + 634.814i 0.570000 + 0.987270i 0.996565 + 0.0828125i \(0.0263903\pi\)
−0.426565 + 0.904457i \(0.640276\pi\)
\(644\) −191.586 + 110.612i −0.297493 + 0.171758i
\(645\) 0 0
\(646\) −297.551 + 515.373i −0.460605 + 0.797790i
\(647\) 196.964i 0.304427i 0.988348 + 0.152213i \(0.0486401\pi\)
−0.988348 + 0.152213i \(0.951360\pi\)
\(648\) 198.409 114.551i 0.306186 0.176777i
\(649\) 294.910 0.454407
\(650\) 0 0
\(651\) −961.022 1664.54i −1.47622 2.55689i
\(652\) −196.808 340.882i −0.301853 0.522825i
\(653\) −384.588 + 222.042i −0.588956 + 0.340034i −0.764684 0.644405i \(-0.777105\pi\)
0.175729 + 0.984439i \(0.443772\pi\)
\(654\) 641.024i 0.980159i
\(655\) 0 0
\(656\) 1.84281i 0.00280916i
\(657\) 49.9546 86.5239i 0.0760344 0.131695i
\(658\) −1083.23 −1.64624
\(659\) −289.126 166.927i −0.438734 0.253303i 0.264326 0.964433i \(-0.414850\pi\)
−0.703061 + 0.711130i \(0.748184\pi\)
\(660\) 0 0
\(661\) 246.020 + 426.120i 0.372194 + 0.644659i 0.989903 0.141748i \(-0.0452722\pi\)
−0.617709 + 0.786407i \(0.711939\pi\)
\(662\) −636.050 + 367.224i −0.960801 + 0.554718i
\(663\) −595.910 344.049i −0.898809 0.518927i
\(664\) −30.0454 + 52.0402i −0.0452491 + 0.0783738i
\(665\) 0 0
\(666\) −205.590 + 118.698i −0.308694 + 0.178225i
\(667\) −127.182 −0.190677
\(668\) −27.2724 15.7458i −0.0408270 0.0235715i
\(669\) 42.3031 0.0632333
\(670\) 0 0
\(671\) −55.1691 + 31.8519i −0.0822193 + 0.0474693i
\(672\) −174.879 + 100.966i −0.260236 + 0.150247i
\(673\) 378.724 655.970i 0.562740 0.974695i −0.434516 0.900664i \(-0.643080\pi\)
0.997256 0.0740305i \(-0.0235862\pi\)
\(674\) 821.085i 1.21823i
\(675\) 0 0
\(676\) 89.5143 0.132418
\(677\) 508.239 + 293.432i 0.750722 + 0.433429i 0.825955 0.563737i \(-0.190637\pi\)
−0.0752330 + 0.997166i \(0.523970\pi\)
\(678\) −241.757 418.736i −0.356574 0.617604i
\(679\) −468.747 811.894i −0.690349 1.19572i
\(680\) 0 0
\(681\) 774.559i 1.13738i
\(682\) 245.015 424.378i 0.359259 0.622255i
\(683\) 759.768i 1.11240i 0.831049 + 0.556199i \(0.187741\pi\)
−0.831049 + 0.556199i \(0.812259\pi\)
\(684\) −368.091 −0.538144
\(685\) 0 0
\(686\) −635.184 366.724i −0.925924 0.534583i
\(687\) 138.788 240.388i 0.202021 0.349910i
\(688\) −70.3837 121.908i −0.102302 0.177192i
\(689\) 21.7867 12.5786i 0.0316208 0.0182563i
\(690\) 0 0
\(691\) 228.919 396.500i 0.331287 0.573806i −0.651477 0.758668i \(-0.725850\pi\)
0.982764 + 0.184862i \(0.0591838\pi\)
\(692\) 74.6820i 0.107922i
\(693\) 689.172i 0.994475i
\(694\) −368.313 −0.530711
\(695\) 0 0
\(696\) −116.091 −0.166797
