Properties

Label 450.2.l.c.379.3
Level $450$
Weight $2$
Character 450.379
Analytic conductor $3.593$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,2,Mod(19,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.l (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 24 x^{14} + 94 x^{13} + 262 x^{12} - 936 x^{11} - 1584 x^{10} + 4642 x^{9} + \cdots + 11105 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 379.3
Root \(3.42137 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 450.379
Dual form 450.2.l.c.19.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 + 0.309017i) q^{2} +(0.809017 + 0.587785i) q^{4} +(-2.23558 - 0.0466062i) q^{5} +3.52206i q^{7} +(0.587785 + 0.809017i) q^{8} +(-2.11176 - 0.735158i) q^{10} +(-1.62388 + 4.99779i) q^{11} +(-0.588802 + 0.191313i) q^{13} +(-1.08838 + 3.34968i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-2.02525 - 2.78752i) q^{17} +(1.83995 - 1.33680i) q^{19} +(-1.78123 - 1.35175i) q^{20} +(-3.08880 + 4.25137i) q^{22} +(8.51557 + 2.76688i) q^{23} +(4.99566 + 0.208384i) q^{25} -0.619103 q^{26} +(-2.07022 + 2.84941i) q^{28} +(2.16949 + 1.57623i) q^{29} +(-7.90309 + 5.74193i) q^{31} +1.00000i q^{32} +(-1.06474 - 3.27693i) q^{34} +(0.164150 - 7.87386i) q^{35} +(-0.952702 + 0.309552i) q^{37} +(2.16299 - 0.702799i) q^{38} +(-1.27634 - 1.83602i) q^{40} +(-1.94584 - 5.98868i) q^{41} -1.51251i q^{43} +(-4.25137 + 3.08880i) q^{44} +(7.24378 + 5.26291i) q^{46} +(6.27522 - 8.63710i) q^{47} -5.40494 q^{49} +(4.68676 + 1.74193i) q^{50} +(-0.588802 - 0.191313i) q^{52} +(-0.325260 + 0.447681i) q^{53} +(3.86324 - 11.0973i) q^{55} +(-2.84941 + 2.07022i) q^{56} +(1.57623 + 2.16949i) q^{58} +(0.0861451 + 0.265127i) q^{59} +(1.13786 - 3.50196i) q^{61} +(-9.29064 + 3.01871i) q^{62} +(-0.309017 + 0.951057i) q^{64} +(1.32523 - 0.400255i) q^{65} +(-7.00176 - 9.63710i) q^{67} -3.44557i q^{68} +(2.58927 - 7.43777i) q^{70} +(3.84168 + 2.79115i) q^{71} +(9.35277 + 3.03890i) q^{73} -1.00173 q^{74} +2.27431 q^{76} +(-17.6025 - 5.71941i) q^{77} +(5.27525 + 3.83269i) q^{79} +(-0.646508 - 2.14057i) q^{80} -6.29687i q^{82} +(1.56335 + 2.15177i) q^{83} +(4.39770 + 6.32612i) q^{85} +(0.467392 - 1.43848i) q^{86} +(-4.99779 + 1.62388i) q^{88} +(-4.13649 + 12.7308i) q^{89} +(-0.673818 - 2.07380i) q^{91} +(5.26291 + 7.24378i) q^{92} +(8.63710 - 6.27522i) q^{94} +(-4.17567 + 2.90278i) q^{95} +(-2.56983 + 3.53706i) q^{97} +(-5.14040 - 1.67022i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 4 q^{5} + 2 q^{10} - 2 q^{11} + 20 q^{13} - 2 q^{14} - 4 q^{16} + 30 q^{17} + 4 q^{20} - 20 q^{22} + 10 q^{23} + 24 q^{25} - 4 q^{26} + 10 q^{29} - 18 q^{31} + 12 q^{34} + 34 q^{35} + 20 q^{37}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 + 0.309017i 0.672499 + 0.218508i
\(3\) 0 0
\(4\) 0.809017 + 0.587785i 0.404508 + 0.293893i
\(5\) −2.23558 0.0466062i −0.999783 0.0208429i
\(6\) 0 0
\(7\) 3.52206i 1.33122i 0.746302 + 0.665608i \(0.231828\pi\)
−0.746302 + 0.665608i \(0.768172\pi\)
\(8\) 0.587785 + 0.809017i 0.207813 + 0.286031i
\(9\) 0 0
\(10\) −2.11176 0.735158i −0.667798 0.232477i
\(11\) −1.62388 + 4.99779i −0.489618 + 1.50689i 0.335561 + 0.942018i \(0.391074\pi\)
−0.825179 + 0.564871i \(0.808926\pi\)
\(12\) 0 0
\(13\) −0.588802 + 0.191313i −0.163304 + 0.0530608i −0.389528 0.921015i \(-0.627362\pi\)
0.226224 + 0.974075i \(0.427362\pi\)
\(14\) −1.08838 + 3.34968i −0.290881 + 0.895240i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −2.02525 2.78752i −0.491196 0.676073i 0.489412 0.872053i \(-0.337211\pi\)
−0.980608 + 0.195979i \(0.937211\pi\)
\(18\) 0 0
\(19\) 1.83995 1.33680i 0.422114 0.306684i −0.356374 0.934343i \(-0.615987\pi\)
0.778488 + 0.627660i \(0.215987\pi\)
\(20\) −1.78123 1.35175i −0.398295 0.302260i
\(21\) 0 0
\(22\) −3.08880 + 4.25137i −0.658535 + 0.906395i
\(23\) 8.51557 + 2.76688i 1.77562 + 0.576934i 0.998618 0.0525639i \(-0.0167393\pi\)
0.777002 + 0.629498i \(0.216739\pi\)
\(24\) 0 0
\(25\) 4.99566 + 0.208384i 0.999131 + 0.0416768i
\(26\) −0.619103 −0.121416
\(27\) 0 0
\(28\) −2.07022 + 2.84941i −0.391234 + 0.538488i
\(29\) 2.16949 + 1.57623i 0.402864 + 0.292698i 0.770706 0.637190i \(-0.219904\pi\)
−0.367843 + 0.929888i \(0.619904\pi\)
\(30\) 0 0
\(31\) −7.90309 + 5.74193i −1.41944 + 1.03128i −0.427572 + 0.903981i \(0.640631\pi\)
−0.991864 + 0.127300i \(0.959369\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.06474 3.27693i −0.182601 0.561989i
\(35\) 0.164150 7.87386i 0.0277464 1.33093i
\(36\) 0 0
\(37\) −0.952702 + 0.309552i −0.156623 + 0.0508900i −0.386279 0.922382i \(-0.626240\pi\)
0.229656 + 0.973272i \(0.426240\pi\)
\(38\) 2.16299 0.702799i 0.350884 0.114009i
\(39\) 0 0
\(40\) −1.27634 1.83602i −0.201807 0.290300i
\(41\) −1.94584 5.98868i −0.303889 0.935274i −0.980089 0.198557i \(-0.936375\pi\)
0.676200 0.736718i \(-0.263625\pi\)
\(42\) 0 0
\(43\) 1.51251i 0.230656i −0.993327 0.115328i \(-0.963208\pi\)
0.993327 0.115328i \(-0.0367919\pi\)
\(44\) −4.25137 + 3.08880i −0.640918 + 0.465654i
\(45\) 0 0
\(46\) 7.24378 + 5.26291i 1.06804 + 0.775974i
\(47\) 6.27522 8.63710i 0.915335 1.25985i −0.0499772 0.998750i \(-0.515915\pi\)
0.965312 0.261100i \(-0.0840851\pi\)
\(48\) 0 0
\(49\) −5.40494 −0.772134
\(50\) 4.68676 + 1.74193i 0.662808 + 0.246346i
\(51\) 0 0
\(52\) −0.588802 0.191313i −0.0816522 0.0265304i
\(53\) −0.325260 + 0.447681i −0.0446778 + 0.0614938i −0.830771 0.556614i \(-0.812100\pi\)
0.786094 + 0.618107i \(0.212100\pi\)
\(54\) 0 0
\(55\) 3.86324 11.0973i 0.520920 1.49636i
\(56\) −2.84941 + 2.07022i −0.380768 + 0.276644i
\(57\) 0 0
\(58\) 1.57623 + 2.16949i 0.206968 + 0.284868i
\(59\) 0.0861451 + 0.265127i 0.0112151 + 0.0345166i 0.956507 0.291708i \(-0.0942235\pi\)
−0.945292 + 0.326224i \(0.894223\pi\)
\(60\) 0 0
\(61\) 1.13786 3.50196i 0.145688 0.448380i −0.851411 0.524499i \(-0.824253\pi\)
0.997099 + 0.0761185i \(0.0242527\pi\)
\(62\) −9.29064 + 3.01871i −1.17991 + 0.383377i
\(63\) 0 0
\(64\) −0.309017 + 0.951057i −0.0386271 + 0.118882i
\(65\) 1.32523 0.400255i 0.164375 0.0496455i
\(66\) 0 0
\(67\) −7.00176 9.63710i −0.855401 1.17736i −0.982647 0.185487i \(-0.940614\pi\)
0.127245 0.991871i \(-0.459386\pi\)
\(68\) 3.44557i 0.417836i
\(69\) 0 0
\(70\) 2.58927 7.43777i 0.309477 0.888983i
