Properties

Label 450.2.c.c
Level $450$
Weight $2$
Character orbit 450.c
Analytic conductor $3.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + 2 i q^{7} - i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} - q^{4} + 2 i q^{7} - i q^{8} + 3 q^{11} + 4 i q^{13} - 2 q^{14} + q^{16} + 3 i q^{17} - 5 q^{19} + 3 i q^{22} + 6 i q^{23} - 4 q^{26} - 2 i q^{28} + 2 q^{31} + i q^{32} - 3 q^{34} + 2 i q^{37} - 5 i q^{38} + 3 q^{41} + 4 i q^{43} - 3 q^{44} - 6 q^{46} - 12 i q^{47} + 3 q^{49} - 4 i q^{52} + 6 i q^{53} + 2 q^{56} + 2 q^{61} + 2 i q^{62} - q^{64} - 13 i q^{67} - 3 i q^{68} - 12 q^{71} - 11 i q^{73} - 2 q^{74} + 5 q^{76} + 6 i q^{77} + 10 q^{79} + 3 i q^{82} - 9 i q^{83} - 4 q^{86} - 3 i q^{88} + 15 q^{89} - 8 q^{91} - 6 i q^{92} + 12 q^{94} + 2 i q^{97} + 3 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 6 q^{11} - 4 q^{14} + 2 q^{16} - 10 q^{19} - 8 q^{26} + 4 q^{31} - 6 q^{34} + 6 q^{41} - 6 q^{44} - 12 q^{46} + 6 q^{49} + 4 q^{56} + 4 q^{61} - 2 q^{64} - 24 q^{71} - 4 q^{74} + 10 q^{76} + 20 q^{79} - 8 q^{86} + 30 q^{89} - 16 q^{91} + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
199.2 1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.2.c.c 2
3.b odd 2 1 50.2.b.a 2
4.b odd 2 1 3600.2.f.f 2
5.b even 2 1 inner 450.2.c.c 2
5.c odd 4 1 450.2.a.c 1
5.c odd 4 1 450.2.a.g 1
12.b even 2 1 400.2.c.c 2
15.d odd 2 1 50.2.b.a 2
15.e even 4 1 50.2.a.a 1
15.e even 4 1 50.2.a.b yes 1
20.d odd 2 1 3600.2.f.f 2
20.e even 4 1 3600.2.a.l 1
20.e even 4 1 3600.2.a.bc 1
21.c even 2 1 2450.2.c.m 2
24.f even 2 1 1600.2.c.h 2
24.h odd 2 1 1600.2.c.i 2
60.h even 2 1 400.2.c.c 2
60.l odd 4 1 400.2.a.d 1
60.l odd 4 1 400.2.a.f 1
105.g even 2 1 2450.2.c.m 2
105.k odd 4 1 2450.2.a.g 1
105.k odd 4 1 2450.2.a.bd 1
120.i odd 2 1 1600.2.c.i 2
120.m even 2 1 1600.2.c.h 2
120.q odd 4 1 1600.2.a.i 1
120.q odd 4 1 1600.2.a.p 1
120.w even 4 1 1600.2.a.j 1
120.w even 4 1 1600.2.a.q 1
165.l odd 4 1 6050.2.a.h 1
165.l odd 4 1 6050.2.a.bi 1
195.s even 4 1 8450.2.a.d 1
195.s even 4 1 8450.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.2.a.a 1 15.e even 4 1
50.2.a.b yes 1 15.e even 4 1
50.2.b.a 2 3.b odd 2 1
50.2.b.a 2 15.d odd 2 1
400.2.a.d 1 60.l odd 4 1
400.2.a.f 1 60.l odd 4 1
400.2.c.c 2 12.b even 2 1
400.2.c.c 2 60.h even 2 1
450.2.a.c 1 5.c odd 4 1
450.2.a.g 1 5.c odd 4 1
450.2.c.c 2 1.a even 1 1 trivial
450.2.c.c 2 5.b even 2 1 inner
1600.2.a.i 1 120.q odd 4 1
1600.2.a.j 1 120.w even 4 1
1600.2.a.p 1 120.q odd 4 1
1600.2.a.q 1 120.w even 4 1
1600.2.c.h 2 24.f even 2 1
1600.2.c.h 2 120.m even 2 1
1600.2.c.i 2 24.h odd 2 1
1600.2.c.i 2 120.i odd 2 1
2450.2.a.g 1 105.k odd 4 1
2450.2.a.bd 1 105.k odd 4 1
2450.2.c.m 2 21.c even 2 1
2450.2.c.m 2 105.g even 2 1
3600.2.a.l 1 20.e even 4 1
3600.2.a.bc 1 20.e even 4 1
3600.2.f.f 2 4.b odd 2 1
3600.2.f.f 2 20.d odd 2 1
6050.2.a.h 1 165.l odd 4 1
6050.2.a.bi 1 165.l odd 4 1
8450.2.a.d 1 195.s even 4 1
8450.2.a.v 1 195.s even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(450, [\chi])\):

\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} + 9 \) Copy content Toggle raw display
$19$ \( (T + 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T - 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 144 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 169 \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 121 \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 81 \) Copy content Toggle raw display
$89$ \( (T - 15)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less