\(697\) −4.74005 8.21001i −0.00680065 0.0117791i
\(698\) −785.270 + 453.376i −1.12503 + 0.649536i
\(699\) −832.992 + 480.928i −1.19169 + 0.688023i
\(700\) 0 0
\(701\) 196.778i 0.280711i −0.990101 0.140355i \(-0.955176\pi\)
0.990101 0.140355i \(-0.0448245\pi\)
\(702\) 425.613i 0.606286i
\(703\) 381.414 0.542552
\(704\) −44.5857 25.7416i −0.0633320 0.0365647i
\(705\) 0 0
\(706\) 250.474 + 433.835i 0.354780 + 0.614497i
\(707\) 1487.13 858.595i 2.10344 1.21442i
\(708\) 274.958i 0.388358i
\(709\) 240.424 416.427i 0.339103 0.587344i −0.645161 0.764046i \(-0.723210\pi\)
0.984264 + 0.176703i \(0.0565432\pi\)
\(710\) 0 0
\(711\) 654.681 + 1133.94i 0.920789 + 1.59485i
\(712\) −207.323 −0.291185
\(713\) 433.467 + 250.262i 0.607948 + 0.350999i
\(714\) −519.409 + 899.642i −0.727463 + 1.26000i
\(715\) 0 0
\(716\) 409.126 236.209i 0.571405 0.329901i
\(717\) −845.741 488.289i −1.17956 0.681017i
\(718\) −274.510 + 475.465i −0.382325 + 0.662207i
\(719\) 156.106i 0.217116i 0.994090 + 0.108558i \(0.0346232\pi\)
−0.994090 + 0.108558i \(0.965377\pi\)
\(720\) 0 0
\(721\) −1187.25 −1.64667
\(722\) 70.0329 + 40.4335i 0.0969985 + 0.0560021i
\(723\) 254.271 0.351689
\(724\) −265.050 459.080i −0.366091 0.634088i
\(725\) 0 0
\(726\) 292.417 168.827i 0.402778 0.232544i
\(727\) −698.242 + 1209.39i −0.960443 + 1.66354i −0.239055 + 0.971006i \(0.576838\pi\)
−0.721388 + 0.692531i \(0.756496\pi\)
\(728\) 375.137i 0.515299i
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) −627.142 362.081i −0.857923 0.495322i
\(732\) −29.6969 51.4366i −0.0405696 0.0702686i
\(733\) 534.005 + 924.923i 0.728519 + 1.26183i 0.957509 + 0.288403i \(0.0931244\pi\)
−0.228990 + 0.973429i \(0.573542\pi\)
\(734\) 582.111 336.082i 0.793067 0.457877i
\(735\) 0 0
\(736\) 26.2929 45.5406i 0.0357240 0.0618758i
\(737\) 270.221i 0.366650i
\(738\) 2.93189 5.07818i 0.00397275 0.00688100i
\(739\) −719.464 −0.973565 −0.486782 0.873523i \(-0.661830\pi\)
−0.486782 + 0.873523i \(0.661830\pi\)
\(740\) 0 0
\(741\) −341.908 + 592.202i −0.461415 + 0.799193i
\(742\) −18.9898 32.8913i −0.0255927 0.0443279i
\(743\) −540.877 + 312.275i −0.727964 + 0.420290i −0.817677 0.575678i \(-0.804738\pi\)
0.0897131 + 0.995968i \(0.471405\pi\)
\(744\) 395.666 + 228.438i 0.531810 + 0.307040i
\(745\) 0 0
\(746\) 527.943i 0.707699i
\(747\) −165.591 + 95.6039i −0.221674 + 0.127984i
\(748\) −264.849 −0.354076
\(749\) 1231.54 + 711.032i 1.64425 + 0.949309i
\(750\) 0 0
\(751\) 674.254 + 1167.84i 0.897809 + 1.55505i 0.830290 + 0.557332i \(0.188175\pi\)