\(71\) 3.84168 + 2.79115i 0.455924 + 0.331248i 0.791930 0.610612i \(-0.209076\pi\)
−0.336006 + 0.941860i \(0.609076\pi\)
\(72\) 0 0
\(73\) 9.35277 + 3.03890i 1.09466 + 0.355676i 0.800045 0.599940i \(-0.204809\pi\)
0.294614 + 0.955616i \(0.404809\pi\)
\(74\) −1.00173 −0.116449
\(75\) 0 0
\(76\) 2.27431 0.260881
\(77\) −17.6025 5.71941i −2.00599 0.651787i
\(78\) 0 0
\(79\) 5.27525 + 3.83269i 0.593512 + 0.431212i 0.843570 0.537019i \(-0.180450\pi\)
−0.250058 + 0.968231i \(0.580450\pi\)
\(80\) −0.646508 2.14057i −0.0722818 0.239323i
\(81\) 0 0
\(82\) 6.29687i 0.695373i
\(83\) 1.56335 + 2.15177i 0.171600 + 0.236187i 0.886151 0.463396i \(-0.153369\pi\)
−0.714551 + 0.699583i \(0.753369\pi\)
\(84\) 0 0
\(85\) 4.39770 + 6.32612i 0.476998 + 0.686164i
\(86\) 0.467392 1.43848i 0.0504002 0.155116i
\(87\) 0 0
\(88\) −4.99779 + 1.62388i −0.532766 + 0.173106i
\(89\) −4.13649 + 12.7308i −0.438467 + 1.34946i 0.451024 + 0.892512i \(0.351059\pi\)
−0.889491 + 0.456952i \(0.848941\pi\)
\(90\) 0 0
\(91\) −0.673818 2.07380i −0.0706353 0.217393i
\(92\) 5.26291 + 7.24378i 0.548697 + 0.755216i
\(93\) 0 0
\(94\) 8.63710 6.27522i 0.890848 0.647239i
\(95\) −4.17567 + 2.90278i −0.428414 + 0.297819i
\(96\) 0 0
\(97\) −2.56983 + 3.53706i −0.260926 + 0.359134i −0.919300 0.393557i \(-0.871244\pi\)
0.658374 + 0.752691i \(0.271244\pi\)
\(98\) −5.14040 1.67022i −0.519259 0.168717i
\(99\) 0 0
\(100\) 3.91909 + 3.10496i 0.391909 + 0.310496i
\(101\) 14.2687 1.41979 0.709893 0.704309i \(-0.248743\pi\)
0.709893 + 0.704309i \(0.248743\pi\)
\(102\) 0 0
\(103\) 10.3852 14.2939i 1.02328 1.40842i 0.113401 0.993549i \(-0.463825\pi\)
0.909879 0.414875i \(-0.136175\pi\)
\(104\) −0.500865 0.363900i −0.0491138 0.0356833i
\(105\) 0 0
\(106\) −0.447681 + 0.325260i −0.0434827 + 0.0315920i
\(107\) 0.723713i 0.0699640i 0.999388 + 0.0349820i \(0.0111374\pi\)
−0.999388 + 0.0349820i \(0.988863\pi\)
\(108\) 0 0
\(109\) 0.795198 + 2.44737i 0.0761661 + 0.234415i 0.981890 0.189454i \(-0.0606717\pi\)
−0.905724 + 0.423869i \(0.860672\pi\)
\(110\) 7.10341 9.36033i 0.677284 0.892473i
\(111\) 0 0
\(112\) −3.34968 + 1.08838i −0.316515 + 0.102842i
\(113\) 14.4448 4.69339i 1.35885 0.441517i 0.463191 0.886258i \(-0.346704\pi\)
0.895659 + 0.444741i \(0.146704\pi\)
\(114\) 0 0
\(115\) −18.9083 6.58246i −1.76321 0.613818i
\(116\) 0.828671 + 2.55039i 0.0769401 + 0.236797i
\(117\) 0 0
\(118\) 0.278771i 0.0256630i
\(119\) 9.81783 7.13307i 0.899999 0.653888i
\(120\) 0 0
\(121\) −13.4417 9.76597i −1.22197 0.887815i
\(122\) 2.16433 2.97895i 0.195949 0.269701i
\(123\) 0 0
\(124\) −9.76875 −0.877260
\(125\) −11.1585 0.698687i −0.998045 0.0624925i
\(126\) 0 0
\(127\) 4.15027 + 1.34850i 0.368277 + 0.119660i 0.487308 0.873230i \(-0.337979\pi\)
−0.119031 + 0.992891i \(0.537979\pi\)
\(128\) −0.587785 + 0.809017i −0.0519534 + 0.0715077i
\(129\) 0 0
\(130\) 1.38406 + 0.0288540i 0.121390 + 0.00253066i
\(131\) −0.499797 + 0.363124i −0.0436675 + 0.0317263i −0.609405 0.792859i \(-0.708592\pi\)
0.565737 + 0.824585i \(0.308592\pi\)
\(132\) 0 0
\(133\) 4.70831 + 6.48043i 0.408262 + 0.561925i
\(134\) −3.68104 11.3291i −0.317994 0.978684i
\(135\) 0 0
\(136\) 1.06474 3.27693i 0.0913006 0.280994i
\(137\) −8.81784 + 2.86509i −0.753359 + 0.244781i −0.660426 0.750891i \(-0.729624\pi\)
−0.0929329 + 0.995672i \(0.529624\pi\)
\(138\) 0 0
\(139\) −5.79774 + 17.8436i −0.491757 + 1.51347i 0.330192 + 0.943914i \(0.392886\pi\)
−0.821950 + 0.569560i \(0.807114\pi\)
\(140\) 4.76094 6.27361i 0.402373 0.530216i
\(141\) 0 0
\(142\) 2.79115 + 3.84168i 0.234228 + 0.322387i
\(143\) 3.25338i 0.272061i
\(144\) 0 0
\(145\) −4.77661 3.62489i −0.396676 0.301031i
\(146\) 7.95594 + 5.78033i 0.658438 + 0.478383i
\(147\) 0 0
\(148\) −0.952702 0.309552i −0.0783116 0.0254450i
\(149\) −16.8396 −1.37955 −0.689777 0.724022i \(-0.742291\pi\)
−0.689777 + 0.724022i \(0.742291\pi\)
\(150\) 0 0
\(151\) 16.7932 1.36661 0.683305 0.730133i \(-0.260542\pi\)
0.683305 + 0.730133i \(0.260542\pi\)
\(152\) 2.16299 + 0.702799i 0.175442 + 0.0570045i
\(153\) 0 0
\(154\) −14.9736 10.8790i −1.20661 0.876652i
\(155\) 17.9356 12.4682i 1.44062 1.00147i
\(156\) 0 0
\(157\) 4.55451i 0.363489i −0.983346 0.181745i \(-0.941826\pi\)
0.983346 0.181745i \(-0.0581744\pi\)
\(158\) 3.83269 + 5.27525i 0.304913 + 0.419676i
\(159\) 0 0
\(160\) 0.0466062 2.23558i 0.00368454 0.176738i
\(161\) −9.74512 + 29.9924i −0.768023 + 2.36373i
\(162\) 0 0
\(163\) 19.2239 6.24624i 1.50574 0.489243i 0.564051 0.825740i \(-0.309242\pi\)
0.941685 + 0.336497i \(0.109242\pi\)
\(164\) 1.94584 5.98868i 0.151945 0.467637i
\(165\) 0 0
\(166\) 0.821902 + 2.52955i 0.0637920 + 0.196331i
\(167\) 4.22725 + 5.81831i 0.327114 + 0.450234i 0.940623 0.339454i \(-0.110242\pi\)
−0.613508 + 0.789688i \(0.710242\pi\)
\(168\) 0 0
\(169\) −10.2071 + 7.41592i −0.785164 + 0.570455i
\(170\) 2.22759 + 7.37547i 0.170848 + 0.565672i
\(171\) 0 0
\(172\) 0.889032 1.22365i 0.0677881 0.0933023i
\(173\) −5.83145 1.89475i −0.443357 0.144055i 0.0788271 0.996888i \(-0.474883\pi\)
−0.522184 + 0.852833i \(0.674883\pi\)
\(174\) 0 0
\(175\) −0.733941 + 17.5950i −0.0554807 + 1.33006i
\(176\) −5.25498 −0.396109
\(177\) 0 0
\(178\) −7.86808 + 10.8295i −0.589737 + 0.811704i
\(179\) −11.5930 8.42280i −0.866501 0.629549i 0.0631451 0.998004i \(-0.479887\pi\)
−0.929646 + 0.368455i \(0.879887\pi\)
\(180\) 0 0
\(181\) −12.7254 + 9.24554i −0.945871 + 0.687215i −0.949827 0.312777i \(-0.898741\pi\)
0.00395575 + 0.999992i \(0.498741\pi\)
\(182\) 2.18052i 0.161631i
\(183\) 0 0
\(184\) 2.76688 + 8.51557i 0.203977 + 0.627776i
\(185\) 2.14427 0.647626i 0.157650 0.0476144i
\(186\) 0 0
\(187\) 17.2202 5.59518i 1.25927 0.409160i
\(188\) 10.1535 3.29908i 0.740521 0.240610i
\(189\) 0 0
\(190\) −4.86830 + 1.47036i −0.353184 + 0.106671i
\(191\) 1.11938 + 3.44511i 0.0809958 + 0.249279i 0.983352 0.181712i \(-0.0581639\pi\)
−0.902356 + 0.430992i \(0.858164\pi\)
\(192\) 0 0
\(193\) 9.72486i 0.700010i −0.936748 0.350005i \(-0.886180\pi\)
0.936748 0.350005i \(-0.113820\pi\)
\(194\) −3.53706 + 2.56983i −0.253946 + 0.184503i
\(195\) 0 0
\(196\) −4.37269 3.17694i −0.312335 0.226925i
\(197\) −4.15786 + 5.72280i −0.296235 + 0.407732i −0.931027 0.364951i \(-0.881086\pi\)
0.634792 + 0.772683i \(0.281086\pi\)