0.0675192 + 0.997718i \(0.478492\pi\)
\(752\) 222.990 128.743i 0.296529 0.171201i
\(753\) 201.432 116.297i 0.267507 0.154445i
\(754\) −107.833 + 186.773i −0.143015 + 0.247709i
\(755\) 0 0
\(756\) −642.545 −0.849927
\(757\) 19.4689 0.0257185 0.0128592 0.999917i \(-0.495907\pi\)
0.0128592 + 0.999917i \(0.495907\pi\)
\(758\) 427.312 + 246.709i 0.563736 + 0.325473i
\(759\) −89.7344 155.425i −0.118227 0.204775i
\(760\) 0 0
\(761\) 744.863 430.047i 0.978795 0.565108i 0.0768891 0.997040i \(-0.475501\pi\)
0.901906 + 0.431932i \(0.142168\pi\)
\(762\) 19.8841i 0.0260947i
\(763\) −898.913 + 1556.96i −1.17813 + 2.04058i
\(764\) 189.004i 0.247387i
\(765\) 0 0
\(766\) 488.050 0.637141
\(767\) 442.365 + 255.400i 0.576747 + 0.332985i
\(768\) 24.0000 41.5692i 0.0312500 0.0541266i
\(769\) 196.642 + 340.594i 0.255711 + 0.442905i 0.965088 0.261924i \(-0.0843571\pi\)
−0.709377 + 0.704829i \(0.751024\pi\)
\(770\) 0 0
\(771\) −711.501 410.785i −0.922828 0.532795i
\(772\) 42.3791 73.4027i 0.0548952 0.0950813i
\(773\) 626.967i 0.811083i −0.914077 0.405541i \(-0.867083\pi\)
0.914077 0.405541i \(-0.132917\pi\)
\(774\) 447.919i 0.578707i
\(775\) 0 0
\(776\) 192.990 + 111.423i 0.248698 + 0.143586i
\(777\) 665.803 0.856889
\(778\) −226.548 392.393i −0.291193 0.504361i
\(779\) −8.15893 + 4.71056i −0.0104736 + 0.00604693i
\(780\) 0 0
\(781\) 391.504 678.105i 0.501286 0.868252i
\(782\) 270.521i 0.345935i
\(783\) −319.909 184.699i −0.408568 0.235887i
\(784\) 370.343 0.472376
\(785\) 0 0
\(786\) 11.3939 + 19.7348i 0.0144960 + 0.0251079i
\(787\) −34.8786 60.4115i −0.0443184 0.0767617i 0.843015 0.537890i \(-0.180778\pi\)
−0.887334 + 0.461128i \(0.847445\pi\)
\(788\) 209.171 120.765i 0.265446 0.153255i
\(789\) 113.545i 0.143910i
\(790\) 0 0
\(791\) 1356.07i 1.71438i
\(792\) −81.9092 141.871i −0.103421 0.179130i
\(793\) −110.338 −0.139140
\(794\) 251.494 + 145.200i 0.316743 + 0.182872i
\(795\) 0 0
\(796\) 29.4801 + 51.0610i 0.0370353 + 0.0641470i
\(797\) −972.935 + 561.725i −1.22075 + 0.704799i −0.965077 0.261965i \(-0.915629\pi\)
−0.255670 + 0.966764i \(0.582296\pi\)
\(798\) 894.044 + 516.177i 1.12036 + 0.646838i
\(799\) 662.304 1147.14i 0.828917 1.43573i
\(800\) 0 0
\(801\) −571.316 329.850i −0.713254 0.411797i
\(802\) −581.707 −0.725321
\(803\) −61.8684 35.7197i −0.0770465 0.0444828i
\(804\) −251.939 −0.313357
\(805\) 0 0
\(806\) 735.044 424.378i 0.911966 0.526524i
\(807\) 351.363 202.859i 0.435394 0.251375i
\(808\) −204.091 + 353.496i −0.252588 + 0.437495i
\(809\) 182.198i 0.225213i 0.993640 + 0.112607i \(0.0359200\pi\)
−0.993640 + 0.112607i \(0.964080\pi\)
\(810\) 0 0
\(811\) 831.160 1.02486 0.512429 0.858729i \(-0.328746\pi\)
0.512429 + 0.858729i \(0.328746\pi\)
\(812\) 281.969 + 162.795i 0.347253 + 0.200487i
\(813\) 221.871 + 384.291i 0.272904 + 0.472683i
\(814\) 84.8740 + 147.006i 0.104268 + 0.180597i
\(815\) 0 0
\(816\) 246.930i 0.302611i
\(817\) −359.828 + 623.240i −0.440425 + 0.762839i
\(818\) 469.461i 0.573913i
\(819\) −596.840 + 1033.76i −0.728742 + 1.26222i
\(820\) 0 0
\(821\) 664.767 + 383.803i 0.809704 + 0.467483i 0.846853 0.531827i \(-0.178494\pi\)
−0.0371492 + 0.999310i \(0.511828\pi\)
\(822\) 178.182 308.620i 0.216766 0.375450i
\(823\) 210.474 + 364.552i 0.255740 + 0.442955i 0.965096 0.261896i \(-0.0843476\pi\)
−0.709356 + 0.704850i \(0.751014\pi\)
\(824\) 244.404 141.107i 0.296607 0.171246i
\(825\) 0 0
\(826\) 385.576 667.836i 0.466798 0.808519i
\(827\) 214.208i 0.259018i 0.991578 + 0.129509i \(0.0413400\pi\)
−0.991578 + 0.129509i \(0.958660\pi\)
\(828\) 144.909 83.6634i 0.175011 0.101043i
\(829\) 669.311 0.807372 0.403686 0.914898i \(-0.367729\pi\)
0.403686 + 0.914898i \(0.367729\pi\)
\(830\) 0 0
\(831\) 1394.44 1.67802
\(832\) −44.5857 77.2247i −0.0535886 0.0928182i
\(833\) 1649.94 952.593i 1.98072 1.14357i
\(834\) −252.484 + 145.772i −0.302738 + 0.174786i
\(835\) 0 0
\(836\) 263.201i 0.314834i
\(837\) 726.885 + 1259.00i 0.868441 + 1.50418i
\(838\) 1029.16 1.22811
\(839\) 893.031 + 515.592i 1.06440 + 0.614531i 0.926646 0.375935i \(-0.122679\pi\)
0.137753 + 0.990467i \(0.456012\pi\)
\(840\) 0 0
\(841\) −326.909 566.223i −0.388715 0.673274i
\(842\) −172.899 + 99.8233i −0.205343 + 0.118555i
\(843\) 25.8747i 0.0306936i
\(844\) 30.2474 52.3901i 0.0358382 0.0620736i
\(845\) 0 0
\(846\) 819.317 0.968460
\(847\) −946.989 −1.11805
\(848\) 7.81837 + 4.51394i 0.00921978 + 0.00532304i
\(849\) 122.137 211.547i 0.143860 0.249172i
\(850\) 0 0
\(851\) −150.154 + 86.6916i −0.176445 + 0.101870i
\(852\) 632.227 + 365.016i 0.742051 + 0.428423i
\(853\) −255.517 + 442.568i −0.299550 + 0.518837i −0.976033 0.217622i \(-0.930170\pi\)
0.676483 + 0.736459i \(0.263503\pi\)
\(854\) 166.577i 0.195055i
\(855\) 0 0
\(856\) −338.030 −0.394894
\(857\) −173.448 100.140i −0.202390 0.116850i 0.395380 0.918518i \(-0.370613\pi\)
−0.597770 + 0.801668i \(0.703946\pi\)
\(858\) −304.332 −0.354699
\(859\) 97.4620 + 168.809i 0.113460 + 0.196518i 0.917163 0.398512i \(-0.130473\pi\)
−0.803703 + 0.595030i \(0.797140\pi\)
\(860\) 0 0
\(861\) −14.2423 + 8.22282i −0.0165416 + 0.00955032i