\(198\) 0 0
\(199\) 17.6745 1.25291 0.626455 0.779457i \(-0.284505\pi\)
0.626455 + 0.779457i \(0.284505\pi\)
\(200\) 2.76779 + 4.16406i 0.195712 + 0.294443i
\(201\) 0 0
\(202\) 13.5703 + 4.40926i 0.954804 + 0.310235i
\(203\) −5.55157 + 7.64108i −0.389644 + 0.536298i
\(204\) 0 0
\(205\) 4.07098 + 13.4789i 0.284329 + 0.941405i
\(206\) 14.2939 10.3852i 0.995906 0.723568i
\(207\) 0 0
\(208\) −0.363900 0.500865i −0.0252319 0.0347287i
\(209\) 3.69320 + 11.3665i 0.255464 + 0.786237i
\(210\) 0 0
\(211\) −3.63522 + 11.1881i −0.250259 + 0.770218i 0.744468 + 0.667658i \(0.232703\pi\)
−0.994727 + 0.102559i \(0.967297\pi\)
\(212\) −0.526281 + 0.170999i −0.0361451 + 0.0117443i
\(213\) 0 0
\(214\) −0.223640 + 0.688292i −0.0152877 + 0.0470507i
\(215\) −0.0704924 + 3.38135i −0.00480754 + 0.230606i
\(216\) 0 0
\(217\) −20.2234 27.8352i −1.37286 1.88958i
\(218\) 2.57331i 0.174287i
\(219\) 0 0
\(220\) 9.64825 6.70713i 0.650485 0.452195i
\(221\) 1.72576 + 1.25384i 0.116087 + 0.0843424i
\(222\) 0 0
\(223\) −12.0789 3.92466i −0.808860 0.262815i −0.124745 0.992189i \(-0.539811\pi\)
−0.684115 + 0.729374i \(0.739811\pi\)
\(224\) −3.52206 −0.235328
\(225\) 0 0
\(226\) 15.1881 1.01030
\(227\) −13.5679 4.40848i −0.900533 0.292601i −0.178076 0.984017i \(-0.556987\pi\)
−0.722457 + 0.691416i \(0.756987\pi\)
\(228\) 0 0
\(229\) 7.12184 + 5.17432i 0.470625 + 0.341929i 0.797685 0.603075i \(-0.206058\pi\)
−0.327060 + 0.945004i \(0.606058\pi\)
\(230\) −15.9488 12.1033i −1.05163 0.798067i
\(231\) 0 0
\(232\) 2.68163i 0.176058i
\(233\) −8.86158 12.1969i −0.580542 0.799047i 0.413213 0.910634i \(-0.364406\pi\)
−0.993755 + 0.111587i \(0.964406\pi\)
\(234\) 0 0
\(235\) −14.4313 + 19.0165i −0.941395 + 1.24050i
\(236\) −0.0861451 + 0.265127i −0.00560757 + 0.0172583i
\(237\) 0 0
\(238\) 11.5416 3.75008i 0.748128 0.243081i
\(239\) −1.93007 + 5.94013i −0.124846 + 0.384235i −0.993873 0.110529i \(-0.964746\pi\)
0.869027 + 0.494764i \(0.164746\pi\)
\(240\) 0 0
\(241\) −4.57636 14.0846i −0.294790 0.907269i −0.983292 0.182035i \(-0.941732\pi\)
0.688503 0.725234i \(-0.258268\pi\)
\(242\) −9.76597 13.4417i −0.627780 0.864065i
\(243\) 0 0
\(244\) 2.97895 2.16433i 0.190708 0.138557i
\(245\) 12.0832 + 0.251903i 0.771966 + 0.0160935i
\(246\) 0 0
\(247\) −0.827619 + 1.13912i −0.0526601 + 0.0724805i
\(248\) −9.29064 3.01871i −0.589956 0.191688i
\(249\) 0 0
\(250\) −10.3964 4.11265i −0.657529 0.260107i
\(251\) −18.2744 −1.15347 −0.576735 0.816931i \(-0.695673\pi\)
−0.576735 + 0.816931i \(0.695673\pi\)
\(252\) 0 0
\(253\) −27.6565 + 38.0659i −1.73875 + 2.39319i
\(254\) 3.53043 + 2.56501i 0.221519 + 0.160943i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 1.80149i 0.112374i −0.998420 0.0561868i \(-0.982106\pi\)
0.998420 0.0561868i \(-0.0178942\pi\)
\(258\) 0 0
\(259\) −1.09026 3.35548i −0.0677455 0.208499i
\(260\) 1.30740 + 0.455139i 0.0810814 + 0.0282265i
\(261\) 0 0
\(262\) −0.587547 + 0.190905i −0.0362987 + 0.0117942i
\(263\) 13.5087 4.38923i 0.832981 0.270652i 0.138680 0.990337i \(-0.455714\pi\)
0.694300 + 0.719685i \(0.255714\pi\)
\(264\) 0 0
\(265\) 0.748009 0.985670i 0.0459498 0.0605492i
\(266\) 2.47530 + 7.61820i 0.151771 + 0.467102i
\(267\) 0 0
\(268\) 11.9121i 0.727648i
\(269\) 5.05075 3.66959i 0.307950 0.223739i −0.423066 0.906099i \(-0.639046\pi\)
0.731016 + 0.682360i \(0.239046\pi\)
\(270\) 0 0
\(271\) 19.2926 + 14.0169i 1.17194 + 0.851464i 0.991240 0.132074i \(-0.0421637\pi\)
0.180700 + 0.983538i \(0.442164\pi\)
\(272\) 2.02525 2.78752i 0.122799 0.169018i
\(273\) 0 0
\(274\) −9.27162 −0.560119
\(275\) −9.15380 + 24.6288i −0.551995 + 1.48517i
\(276\) 0 0
\(277\) 6.63226 + 2.15495i 0.398494 + 0.129478i 0.501406 0.865212i \(-0.332816\pi\)
−0.102913 + 0.994690i \(0.532816\pi\)
\(278\) −11.0279 + 15.1787i −0.661412 + 0.910356i
\(279\) 0 0
\(280\) 6.46658 4.49534i 0.386452 0.268648i
\(281\) 9.41192 6.83816i 0.561468 0.407931i −0.270528 0.962712i \(-0.587198\pi\)
0.831996 + 0.554782i \(0.187198\pi\)
\(282\) 0 0
\(283\) −5.64568 7.77061i −0.335601 0.461915i 0.607549 0.794282i \(-0.292153\pi\)
−0.943150 + 0.332367i \(0.892153\pi\)
\(284\) 1.46739 + 4.51617i 0.0870737 + 0.267985i
\(285\) 0 0
\(286\) 1.00535 3.09415i 0.0594475 0.182961i
\(287\) 21.0925 6.85337i 1.24505 0.404542i
\(288\) 0 0
\(289\) 1.58466 4.87709i 0.0932154 0.286888i
\(290\) −3.42267 4.92353i −0.200986 0.289120i
\(291\) 0 0
\(292\) 5.78033 + 7.95594i 0.338268 + 0.465586i
\(293\) 8.52716i 0.498162i 0.968483 + 0.249081i \(0.0801286\pi\)
−0.968483 + 0.249081i \(0.919871\pi\)
\(294\) 0 0
\(295\) −0.180228 0.596729i −0.0104933 0.0347429i
\(296\) −0.810416 0.588802i −0.0471045 0.0342234i
\(297\) 0 0
\(298\) −16.0154 5.20372i −0.927748 0.301444i
\(299\) −5.54333 −0.320579
\(300\) 0 0
\(301\) 5.32717 0.307053
\(302\) 15.9713 + 5.18938i 0.919043 + 0.298615i
\(303\) 0 0
\(304\) 1.83995 + 1.33680i 0.105528 + 0.0766709i
\(305\) −2.70698 + 7.77589i −0.155001 + 0.445246i
\(306\) 0 0
\(307\) 2.85794i 0.163111i 0.996669 + 0.0815557i \(0.0259889\pi\)
−0.996669 + 0.0815557i \(0.974011\pi\)
\(308\) −10.8790 14.9736i −0.619886 0.853200i
\(309\) 0 0
\(310\) 20.9107 6.31558i 1.18765 0.358701i
\(311\) 3.14017 9.66444i 0.178063 0.548020i −0.821697 0.569924i \(-0.806973\pi\)
0.999760 + 0.0219035i \(0.00697267\pi\)
\(312\) 0 0
\(313\) 17.3127 5.62523i 0.978570 0.317957i 0.224299 0.974520i \(-0.427991\pi\)
0.754271 + 0.656564i \(0.227991\pi\)
\(314\) 1.40742 4.33159i 0.0794253 0.244446i
\(315\) 0 0
\(316\) 2.01497 + 6.20143i 0.113351 + 0.348857i
\(317\) 18.3838 + 25.3031i 1.03254 + 1.42116i 0.903026 + 0.429586i \(0.141340\pi\)
0.129510 + 0.991578i \(0.458660\pi\)
\(318\) 0 0
\(319\) −11.4006 + 8.28304i −0.638312 + 0.463761i
\(320\) 0.735158 2.11176i 0.0410966 0.118051i
\(321\) 0 0
\(322\) −18.5363 + 25.5131i −1.03299 + 1.42179i
\(323\) −7.45274 2.42154i −0.414681 0.134738i
\(324\) 0 0
\(325\) −2.98132 + 0.833039i −0.165374 + 0.0462087i
\(326\) 20.2133 1.11951
\(327\) 0 0
\(328\) 3.70121 5.09427i 0.204365 0.281284i
\(329\) 30.4204 + 22.1017i 1.67713 + 1.21851i
\(330\) 0 0
\(331\) −2.77650 + 2.01724i −0.152610 + 0.110878i −0.661470 0.749972i \(-0.730067\pi\)
0.508860 + 0.860849i \(0.330067\pi\)
\(332\) 2.65973i 0.145972i
\(333\) 0 0
\(334\) 2.22240 + 6.83983i 0.121604 + 0.374259i
\(335\) 15.2039 + 21.8708i 0.830676 + 1.19493i
\(336\) 0 0
\(337\) −11.1497 + 3.62277i −0.607365 + 0.197345i −0.596523 0.802596i \(-0.703451\pi\)
−0.0108427 + 0.999941i \(0.503451\pi\)
\(338\) −11.9992 + 3.89878i −0.652671 + 0.212066i
\(339\) 0 0
\(340\) −0.160585 + 7.70285i −0.00870892 + 0.417746i
\(341\) −15.8633 48.8221i −0.859045 2.64387i
\(342\) 0 0
\(343\) 5.61791i 0.303339i
\(344\) 1.22365 0.889032i 0.0659747 0.0479334i
\(345\) 0 0
\(346\) −4.96053 3.60403i −0.266680 0.193754i
\(347\) 19.0502 26.2204i 1.02267 1.40758i 0.112355 0.993668i \(-0.464161\pi\)
0.910315 0.413916i \(-0.135839\pi\)
\(348\) 0 0
\(349\) 11.3708 0.608665 0.304333 0.952566i \(-0.401567\pi\)
0.304333 + 0.952566i \(0.401567\pi\)
\(350\) −6.13518 + 16.5071i −0.327939 + 0.882339i
\(351\) 0 0
\(352\) −4.99779 1.62388i −0.266383 0.0865531i
\(353\) −1.22685 + 1.68861i −0.0652984 + 0.0898756i −0.840417 0.541940i \(-0.817690\pi\)
0.775119 + 0.631816i \(0.217690\pi\)
\(354\) 0 0
\(355\) −8.45831 6.41888i −0.448921 0.340679i
\(356\) −10.8295 + 7.86808i −0.573961 + 0.417007i
\(357\) 0 0
\(358\) −8.42280 11.5930i −0.445159 0.612708i
\(359\) 2.10507 + 6.47874i 0.111101 + 0.341935i 0.991114 0.133015i \(-0.0424660\pi\)
−0.880013 + 0.474950i \(0.842466\pi\)
\(360\) 0 0
\(361\) −4.27294 + 13.1508i −0.224892 + 0.692146i
\(362\) −14.9596 + 4.86067i −0.786259 + 0.255471i
\(363\) 0 0
\(364\) 0.673818 2.07380i 0.0353177 0.108697i
\(365\) −20.7673 7.22961i −1.08701 0.378415i
\(366\) 0 0
\(367\) −0.0913045 0.125670i −0.00476606 0.00655991i 0.806627 0.591060i \(-0.201291\pi\)
−0.811393 + 0.584500i \(0.801291\pi\)
\(368\) 8.95380i 0.466749i
\(369\) 0 0
\(370\) 2.23945 + 0.0466868i 0.116423 + 0.00242713i
\(371\) −1.57676 1.14559i −0.0818615 0.0594758i
\(372\) 0 0
\(373\) −28.2902 9.19203i −1.46481 0.475945i −0.535274 0.844679i \(-0.679792\pi\)
−0.929535 + 0.368733i \(0.879792\pi\)
\(374\) 18.1064 0.936259
\(375\) 0 0
\(376\) 10.6760 0.550575
\(377\) −1.57895 0.513032i −0.0813201 0.0264225i
\(378\) 0 0
\(379\) −13.4962 9.80558i −0.693254 0.503679i 0.184474 0.982837i \(-0.440942\pi\)
−0.877728 + 0.479159i \(0.840942\pi\)
\(380\) −5.08440 0.105997i −0.260824 0.00543751i
\(381\) 0 0
\(382\) 3.62240i 0.185338i
\(383\) −6.62972 9.12503i −0.338763 0.466267i 0.605317 0.795985i \(-0.293046\pi\)
−0.944080 + 0.329718i \(0.893046\pi\)
\(384\) 0 0
\(385\) 39.0853 + 13.6066i 1.99197 + 0.693456i
\(386\) 3.00515 9.24889i 0.152958 0.470756i
\(387\) 0 0
\(388\) −4.15806 + 1.35104i −0.211094 + 0.0685885i
\(389\) 2.05849 6.33537i 0.104369 0.321216i −0.885213 0.465187i \(-0.845987\pi\)
0.989582 + 0.143971i \(0.0459872\pi\)
\(390\) 0 0
\(391\) −9.53346 29.3410i −0.482128 1.48384i
\(392\) −3.17694 4.37269i −0.160460 0.220854i
\(393\) 0 0
\(394\) −5.72280 + 4.15786i −0.288310 + 0.209470i
\(395\) −11.6146 8.81416i −0.584395 0.443488i
\(396\) 0 0
\(397\) 21.8794 30.1144i 1.09810 1.51140i 0.260213 0.965551i \(-0.416207\pi\)
0.837884 0.545849i \(-0.183793\pi\)
\(398\) 16.8094 + 5.46171i 0.842580 + 0.273771i
\(399\) 0 0
\(400\) 1.34556 + 4.81555i 0.0672779 + 0.240777i
\(401\) −19.6891 −0.983228 −0.491614 0.870813i \(-0.663593\pi\)
−0.491614 + 0.870813i \(0.663593\pi\)
\(402\) 0 0
\(403\) 3.55485 4.89283i 0.177080 0.243729i
\(404\) 11.5436 + 8.38692i 0.574316 + 0.417265i
\(405\) 0 0
\(406\) −7.64108 + 5.55157i −0.379220 + 0.275520i
\(407\) 5.26407i 0.260930i
\(408\) 0 0
\(409\) −9.13460 28.1134i −0.451677 1.39012i −0.874993 0.484136i \(-0.839134\pi\)
0.423316 0.905982i \(-0.360866\pi\)
\(410\) −0.293473 + 14.0772i −0.0144936 + 0.695222i
\(411\) 0 0
\(412\) 16.8035 5.45980i 0.827851 0.268985i
\(413\) −0.933796 + 0.303409i −0.0459491 + 0.0149298i
\(414\) 0 0
\(415\) −3.39471 4.88331i −0.166640 0.239712i
\(416\) −0.191313 0.588802i −0.00937991 0.0288684i
\(417\) 0 0
\(418\) 11.9514i 0.584564i
\(419\) 0.946768 0.687867i 0.0462526 0.0336045i −0.564419 0.825489i \(-0.690900\pi\)
0.610671 + 0.791884i \(0.290900\pi\)
\(420\) 0 0
\(421\) −6.73922 4.89633i −0.328449 0.238632i 0.411323 0.911490i \(-0.365067\pi\)
−0.739772 + 0.672857i \(0.765067\pi\)
\(422\) −6.91460 + 9.51713i −0.336597 + 0.463287i
\(423\) 0 0
\(424\) −0.553365 −0.0268738
\(425\) −9.53659 14.3475i −0.462593 0.695957i
\(426\) 0 0
\(427\) 12.3341 + 4.00760i 0.596891 + 0.193942i
\(428\) −0.425388 + 0.585496i −0.0205619 + 0.0283010i
\(429\) 0 0
\(430\) −1.11194 + 3.19407i −0.0536223 + 0.154032i
\(431\) −15.1227 + 10.9873i −0.728435 + 0.529239i −0.889068 0.457775i \(-0.848646\pi\)
0.160633 + 0.987014i \(0.448646\pi\)
\(432\) 0 0
\(433\) 11.1140 + 15.2972i 0.534107 + 0.735135i 0.987749 0.156049i \(-0.0498758\pi\)
−0.453643 + 0.891184i \(0.649876\pi\)
\(434\) −10.6321 32.7222i −0.510357 1.57072i
\(435\) 0 0
\(436\) −0.795198 + 2.44737i −0.0380831 + 0.117208i
\(437\) 19.3670 6.29273i 0.926450 0.301022i
\(438\) 0 0
\(439\) 12.6264 38.8602i 0.602627 1.85469i 0.0902783 0.995917i \(-0.471224\pi\)
0.512348 0.858778i \(-0.328776\pi\)
\(440\) 11.2486 3.39739i 0.536258 0.161964i
\(441\) 0 0
\(442\) 1.25384 + 1.72576i 0.0596391 + 0.0820862i
\(443\) 5.99083i 0.284633i −0.989821 0.142317i \(-0.954545\pi\)
0.989821 0.142317i \(-0.0454551\pi\)
\(444\) 0 0
\(445\) 9.84080 28.2680i 0.466499 1.34003i
\(446\) −10.2749 7.46514i −0.486530 0.353485i
\(447\) 0 0
\(448\) −3.34968 1.08838i −0.158258 0.0514210i
\(449\) 12.4505 0.587574 0.293787 0.955871i \(-0.405084\pi\)
0.293787 + 0.955871i \(0.405084\pi\)
\(450\) 0 0
\(451\) 33.0899 1.55814
\(452\) 14.4448 + 4.69339i 0.679425 + 0.220759i
\(453\) 0 0
\(454\) −11.5415 8.38543i −0.541672 0.393548i
\(455\) 1.40972 + 4.66755i 0.0660889 + 0.218818i
\(456\) 0 0
\(457\) 1.11807i 0.0523011i −0.999658 0.0261506i \(-0.991675\pi\)
0.999658 0.0261506i \(-0.00832493\pi\)
\(458\) 5.17432 + 7.12184i 0.241780 + 0.332782i
\(459\) 0 0
\(460\) −11.4281 16.4393i −0.532837 0.766489i
\(461\) 9.29974 28.6216i 0.433132 1.33304i −0.461857 0.886954i \(-0.652817\pi\)
0.894989 0.446089i \(-0.147183\pi\)
\(462\) 0 0
\(463\) 20.0062 6.50042i 0.929768 0.302100i 0.195300 0.980743i \(-0.437432\pi\)
0.734468 + 0.678644i \(0.237432\pi\)
\(464\) −0.828671 + 2.55039i −0.0384701 + 0.118399i
\(465\) 0 0
\(466\) −4.65881 14.3383i −0.215815 0.664211i