\(862\) −459.918 + 796.602i −0.533548 + 0.924132i
\(863\) 400.540i 0.464125i 0.972701 + 0.232063i \(0.0745475\pi\)
−0.972701 + 0.232063i \(0.925453\pi\)
\(864\) 132.272 76.3675i 0.153093 0.0883883i
\(865\) 0 0
\(866\) −83.6719 48.3080i −0.0966189 0.0557829i
\(867\) −201.652 349.272i −0.232586 0.402851i
\(868\) −640.681 1109.69i −0.738112 1.27845i
\(869\) 810.817 468.126i 0.933046 0.538695i
\(870\) 0 0
\(871\) −234.018 + 405.331i −0.268678 + 0.465363i
\(872\) 427.349i 0.490080i
\(873\) 354.545 + 614.090i 0.406122 + 0.703425i
\(874\) −268.838 −0.307595
\(875\) 0 0
\(876\) 33.3031 57.6826i 0.0380172 0.0658477i
\(877\) 73.0125 + 126.461i 0.0832526 + 0.144198i 0.904645 0.426165i \(-0.140136\pi\)
−0.821393 + 0.570363i \(0.806803\pi\)
\(878\) −540.000 + 311.769i −0.615034 + 0.355090i
\(879\) −1345.16 776.627i −1.53033 0.883535i
\(880\) 0 0
\(881\) 350.906i 0.398305i 0.979969 + 0.199152i \(0.0638189\pi\)
−0.979969 + 0.199152i \(0.936181\pi\)
\(882\) 1020.54 + 589.212i 1.15708 + 0.668041i
\(883\) −215.102 −0.243604 −0.121802 0.992554i \(-0.538867\pi\)
−0.121802 + 0.992554i \(0.538867\pi\)
\(884\) −397.273 229.366i −0.449404 0.259464i
\(885\) 0 0
\(886\) −530.215 918.359i −0.598436 1.03652i
\(887\) 119.152 68.7925i 0.134332 0.0775563i −0.431328 0.902195i \(-0.641955\pi\)
0.565660 + 0.824639i \(0.308622\pi\)
\(888\) −137.060 + 79.1317i −0.154347 + 0.0891123i
\(889\) −27.8837 + 48.2959i −0.0313652 + 0.0543261i
\(890\) 0 0
\(891\) 521.267i 0.585036i
\(892\) 28.2020 0.0316166
\(893\) −1140.01 658.183i −1.27660 0.737047i
\(894\) 285.674 + 494.802i 0.319546 + 0.553470i
\(895\) 0 0
\(896\) −116.586 + 67.3108i −0.130118 + 0.0751237i
\(897\) 310.849i 0.346543i
\(898\) 567.737 983.349i 0.632224 1.09504i
\(899\) 736.654i 0.819415i
\(900\) 0 0
\(901\) 46.4428 0.0515459
\(902\) −3.63112 2.09643i −0.00402563 0.00232420i
\(903\) −628.120 + 1087.94i −0.695593 + 1.20480i
\(904\) −161.171 279.157i −0.178287 0.308802i
\(905\) 0 0
\(906\) 306.984 + 177.237i 0.338835 + 0.195626i
\(907\) −322.500 + 558.586i −0.355568 + 0.615862i −0.987215 0.159394i \(-0.949046\pi\)
0.631647 + 0.775256i \(0.282379\pi\)
\(908\) 516.373i 0.568692i
\(909\) −1124.82 + 649.413i −1.23742 + 0.714426i
\(910\) 0 0
\(911\) −28.2566 16.3140i −0.0310171 0.0179078i 0.484411 0.874840i \(-0.339034\pi\)
−0.515428 + 0.856933i \(0.672367\pi\)
\(912\) −245.394 −0.269072
\(913\) 68.3610 + 118.405i 0.0748751 + 0.129687i
\(914\) 556.065 321.044i 0.608386 0.351252i
\(915\) 0 0
\(916\) 92.5255 160.259i 0.101010 0.174955i
\(917\) 63.9109i 0.0696956i