\(467\) 2.07849 + 2.86080i 0.0961812 + 0.132382i 0.854395 0.519624i \(-0.173928\pi\)
−0.758214 + 0.652006i \(0.773928\pi\)
\(468\) 0 0
\(469\) 33.9425 24.6607i 1.56732 1.13872i
\(470\) −19.6014 + 13.6262i −0.904145 + 0.628531i
\(471\) 0 0
\(472\) −0.163858 + 0.225531i −0.00754216 + 0.0103809i
\(473\) 7.55921 + 2.45614i 0.347573 + 0.112933i
\(474\) 0 0
\(475\) 9.47034 6.29479i 0.434529 0.288825i
\(476\) 12.1355 0.556230
\(477\) 0 0
\(478\) −3.67120 + 5.05298i −0.167917 + 0.231118i
\(479\) −32.7132 23.7675i −1.49470 1.08597i −0.972432 0.233187i \(-0.925085\pi\)
−0.522272 0.852779i \(-0.674915\pi\)
\(480\) 0 0
\(481\) 0.501731 0.364529i 0.0228770 0.0166211i
\(482\) 14.8094i 0.674551i
\(483\) 0 0
\(484\) −5.13427 15.8017i −0.233376 0.718258i
\(485\) 5.90990 7.78762i 0.268355 0.353618i
\(486\) 0 0
\(487\) −25.3973 + 8.25208i −1.15086 + 0.373938i −0.821468 0.570255i \(-0.806844\pi\)
−0.329394 + 0.944193i \(0.606844\pi\)
\(488\) 3.50196 1.13786i 0.158526 0.0515083i
\(489\) 0 0
\(490\) 11.4139 + 3.97348i 0.515630 + 0.179504i
\(491\) −10.2314 31.4891i −0.461738 1.42108i −0.863040 0.505136i \(-0.831442\pi\)
0.401302 0.915946i \(-0.368558\pi\)
\(492\) 0 0
\(493\) 9.23975i 0.416137i
\(494\) −1.13912 + 0.827619i −0.0512514 + 0.0372363i
\(495\) 0 0
\(496\) −7.90309 5.74193i −0.354859 0.257820i
\(497\) −9.83059 + 13.5307i −0.440962 + 0.606933i
\(498\) 0 0
\(499\) −6.01303 −0.269180 −0.134590 0.990901i \(-0.542972\pi\)
−0.134590 + 0.990901i \(0.542972\pi\)
\(500\) −8.61673 7.12404i −0.385352 0.318597i
\(501\) 0 0
\(502\) −17.3800 5.64710i −0.775707 0.252042i
\(503\) −3.91890 + 5.39391i −0.174735 + 0.240502i −0.887398 0.461005i \(-0.847489\pi\)
0.712662 + 0.701507i \(0.247489\pi\)
\(504\) 0 0
\(505\) −31.8988 0.665008i −1.41948 0.0295925i
\(506\) −38.0659 + 27.6565i −1.69224 + 1.22948i
\(507\) 0 0
\(508\) 2.56501 + 3.53043i 0.113804 + 0.156638i
\(509\) −5.43941 16.7408i −0.241098 0.742022i −0.996254 0.0864773i \(-0.972439\pi\)
0.755156 0.655545i \(-0.227561\pi\)
\(510\) 0 0
\(511\) −10.7032 + 32.9411i −0.473482 + 1.45723i
\(512\) −0.951057 + 0.309017i −0.0420312 + 0.0136568i
\(513\) 0 0
\(514\) 0.556690 1.71331i 0.0245545 0.0755711i
\(515\) −23.8831 + 31.4713i −1.05241 + 1.38679i
\(516\) 0 0
\(517\) 32.9762 + 45.3878i 1.45029 + 1.99615i
\(518\) 3.52816i 0.155018i
\(519\) 0 0
\(520\) 1.10276 + 0.836871i 0.0483594 + 0.0366992i
\(521\) 14.9188 + 10.8391i 0.653605 + 0.474872i 0.864497 0.502638i \(-0.167637\pi\)
−0.210892 + 0.977509i \(0.567637\pi\)
\(522\) 0 0
\(523\) −9.81016 3.18752i −0.428968 0.139380i 0.0865719 0.996246i \(-0.472409\pi\)
−0.515540 + 0.856865i \(0.672409\pi\)
\(524\) −0.617783 −0.0269880
\(525\) 0 0
\(526\) 14.2039 0.619318
\(527\) 32.0115 + 10.4012i 1.39444 + 0.453082i
\(528\) 0 0
\(529\) 46.2520 + 33.6040i 2.01096 + 1.46105i
\(530\) 1.01599 0.706280i 0.0441317 0.0306788i
\(531\) 0 0
\(532\) 8.01025i 0.347288i
\(533\) 2.29143 + 3.15388i 0.0992528 + 0.136610i
\(534\) 0 0
\(535\) 0.0337295 1.61792i 0.00145825 0.0699488i
\(536\) 3.68104 11.3291i 0.158997 0.489342i
\(537\) 0 0
\(538\) 5.93752 1.92922i 0.255985 0.0831744i
\(539\) 8.77697 27.0127i 0.378051 1.16352i
\(540\) 0 0
\(541\) −11.5756 35.6262i −0.497676 1.53169i −0.812745 0.582620i \(-0.802028\pi\)
0.315069 0.949069i \(-0.397972\pi\)
\(542\) 14.0169 + 19.2926i 0.602076 + 0.828687i
\(543\) 0 0
\(544\) 2.78752 2.02525i 0.119514 0.0868320i
\(545\) −1.66367 5.50835i −0.0712637 0.235952i
\(546\) 0 0
\(547\) −6.49261 + 8.93631i −0.277604 + 0.382089i −0.924938 0.380117i \(-0.875884\pi\)
0.647334 + 0.762206i \(0.275884\pi\)
\(548\) −8.81784 2.86509i −0.376679 0.122391i
\(549\) 0 0
\(550\) −16.3165 + 20.5947i −0.695738 + 0.878162i
\(551\) 6.09886 0.259820
\(552\) 0 0
\(553\) −13.4990 + 18.5798i −0.574035 + 0.790092i
\(554\) 5.64173 + 4.09896i 0.239694 + 0.174148i
\(555\) 0 0
\(556\) −15.1787 + 11.0279i −0.643719 + 0.467689i
\(557\) 29.7087i 1.25880i 0.777082 + 0.629400i \(0.216699\pi\)
−0.777082 + 0.629400i \(0.783301\pi\)
\(558\) 0 0
\(559\) 0.289364 + 0.890570i 0.0122388 + 0.0376671i
\(560\) 7.53922 2.27704i 0.318590 0.0962226i
\(561\) 0 0
\(562\) 11.0644 3.59504i 0.466723 0.151647i
\(563\) 17.4332 5.66439i 0.734722 0.238726i 0.0823274 0.996605i \(-0.473765\pi\)
0.652394 + 0.757880i \(0.273765\pi\)
\(564\) 0 0
\(565\) −32.5112 + 9.81925i −1.36776 + 0.413099i
\(566\) −2.96811 9.13490i −0.124759 0.383969i
\(567\) 0 0
\(568\) 4.74858i 0.199246i
\(569\) 17.7915 12.9263i 0.745859 0.541898i −0.148681 0.988885i \(-0.547503\pi\)
0.894541 + 0.446987i \(0.147503\pi\)
\(570\) 0 0
\(571\) −20.2890 14.7408i −0.849069 0.616885i 0.0758199 0.997122i \(-0.475843\pi\)
−0.924889 + 0.380237i \(0.875843\pi\)
\(572\) 1.91229 2.63204i 0.0799567 0.110051i
\(573\) 0 0
\(574\) 22.1780 0.925691
\(575\) 41.9643 + 15.5969i 1.75003 + 0.650435i
\(576\) 0 0
\(577\) −33.2751 10.8117i −1.38526 0.450099i −0.480866 0.876794i \(-0.659678\pi\)
−0.904395 + 0.426695i \(0.859678\pi\)
\(578\) 3.01421 4.14870i 0.125374 0.172563i
\(579\) 0 0
\(580\) −1.73370 5.74022i −0.0719879 0.238350i
\(581\) −7.57866 + 5.50622i −0.314416 + 0.228437i
\(582\) 0 0
\(583\) −1.70923 2.35256i −0.0707892 0.0974330i
\(584\) 3.03890 + 9.35277i 0.125751 + 0.387020i
\(585\) 0 0
\(586\) −2.63504 + 8.10981i −0.108852 + 0.335013i
\(587\) −9.87738 + 3.20936i −0.407683 + 0.132464i −0.505677 0.862723i \(-0.668757\pi\)
0.0979941 + 0.995187i \(0.468757\pi\)
\(588\) 0 0
\(589\) −6.86547 + 21.1298i −0.282887 + 0.870636i
\(590\) 0.0129925 0.623216i 0.000534891 0.0256574i
\(591\) 0 0
\(592\) −0.588802 0.810416i −0.0241996 0.0333079i
\(593\) 0.948200i 0.0389379i 0.999810 + 0.0194690i \(0.00619755\pi\)
−0.999810 + 0.0194690i \(0.993802\pi\)
\(594\) 0 0
\(595\) −22.2810 + 15.4890i −0.913433 + 0.634987i
\(596\) −13.6235 9.89807i −0.558041 0.405441i
\(597\) 0 0
\(598\) −5.27202 1.71298i −0.215589 0.0700491i
\(599\) 25.4901 1.04150 0.520748 0.853710i \(-0.325653\pi\)
0.520748 + 0.853710i \(0.325653\pi\)
\(600\) 0 0
\(601\) −16.6409 −0.678797 −0.339399 0.940643i \(-0.610224\pi\)
−0.339399 + 0.940643i \(0.610224\pi\)
\(602\) 5.06644 + 1.64618i 0.206492 + 0.0670935i
\(603\) 0 0
\(604\) 13.5860 + 9.87079i 0.552805 + 0.401637i
\(605\) 29.5949 + 22.4591i 1.20320 + 0.913092i
\(606\) 0 0
\(607\) 33.2662i 1.35023i 0.737712 + 0.675116i \(0.235906\pi\)
−0.737712 + 0.675116i \(0.764094\pi\)
\(608\) 1.33680 + 1.83995i 0.0542145 + 0.0746199i
\(609\) 0 0
\(610\) −4.97738 + 6.55881i −0.201528 + 0.265558i
\(611\) −2.04247 + 6.28607i −0.0826295 + 0.254307i
\(612\) 0 0
\(613\) −15.4852 + 5.03144i −0.625440 + 0.203218i −0.604554 0.796564i \(-0.706649\pi\)
−0.0208859 + 0.999782i \(0.506649\pi\)
\(614\) −0.883153 + 2.71807i −0.0356412 + 0.109692i
\(615\) 0 0
\(616\) −5.71941 17.6025i −0.230442 0.709226i
\(617\) −28.5243 39.2603i −1.14834 1.58056i −0.747280 0.664509i \(-0.768641\pi\)
−0.401063 0.916050i \(-0.631359\pi\)
\(618\) 0 0
\(619\) −19.9552 + 14.4983i −0.802066 + 0.582735i −0.911519 0.411257i \(-0.865090\pi\)
0.109454 + 0.993992i \(0.465090\pi\)
\(620\) 21.8389 + 0.455284i 0.877069 + 0.0182847i
\(621\) 0 0
\(622\) 5.97296 8.22107i 0.239494 0.329635i
\(623\) −44.8388 14.5690i −1.79643 0.583694i
\(624\) 0 0
\(625\) 24.9132 + 2.08203i 0.996526 + 0.0832811i
\(626\) 18.2036 0.727563
\(627\) 0 0
\(628\) 2.67707 3.68467i 0.106827 0.147034i
\(629\) 2.79234 + 2.02876i 0.111338 + 0.0808918i
\(630\) 0 0
\(631\) 9.54099 6.93194i 0.379821 0.275956i −0.381451 0.924389i \(-0.624575\pi\)
0.761272 + 0.648433i \(0.224575\pi\)
\(632\) 6.52057i 0.259374i
\(633\) 0 0
\(634\) 9.66493 + 29.7456i 0.383843 + 1.18135i
\(635\) −9.21542 3.20812i −0.365703 0.127310i
\(636\) 0 0
\(637\) 3.18244 1.03404i 0.126093 0.0409700i
\(638\) −13.4022 + 4.35465i −0.530600 + 0.172402i
\(639\) 0 0
\(640\) 1.35175 1.78123i 0.0534325 0.0704093i
\(641\) 4.20359 + 12.9373i 0.166032 + 0.510994i 0.999111 0.0421603i \(-0.0134240\pi\)
−0.833079 + 0.553154i \(0.813424\pi\)
\(642\) 0 0
\(643\) 20.9102i 0.824617i −0.911044 0.412308i \(-0.864723\pi\)
0.911044 0.412308i \(-0.135277\pi\)
\(644\) −25.5131 + 18.5363i −1.00536 + 0.730433i
\(645\) 0 0
\(646\) −6.33968 4.60604i −0.249431 0.181222i
\(647\) −26.9722 + 37.1240i −1.06039 + 1.45950i −0.180941 + 0.983494i \(0.557914\pi\)
−0.879444 + 0.476002i \(0.842086\pi\)
\(648\) 0 0
\(649\) −1.46494 −0.0575039
\(650\) −3.09283 0.129011i −0.121311 0.00506023i
\(651\) 0 0
\(652\) 19.2239 + 6.24624i 0.752868 + 0.244622i
\(653\) 1.53183 2.10838i 0.0599450 0.0825072i −0.777992 0.628274i \(-0.783762\pi\)
0.837937 + 0.545767i \(0.183762\pi\)
\(654\) 0 0
\(655\) 1.13426 0.788499i 0.0443192 0.0308092i
\(656\) 5.09427 3.70121i 0.198898 0.144508i
\(657\) 0 0
\(658\) 22.1017 + 30.4204i 0.861615 + 1.18591i
\(659\) 7.39977 + 22.7742i 0.288254 + 0.887155i 0.985404 + 0.170230i \(0.0544511\pi\)
−0.697150 + 0.716925i \(0.745549\pi\)
\(660\) 0 0
\(661\) 8.01908 24.6802i 0.311906 0.959948i −0.665103 0.746751i \(-0.731613\pi\)
0.977009 0.213196i \(-0.0683874\pi\)
\(662\) −3.26397 + 1.06053i −0.126858 + 0.0412186i
\(663\) 0 0
\(664\) −0.821902 + 2.52955i −0.0318960 + 0.0981657i
\(665\) −10.2238 14.7070i −0.396461 0.570312i
\(666\) 0 0
\(667\) 14.1132 + 19.4252i 0.546466 + 0.752145i
\(668\) 7.19183i 0.278260i
\(669\) 0 0
\(670\) 7.70127 + 25.4987i 0.297526 + 0.985099i
\(671\) 15.6543 + 11.3735i 0.604328 + 0.439070i
\(672\) 0 0
\(673\) 14.0845 + 4.57632i 0.542916 + 0.176404i 0.567620 0.823291i \(-0.307864\pi\)
−0.0247037 + 0.999695i \(0.507864\pi\)
\(674\) −11.7235 −0.451574
\(675\) 0 0
\(676\) −12.6167 −0.485258
\(677\) −33.2224 10.7946i −1.27684 0.414870i −0.409373 0.912367i \(-0.634253\pi\)
−0.867466 + 0.497497i \(0.834253\pi\)
\(678\) 0 0
\(679\) −12.4578 9.05109i −0.478085 0.347349i
\(680\) −2.53304 + 7.27622i −0.0971375 + 0.279030i
\(681\) 0 0
\(682\) 51.3346i 1.96571i
\(683\) 12.3485 + 16.9963i 0.472504 + 0.650346i 0.977043 0.213043i \(-0.0683375\pi\)
−0.504539 + 0.863389i \(0.668338\pi\)
\(684\) 0 0
\(685\) 19.8465 5.99418i 0.758297 0.229026i
\(686\) −1.73603 + 5.34295i −0.0662819 + 0.203995i
\(687\) 0 0
\(688\) 1.43848 0.467392i 0.0548417 0.0178192i
\(689\) 0.105866 0.325822i 0.00403318 0.0124128i
\(690\) 0 0
\(691\) −7.23231 22.2588i −0.275130 0.846763i −0.989185 0.146673i \(-0.953143\pi\)
0.714055 0.700090i \(-0.246857\pi\)
\(692\) −3.60403 4.96053i −0.137005 0.188571i
\(693\) 0 0
\(694\) 26.2204 19.0502i 0.995312 0.723137i
\(695\) 13.7929 39.6206i 0.523196 1.50290i
\(696\) 0 0
\(697\) −12.7528 + 17.5527i −0.483045 + 0.664854i
\(698\) 10.8143 + 3.51377i 0.409326 + 0.132998i
\(699\) 0 0
\(700\) −10.9359 + 13.8033i −0.413337 + 0.521715i
\(701\) 43.2849 1.63485 0.817424 0.576037i \(-0.195402\pi\)
0.817424 + 0.576037i \(0.195402\pi\)
\(702\) 0 0
\(703\) −1.33912 + 1.84314i −0.0505057 + 0.0695152i
\(704\) −4.25137 3.08880i −0.160230 0.116414i
\(705\) 0 0
\(706\) −1.68861 + 1.22685i −0.0635516 + 0.0461730i
\(707\) 50.2552i 1.89004i
\(708\) 0 0
\(709\) 7.72993 + 23.7903i 0.290303 + 0.893462i 0.984759 + 0.173926i \(0.0556454\pi\)
−0.694455 + 0.719536i \(0.744355\pi\)
\(710\) −6.06079 8.71848i −0.227457 0.327199i
\(711\) 0 0
\(712\) −12.7308 + 4.13649i −0.477108 + 0.155022i
\(713\) −83.1865 + 27.0289i −3.11536 + 1.01224i
\(714\) 0 0
\(715\) −0.151627 + 7.27319i −0.00567054 + 0.272002i
\(716\) −4.42813 13.6284i −0.165487 0.509316i
\(717\) 0 0
\(718\) 6.81215i 0.254227i
\(719\) 24.9533 18.1296i 0.930601 0.676121i −0.0155391 0.999879i \(-0.504946\pi\)
0.946140 + 0.323758i \(0.104946\pi\)
\(720\) 0 0
\(721\) 50.3442 + 36.5772i 1.87492 + 1.36221i
\(722\) −8.12762 + 11.1867i −0.302479 + 0.416326i
\(723\) 0 0
\(724\) −15.7294 −0.584580
\(725\) 10.5096 + 8.32636i 0.390315 + 0.309233i
\(726\) 0 0
\(727\) 0.623458 + 0.202574i 0.0231228 + 0.00751304i 0.320556 0.947230i \(-0.396130\pi\)
−0.297433 + 0.954743i \(0.596130\pi\)
\(728\) 1.28168 1.76408i 0.0475022 0.0653811i
\(729\) 0 0
\(730\) −17.5168 13.2932i −0.648324 0.492003i
\(731\) −4.21616 + 3.06322i −0.155940 + 0.113297i
\(732\) 0 0
\(733\) 8.05975 + 11.0933i 0.297694 + 0.409740i 0.931494 0.363756i \(-0.118506\pi\)
−0.633800 + 0.773497i \(0.718506\pi\)
\(734\) −0.0480016 0.147734i −0.00177177 0.00545295i
\(735\) 0 0
\(736\) −2.76688 + 8.51557i −0.101988 + 0.313888i
\(737\) 59.5342 19.3438i 2.19297 0.712539i
\(738\) 0 0
\(739\) 3.38589 10.4207i 0.124552 0.383332i −0.869267 0.494343i \(-0.835409\pi\)
0.993819 + 0.111011i \(0.0354088\pi\)
\(740\) 2.11542 + 0.736430i 0.0777642 + 0.0270717i
\(741\) 0 0
\(742\) −1.14559 1.57676i −0.0420558 0.0578848i