\(918\) 392.864 680.460i 0.427956 0.741242i
\(919\) −551.978 −0.600628 −0.300314 0.953840i \(-0.597092\pi\)
−0.300314 + 0.953840i \(0.597092\pi\)
\(920\) 0 0
\(921\) −6.89388 11.9405i −0.00748521 0.0129648i
\(922\) −357.972 620.025i −0.388256 0.672478i
\(923\) 1174.51 678.105i 1.27249 0.734675i
\(924\) 459.448i 0.497238i
\(925\) 0 0
\(926\) 699.135i 0.755006i
\(927\) 897.998 0.968714
\(928\) −77.3939 −0.0833986
\(929\) 653.574 + 377.341i 0.703525 + 0.406180i 0.808659 0.588278i \(-0.200194\pi\)
−0.105134 + 0.994458i \(0.533527\pi\)
\(930\) 0 0
\(931\) −946.665 1639.67i −1.01683 1.76119i
\(932\) −555.328 + 320.619i −0.595846 + 0.344012i
\(933\) 87.9773 + 50.7937i 0.0942951 + 0.0544413i
\(934\) 275.803 477.704i 0.295292 0.511460i
\(935\) 0 0
\(936\) 283.742i 0.303143i
\(937\) 1241.31 1.32477 0.662386 0.749162i \(-0.269544\pi\)
0.662386 + 0.749162i \(0.269544\pi\)
\(938\) 611.926 + 353.296i 0.652373 + 0.376648i
\(939\) −351.228 −0.374045
\(940\) 0 0
\(941\) −1271.56 + 734.138i −1.35129 + 0.780168i −0.988430 0.151675i \(-0.951533\pi\)
−0.362861 + 0.931843i \(0.618200\pi\)
\(942\) 489.787 282.778i 0.519943 0.300189i
\(943\) 2.14133 3.70888i 0.00227076 0.00393307i
\(944\) 183.305i 0.194179i
\(945\) 0 0
\(946\) −320.282 −0.338564
\(947\) 224.348 + 129.527i 0.236904 + 0.136777i 0.613753 0.789498i \(-0.289659\pi\)
−0.376849 + 0.926275i \(0.622992\pi\)
\(948\) 436.454 + 755.961i 0.460395 + 0.797427i
\(949\) −61.8684 107.159i −0.0651932 0.112918i
\(950\) 0 0
\(951\) 1339.02i 1.40802i
\(952\) −346.272 + 599.761i −0.363732 + 0.630002i
\(953\) 766.123i 0.803907i 0.915660 + 0.401954i \(0.131669\pi\)
−0.915660 + 0.401954i \(0.868331\pi\)
\(954\) 14.3633 + 24.8779i 0.0150558 + 0.0260775i
\(955\) 0 0
\(956\) −563.828 325.526i −0.589778 0.340508i
\(957\) −132.068 + 228.749i −0.138002 + 0.239027i
\(958\) 131.423 + 227.632i 0.137185 + 0.237612i
\(959\) −865.560 + 499.731i −0.902565 + 0.521096i
\(960\) 0 0
\(961\) −969.054 + 1678.45i −1.00838 + 1.74657i
\(962\) 294.012i 0.305626i
\(963\) −931.500 537.802i −0.967290 0.558465i
\(964\) 169.514 0.175845
\(965\) 0 0
\(966\) −469.287 −0.485805
\(967\) −338.363 586.061i −0.349910 0.606061i 0.636323 0.771422i \(-0.280454\pi\)
−0.986233 + 0.165361i \(0.947121\pi\)
\(968\) 194.944 112.551i 0.201389 0.116272i
\(969\) −1093.27 + 631.200i −1.12825 + 0.651393i
\(970\) 0 0
\(971\) 332.231i 0.342154i −0.985258 0.171077i \(-0.945275\pi\)
0.985258 0.171077i \(-0.0547246\pi\)
\(972\) 486.000 0.500000
\(973\) 817.666 0.840356