\(743\) 5.67053i 0.208032i 0.994576 + 0.104016i \(0.0331692\pi\)
−0.994576 + 0.104016i \(0.966831\pi\)
\(744\) 0 0
\(745\) 37.6463 + 0.784829i 1.37925 + 0.0287539i
\(746\) −24.0650 17.4843i −0.881084 0.640145i
\(747\) 0 0
\(748\) 17.2202 + 5.59518i 0.629633 + 0.204580i
\(749\) −2.54896 −0.0931371
\(750\) 0 0
\(751\) −22.2909 −0.813408 −0.406704 0.913560i \(-0.633322\pi\)
−0.406704 + 0.913560i \(0.633322\pi\)
\(752\) 10.1535 + 3.29908i 0.370261 + 0.120305i
\(753\) 0 0
\(754\) −1.34314 0.975846i −0.0489141 0.0355382i
\(755\) −37.5426 0.782666i −1.36631 0.0284841i
\(756\) 0 0
\(757\) 17.3894i 0.632030i −0.948754 0.316015i \(-0.897655\pi\)
0.948754 0.316015i \(-0.102345\pi\)
\(758\) −9.80558 13.4962i −0.356155 0.490205i
\(759\) 0 0
\(760\) −4.80279 1.67197i −0.174216 0.0606489i
\(761\) −4.78812 + 14.7363i −0.173569 + 0.534191i −0.999565 0.0294850i \(-0.990613\pi\)
0.825996 + 0.563676i \(0.190613\pi\)
\(762\) 0 0
\(763\) −8.61978 + 2.80074i −0.312057 + 0.101393i
\(764\) −1.11938 + 3.44511i −0.0404979 + 0.124640i
\(765\) 0 0
\(766\) −3.48545 10.7271i −0.125934 0.387586i
\(767\) −0.101445 0.139627i −0.00366296 0.00504163i
\(768\) 0 0
\(769\) −39.5215 + 28.7140i −1.42518 + 1.03545i −0.434292 + 0.900772i \(0.643002\pi\)
−0.990889 + 0.134683i \(0.956998\pi\)
\(770\) 32.9677 + 25.0187i 1.18807 + 0.901610i
\(771\) 0 0
\(772\) 5.71613 7.86757i 0.205728 0.283160i
\(773\) 1.02281 + 0.332330i 0.0367878 + 0.0119531i 0.327353 0.944902i \(-0.393843\pi\)
−0.290565 + 0.956855i \(0.593843\pi\)
\(774\) 0 0
\(775\) −40.6776 + 27.0378i −1.46118 + 0.971227i
\(776\) −4.37205 −0.156947
\(777\) 0 0
\(778\) 3.91547 5.38919i 0.140377 0.193212i
\(779\) −11.5859 8.41768i −0.415109 0.301595i
\(780\) 0 0
\(781\) −20.1880 + 14.6674i −0.722383 + 0.524842i
\(782\) 30.8509i 1.10323i
\(783\) 0 0
\(784\) −1.67022 5.14040i −0.0596506 0.183586i
\(785\) −0.212268 + 10.1820i −0.00757617 + 0.363410i
\(786\) 0 0
\(787\) 35.9953 11.6956i 1.28310 0.416903i 0.413426 0.910538i \(-0.364332\pi\)
0.869669 + 0.493635i \(0.164332\pi\)
\(788\) −6.72755 + 2.18591i −0.239659 + 0.0778700i
\(789\) 0 0
\(790\) −8.32244 11.9719i −0.296099 0.425940i
\(791\) 16.5304 + 50.8755i 0.587755 + 1.80892i
\(792\) 0 0
\(793\) 2.27965i 0.0809527i
\(794\) 30.1144 21.8794i 1.06872 0.776471i
\(795\) 0 0
\(796\) 14.2990 + 10.3888i 0.506813 + 0.368221i
\(797\) −6.79344 + 9.35037i −0.240636 + 0.331207i −0.912204 0.409736i \(-0.865621\pi\)
0.671568 + 0.740943i \(0.265621\pi\)
\(798\) 0 0
\(799\) −36.7850 −1.30136
\(800\) −0.208384 + 4.99566i −0.00736748 + 0.176623i
\(801\) 0 0
\(802\) −18.7255 6.08427i −0.661219 0.214843i
\(803\) −30.3755 + 41.8083i −1.07193 + 1.47538i
\(804\) 0 0
\(805\) 23.1839 66.5963i 0.817123 2.34721i
\(806\) 4.89283 3.55485i 0.172342 0.125214i
\(807\) 0 0
\(808\) 8.38692 + 11.5436i 0.295051 + 0.406103i
\(809\) −6.24192 19.2106i −0.219454 0.675410i −0.998807 0.0488254i \(-0.984452\pi\)
0.779353 0.626585i \(-0.215548\pi\)
\(810\) 0 0
\(811\) −12.8802 + 39.6412i −0.452285 + 1.39199i 0.422008 + 0.906592i \(0.361326\pi\)
−0.874293 + 0.485399i \(0.838674\pi\)
\(812\) −8.98262 + 2.91863i −0.315228 + 0.102424i
\(813\) 0 0
\(814\) 1.62669 5.00643i 0.0570154 0.175475i
\(815\) −43.2678 + 13.0680i −1.51561 + 0.457753i
\(816\) 0 0
\(817\) −2.02193 2.78295i −0.0707384 0.0973631i
\(818\) 29.5602i 1.03355i
\(819\) 0 0
\(820\) −4.62919 + 13.2975i −0.161658 + 0.464369i
\(821\) −26.4710 19.2323i −0.923844 0.671212i 0.0206340 0.999787i \(-0.493432\pi\)
−0.944478 + 0.328575i \(0.893432\pi\)
\(822\) 0 0
\(823\) 31.8460 + 10.3474i 1.11008 + 0.360687i 0.805974 0.591950i \(-0.201642\pi\)
0.304107 + 0.952638i \(0.401642\pi\)
\(824\) 17.6683 0.615504
\(825\) 0 0
\(826\) −0.981851 −0.0341630
\(827\) −8.32052 2.70350i −0.289333 0.0940100i 0.160755 0.986994i \(-0.448607\pi\)
−0.450088 + 0.892984i \(0.648607\pi\)
\(828\) 0 0
\(829\) 15.3302 + 11.1381i 0.532441 + 0.386841i 0.821270 0.570539i \(-0.193266\pi\)
−0.288829 + 0.957381i \(0.593266\pi\)
\(830\) −1.71954 5.69333i −0.0596860 0.197618i
\(831\) 0 0
\(832\) 0.619103i 0.0214635i
\(833\) 10.9464 + 15.0664i 0.379269 + 0.522019i
\(834\) 0 0
\(835\) −9.17919 13.2043i −0.317659 0.456955i
\(836\) −3.69320 + 11.3665i −0.127732 + 0.393118i
\(837\) 0 0
\(838\) 1.11299 0.361633i 0.0384477 0.0124924i
\(839\) −3.54657 + 10.9152i −0.122441 + 0.376835i −0.993426 0.114474i \(-0.963482\pi\)
0.870985 + 0.491309i \(0.163482\pi\)
\(840\) 0 0
\(841\) −6.73930 20.7414i −0.232390 0.715222i
\(842\) −4.89633 6.73922i −0.168739 0.232249i
\(843\) 0 0
\(844\) −9.51713 + 6.91460i −0.327593 + 0.238010i
\(845\) 23.1645 16.1032i 0.796884 0.553966i
\(846\) 0 0
\(847\) 34.3964 47.3425i 1.18187 1.62671i
\(848\) −0.526281 0.170999i −0.0180726 0.00587213i
\(849\) 0 0
\(850\) −4.63621 16.5923i −0.159021 0.569110i
\(851\) −8.96929 −0.307463
\(852\) 0 0
\(853\) −6.10223 + 8.39899i −0.208936 + 0.287576i −0.900605 0.434639i \(-0.856876\pi\)
0.691668 + 0.722215i \(0.256876\pi\)
\(854\) 10.4920 + 7.62292i 0.359030 + 0.260851i
\(855\) 0 0
\(856\) −0.585496 + 0.425388i −0.0200119 + 0.0145395i
\(857\) 32.7252i 1.11787i −0.829211 0.558936i \(-0.811210\pi\)
0.829211 0.558936i \(-0.188790\pi\)
\(858\) 0 0
\(859\) −6.38693 19.6569i −0.217919 0.670686i −0.998933 0.0461730i \(-0.985297\pi\)
0.781014 0.624513i \(-0.214703\pi\)
\(860\) −2.04453 + 2.69413i −0.0697180 + 0.0918691i
\(861\) 0 0
\(862\) −17.7778 + 5.77636i −0.605515 + 0.196744i
\(863\) 53.5643 17.4041i 1.82335 0.592443i 0.823673 0.567065i \(-0.191921\pi\)
0.999678 0.0253777i \(-0.00807885\pi\)
\(864\) 0 0
\(865\) 12.9484 + 4.50766i 0.440258 + 0.153265i
\(866\) 5.84299 + 17.9829i 0.198553 + 0.611083i
\(867\) 0 0
\(868\) 34.4062i 1.16782i
\(869\) −27.7213 + 20.1407i −0.940382 + 0.683228i
\(870\) 0 0
\(871\) 5.96636 + 4.33481i 0.202162 + 0.146879i
\(872\) −1.51256 + 2.08185i −0.0512216 + 0.0705005i
\(873\) 0 0
\(874\) 20.3637 0.688812
\(875\) 2.46082 39.3009i 0.0831910 1.32861i
\(876\) 0 0
\(877\) −42.8777 13.9318i −1.44788 0.470443i −0.523533 0.852006i \(-0.675386\pi\)
−0.924343 + 0.381562i \(0.875386\pi\)
\(878\) 24.0169 33.0564i 0.810531 1.11560i
\(879\) 0 0
\(880\) 11.7479 + 0.244915i 0.396023 + 0.00825607i
\(881\) 25.2754 18.3636i 0.851550 0.618687i −0.0740232 0.997257i \(-0.523584\pi\)
0.925573 + 0.378569i \(0.123584\pi\)
\(882\) 0 0
\(883\) 15.7843 + 21.7253i 0.531185 + 0.731113i 0.987310 0.158802i \(-0.0507633\pi\)
−0.456126 + 0.889915i \(0.650763\pi\)
\(884\) 0.659183 + 2.02876i 0.0221707 + 0.0682345i
\(885\) 0 0
\(886\) 1.85127 5.69762i 0.0621946 0.191415i
\(887\) −13.8750 + 4.50825i −0.465876 + 0.151372i −0.532543 0.846403i \(-0.678763\pi\)
0.0666671 + 0.997775i \(0.478763\pi\)
\(888\) 0 0
\(889\) −4.74952 + 14.6175i −0.159294 + 0.490256i
\(890\) 18.0945 23.8435i 0.606527 0.799236i
\(891\) 0 0
\(892\) −7.46514 10.2749i −0.249952 0.344029i
\(893\) 24.2806i 0.812519i
\(894\) 0 0
\(895\) 25.5245 + 19.3702i 0.853191 + 0.647473i
\(896\) −2.84941 2.07022i −0.0951921 0.0691611i
\(897\) 0 0
\(898\) 11.8411 + 3.84740i 0.395142 + 0.128390i
\(899\) −26.1962 −0.873693
\(900\) 0 0
\(901\) 1.90665 0.0635199
\(902\) 31.4704 + 10.2254i 1.04785 + 0.340467i
\(903\) 0 0
\(904\) 12.2875 + 8.92737i 0.408675 + 0.296920i
\(905\) 28.8796 20.0761i 0.959989 0.667351i
\(906\) 0 0
\(907\) 29.5506i 0.981211i 0.871382 + 0.490606i \(0.163224\pi\)
−0.871382 + 0.490606i \(0.836776\pi\)
\(908\) −8.38543 11.5415i −0.278280 0.383020i
\(909\) 0 0
\(910\) −0.101626 + 4.87473i −0.00336886 + 0.161596i
\(911\) −1.30316 + 4.01073i −0.0431757 + 0.132881i −0.970321 0.241821i \(-0.922255\pi\)
0.927145 + 0.374703i \(0.122255\pi\)
\(912\) 0 0
\(913\) −13.2928 + 4.31908i −0.439926 + 0.142941i
\(914\) 0.345503 1.06335i 0.0114282 0.0351724i
\(915\) 0 0
\(916\) 2.72030 + 8.37223i 0.0898813 + 0.276626i
\(917\) −1.27895 1.76032i −0.0422345 0.0581308i
\(918\) 0 0
\(919\) 23.0230 16.7272i 0.759459 0.551779i −0.139286 0.990252i \(-0.544481\pi\)
0.898744 + 0.438473i \(0.144481\pi\)
\(920\) −5.78870 19.1662i −0.190848 0.631892i
\(921\) 0 0
\(922\) 17.6892 24.3470i 0.582561 0.801827i
\(923\) −2.79597 0.908467i −0.0920306 0.0299026i
\(924\) 0 0
\(925\) −4.82388 + 1.34789i −0.158608 + 0.0443182i
\(926\) 21.0358 0.691279
\(927\) 0 0
\(928\) −1.57623 + 2.16949i −0.0517421 + 0.0712169i
\(929\) 21.2379 + 15.4302i 0.696792 + 0.506249i 0.878886 0.477032i \(-0.158288\pi\)
−0.182094 + 0.983281i \(0.558288\pi\)
\(930\) 0 0
\(931\) −9.94483 + 7.22534i −0.325929 + 0.236801i
\(932\) 15.0762i 0.493838i
\(933\) 0 0
\(934\) 1.09273 + 3.36307i 0.0357552 + 0.110043i
\(935\) −38.7580 + 11.7059i −1.26752 + 0.382825i
\(936\) 0 0
\(937\) 5.07121 1.64774i 0.165669 0.0538292i −0.225008 0.974357i \(-0.572241\pi\)
0.390677 + 0.920528i \(0.372241\pi\)
\(938\) 39.9018 12.9649i 1.30284 0.423318i
\(939\) 0 0
\(940\) −22.8528 + 6.90214i −0.745375 + 0.225123i
\(941\) 2.62746 + 8.08650i 0.0856529 + 0.263612i 0.984705 0.174229i \(-0.0557432\pi\)
−0.899052 + 0.437841i \(0.855743\pi\)
\(942\) 0 0
\(943\) 56.3809i 1.83602i
\(944\) −0.225531 + 0.163858i −0.00734040 + 0.00533311i
\(945\) 0 0
\(946\) 6.43025 + 4.67185i 0.209065 + 0.151895i
\(947\) 13.1250 18.0650i 0.426504 0.587033i −0.540642 0.841253i \(-0.681819\pi\)
0.967146 + 0.254220i \(0.0818187\pi\)
\(948\) 0 0
\(949\) −6.08831 −0.197635
\(950\) 10.9520 3.06021i 0.355331 0.0992863i
\(951\) 0 0
\(952\) 11.5416 + 3.75008i 0.374064 + 0.121541i
\(953\) 8.02894 11.0509i 0.260083 0.357973i −0.658928 0.752206i \(-0.728990\pi\)
0.919011 + 0.394233i \(0.128990\pi\)
\(954\) 0 0
\(955\) −2.34191 7.75400i −0.0757825 0.250913i
\(956\) −5.05298 + 3.67120i −0.163425 + 0.118735i
\(957\) 0 0
\(958\) −23.7675 32.7132i −0.767894 1.05692i
\(959\) −10.0910 31.0570i −0.325856 1.00288i
\(960\) 0 0
\(961\) 19.9095 61.2752i 0.642243 1.97662i
\(962\) 0.589821 0.191644i 0.0190166 0.00617886i
\(963\) 0 0
\(964\) 4.57636 14.0846i 0.147395 0.453634i
\(965\) −0.453238 + 21.7407i −0.0145903 + 0.699858i
\(966\) 0 0
\(967\) 18.4843 + 25.4414i 0.594414 + 0.818141i 0.995183 0.0980386i \(-0.0312569\pi\)
−0.400769 + 0.916179i \(0.631257\pi\)
\(968\) 16.6149i 0.534022i
\(969\) 0 0
\(970\) 8.02716 5.58021i 0.257737 0.179170i
\(971\) −3.40793 2.47601i −0.109366 0.0794589i 0.531758 0.846896i \(-0.321532\pi\)
−0.641124 + 0.767437i \(0.721532\pi\)
\(972\) 0 0
\(973\) −62.8463 20.4200i −2.01476 0.654635i
\(974\) −26.7043 −0.855661
\(975\) 0 0
\(976\) 3.68218 0.117864
\(977\) 13.5077 + 4.38892i 0.432149 + 0.140414i 0.517011 0.855979i \(-0.327045\pi\)
−0.0848613 + 0.996393i \(0.527045\pi\)
\(978\) 0 0
\(979\) −56.9087 41.3466i −1.81881 1.32144i
\(980\) 9.62744 + 7.30611i 0.307537 + 0.233385i
\(981\) 0 0
\(982\) 33.1096i 1.05657i
\(983\) 18.9158 + 26.0353i 0.603319 + 0.830398i 0.996007 0.0892742i \(-0.0284547\pi\)
−0.392688 + 0.919672i \(0.628455\pi\)
\(984\) 0 0
\(985\) 9.56194 12.6000i 0.304669 0.401469i
\(986\) 2.85524 8.78752i 0.0909293 0.279852i
\(987\) 0 0
\(988\) −1.33912 + 0.435105i −0.0426030 + 0.0138425i
\(989\) 4.18494 12.8799i 0.133073 0.409557i
\(990\) 0 0
\(991\) 12.2198 + 37.6086i 0.388174 + 1.19468i 0.934152 + 0.356876i \(0.116158\pi\)
−0.545978 + 0.837799i \(0.683842\pi\)
\(992\) −5.74193 7.90309i −0.182306 0.250923i
\(993\) 0 0
\(994\) −13.5307 + 9.83059i −0.429166 + 0.311808i
\(995\) −39.5127 0.823740i −1.25264 0.0261143i
\(996\) 0 0
\(997\) −1.66750 + 2.29512i −0.0528104 + 0.0726873i −0.834605 0.550848i \(-0.814304\pi\)
0.781795 + 0.623535i \(0.214304\pi\)
\(998\) −5.71873 1.85813i −0.181023 0.0588181i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.l.c.379.3 16
3.2 odd 2 150.2.h.b.79.2 yes 16
15.2 even 4 750.2.g.f.601.1 16
15.8 even 4 750.2.g.g.601.4 16
15.14 odd 2 750.2.h.d.649.3 16
25.19 even 10 inner 450.2.l.c.19.3 16
75.8 even 20 750.2.g.g.151.4 16
75.17 even 20 750.2.g.f.151.1 16
75.38 even 20 3750.2.a.u.1.7 8
75.41 odd 10 3750.2.c.k.1249.7 16
75.44 odd 10 150.2.h.b.19.2 16
75.56 odd 10 750.2.h.d.349.4 16
75.59 odd 10 3750.2.c.k.1249.10 16
75.62 even 20 3750.2.a.v.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.b.19.2 16 75.44 odd 10
150.2.h.b.79.2 yes 16 3.2 odd 2
450.2.l.c.19.3 16 25.19 even 10 inner
450.2.l.c.379.3 16 1.1 even 1 trivial
750.2.g.f.151.1 16 75.17 even 20
750.2.g.f.601.1 16 15.2 even 4
750.2.g.g.151.4 16 75.8 even 20
750.2.g.g.601.4 16 15.8 even 4
750.2.h.d.349.4 16 75.56 odd 10
750.2.h.d.649.3 16 15.14 odd 2
3750.2.a.u.1.7 8 75.38 even 20
3750.2.a.v.1.2 8 75.62 even 20
3750.2.c.k.1249.7 16 75.41 odd 10
3750.2.c.k.1249.10 16 75.59 odd 10