\(974\) −1014.41 585.669i −1.04149 0.601303i
\(975\) 0 0
\(976\) −19.7980 34.2911i −0.0202848 0.0351343i
\(977\) −73.9615 + 42.7017i −0.0757026 + 0.0437069i −0.537374 0.843344i \(-0.680583\pi\)
0.461671 + 0.887051i \(0.347250\pi\)
\(978\) 834.986i 0.853769i
\(979\) −235.857 + 408.516i −0.240916 + 0.417279i
\(980\) 0 0
\(981\) 679.909 1177.64i 0.693077 1.20044i
\(982\) 357.898 0.364458
\(983\) −1426.02 823.312i −1.45068 0.837551i −0.452160 0.891937i \(-0.649347\pi\)
−0.998520 + 0.0543859i \(0.982680\pi\)
\(984\) 1.95459 3.38545i 0.00198637 0.00344050i
\(985\) 0 0
\(986\) −344.803 + 199.072i −0.349698 + 0.201898i
\(987\) −1990.01 1148.93i −2.01622 1.16407i
\(988\) −227.939 + 394.802i −0.230707 + 0.399597i
\(989\) 327.141i 0.330779i
\(990\) 0 0
\(991\) 821.757 0.829220 0.414610 0.909999i \(-0.363918\pi\)
0.414610 + 0.909999i \(0.363918\pi\)
\(992\) 263.778 + 152.292i 0.265905 + 0.153520i
\(993\) −1558.00 −1.56898
\(994\) −1023.73 1773.15i −1.02991 1.78386i
\(995\) 0 0
\(996\) −110.394 + 63.7359i −0.110837 + 0.0639919i
\(997\) 937.176 1623.24i 0.939996 1.62812i 0.174523 0.984653i \(-0.444162\pi\)
0.765473 0.643468i \(-0.222505\pi\)
\(998\) 1379.73i 1.38249i
\(999\) −503.591 −0.504095
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.3.i.c.101.2 4
3.2 odd 2 1350.3.i.c.251.1 4
5.2 odd 4 90.3.j.a.29.2 8
5.3 odd 4 90.3.j.a.29.3 yes 8
5.4 even 2 450.3.i.a.101.1 4
9.4 even 3 1350.3.i.c.1151.1 4
9.5 odd 6 inner 450.3.i.c.401.2 4
15.2 even 4 270.3.j.a.89.4 8
15.8 even 4 270.3.j.a.89.2 8
15.14 odd 2 1350.3.i.a.251.2 4
45.2 even 12 810.3.b.a.809.4 8
45.4 even 6 1350.3.i.a.1151.2 4
45.7 odd 12 810.3.b.a.809.5 8
45.13 odd 12 270.3.j.a.179.4 8
45.14 odd 6 450.3.i.a.401.1 4
45.22 odd 12 270.3.j.a.179.2 8
45.23 even 12 90.3.j.a.59.2 yes 8
45.32 even 12 90.3.j.a.59.3 yes 8
45.38 even 12 810.3.b.a.809.6 8
45.43 odd 12 810.3.b.a.809.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.j.a.29.2 8 5.2 odd 4
90.3.j.a.29.3 yes 8 5.3 odd 4
90.3.j.a.59.2 yes 8 45.23 even 12
90.3.j.a.59.3 yes 8 45.32 even 12
270.3.j.a.89.2 8 15.8 even 4
270.3.j.a.89.4 8 15.2 even 4
270.3.j.a.179.2 8 45.22 odd 12
270.3.j.a.179.4 8 45.13 odd 12
450.3.i.a.101.1 4 5.4 even 2
450.3.i.a.401.1 4 45.14 odd 6
450.3.i.c.101.2 4 1.1 even 1 trivial
450.3.i.c.401.2 4 9.5 odd 6 inner
810.3.b.a.809.3 8 45.43 odd 12
810.3.b.a.809.4 8 45.2 even 12
810.3.b.a.809.5 8 45.7 odd 12
810.3.b.a.809.6 8 45.38 even 12
1350.3.i.a.251.2 4 15.14 odd 2
1350.3.i.a.1151.2 4 45.4 even 6
1350.3.i.c.251.1 4 3.2 odd 2
1350.3.i.c.1151.1 4 9.4 even 3