Properties

Label 4489.2.a.i.1.3
Level $4489$
Weight $2$
Character 4489.1
Self dual yes
Analytic conductor $35.845$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4489,2,Mod(1,4489)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4489, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4489.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4489 = 67^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4489.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.8448454674\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 67)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 4489.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.478891 q^{2} -1.83083 q^{3} -1.77066 q^{4} -0.830830 q^{5} -0.876769 q^{6} -1.08816 q^{7} -1.80574 q^{8} +0.351939 q^{9} -0.397877 q^{10} +2.87677 q^{11} +3.24178 q^{12} -4.39011 q^{13} -0.521109 q^{14} +1.52111 q^{15} +2.67657 q^{16} -3.28463 q^{17} +0.168540 q^{18} +3.55131 q^{19} +1.47112 q^{20} +1.99223 q^{21} +1.37766 q^{22} +6.41437 q^{23} +3.30600 q^{24} -4.30972 q^{25} -2.10238 q^{26} +4.84815 q^{27} +1.92676 q^{28} -1.97270 q^{29} +0.728446 q^{30} +2.68807 q^{31} +4.89326 q^{32} -5.26687 q^{33} -1.57298 q^{34} +0.904073 q^{35} -0.623165 q^{36} +8.07686 q^{37} +1.70069 q^{38} +8.03754 q^{39} +1.50026 q^{40} -2.71113 q^{41} +0.954061 q^{42} -7.74408 q^{43} -5.09379 q^{44} -0.292401 q^{45} +3.07179 q^{46} +10.9626 q^{47} -4.90035 q^{48} -5.81592 q^{49} -2.06389 q^{50} +6.01360 q^{51} +7.77340 q^{52} +7.49900 q^{53} +2.32174 q^{54} -2.39011 q^{55} +1.96492 q^{56} -6.50184 q^{57} -0.944707 q^{58} +10.6543 q^{59} -2.69337 q^{60} -9.25103 q^{61} +1.28729 q^{62} -0.382964 q^{63} -3.00980 q^{64} +3.64743 q^{65} -2.52226 q^{66} +5.81597 q^{68} -11.7436 q^{69} +0.432953 q^{70} -1.73418 q^{71} -0.635509 q^{72} -1.46398 q^{73} +3.86794 q^{74} +7.89037 q^{75} -6.28817 q^{76} -3.13037 q^{77} +3.84911 q^{78} +15.4857 q^{79} -2.22378 q^{80} -9.93195 q^{81} -1.29833 q^{82} -8.08733 q^{83} -3.52757 q^{84} +2.72897 q^{85} -3.70857 q^{86} +3.61167 q^{87} -5.19469 q^{88} +15.4408 q^{89} -0.140028 q^{90} +4.77712 q^{91} -11.3577 q^{92} -4.92139 q^{93} +5.24990 q^{94} -2.95053 q^{95} -8.95874 q^{96} +1.03304 q^{97} -2.78519 q^{98} +1.01245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 4 q^{3} + 4 q^{4} + q^{5} + 5 q^{6} - 2 q^{7} - 9 q^{8} - 3 q^{9} + 7 q^{10} + 5 q^{11} - 12 q^{12} + 2 q^{13} - 3 q^{14} + 8 q^{15} + 6 q^{16} - 16 q^{17} - 21 q^{18} + 10 q^{19} - 8 q^{20}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.478891 0.338627 0.169314 0.985562i \(-0.445845\pi\)
0.169314 + 0.985562i \(0.445845\pi\)
\(3\) −1.83083 −1.05703 −0.528515 0.848924i \(-0.677251\pi\)
−0.528515 + 0.848924i \(0.677251\pi\)
\(4\) −1.77066 −0.885331
\(5\) −0.830830 −0.371558 −0.185779 0.982592i \(-0.559481\pi\)
−0.185779 + 0.982592i \(0.559481\pi\)
\(6\) −0.876769 −0.357939
\(7\) −1.08816 −0.411284 −0.205642 0.978627i \(-0.565928\pi\)
−0.205642 + 0.978627i \(0.565928\pi\)
\(8\) −1.80574 −0.638425
\(9\) 0.351939 0.117313
\(10\) −0.397877 −0.125820
\(11\) 2.87677 0.867378 0.433689 0.901063i \(-0.357212\pi\)
0.433689 + 0.901063i \(0.357212\pi\)
\(12\) 3.24178 0.935822
\(13\) −4.39011 −1.21760 −0.608798 0.793325i \(-0.708348\pi\)
−0.608798 + 0.793325i \(0.708348\pi\)
\(14\) −0.521109 −0.139272
\(15\) 1.52111 0.392749
\(16\) 2.67657 0.669143
\(17\) −3.28463 −0.796640 −0.398320 0.917247i \(-0.630407\pi\)
−0.398320 + 0.917247i \(0.630407\pi\)
\(18\) 0.168540 0.0397253
\(19\) 3.55131 0.814726 0.407363 0.913266i \(-0.366448\pi\)
0.407363 + 0.913266i \(0.366448\pi\)
\(20\) 1.47112 0.328952
\(21\) 1.99223 0.434740
\(22\) 1.37766 0.293718
\(23\) 6.41437 1.33749 0.668745 0.743492i \(-0.266832\pi\)
0.668745 + 0.743492i \(0.266832\pi\)
\(24\) 3.30600 0.674834
\(25\) −4.30972 −0.861944
\(26\) −2.10238 −0.412311
\(27\) 4.84815 0.933027
\(28\) 1.92676 0.364123
\(29\) −1.97270 −0.366320 −0.183160 0.983083i \(-0.558633\pi\)
−0.183160 + 0.983083i \(0.558633\pi\)
\(30\) 0.728446 0.132995
\(31\) 2.68807 0.482791 0.241396 0.970427i \(-0.422395\pi\)
0.241396 + 0.970427i \(0.422395\pi\)
\(32\) 4.89326 0.865015
\(33\) −5.26687 −0.916845
\(34\) −1.57298 −0.269764
\(35\) 0.904073 0.152816
\(36\) −0.623165 −0.103861
\(37\) 8.07686 1.32783 0.663914 0.747809i \(-0.268894\pi\)
0.663914 + 0.747809i \(0.268894\pi\)
\(38\) 1.70069 0.275889
\(39\) 8.03754 1.28704
\(40\) 1.50026 0.237212
\(41\) −2.71113 −0.423407 −0.211703 0.977334i \(-0.567901\pi\)
−0.211703 + 0.977334i \(0.567901\pi\)
\(42\) 0.954061 0.147215
\(43\) −7.74408 −1.18096 −0.590480 0.807052i \(-0.701062\pi\)
−0.590480 + 0.807052i \(0.701062\pi\)
\(44\) −5.09379 −0.767917
\(45\) −0.292401 −0.0435886
\(46\) 3.07179 0.452910
\(47\) 10.9626 1.59906 0.799530 0.600626i \(-0.205082\pi\)
0.799530 + 0.600626i \(0.205082\pi\)
\(48\) −4.90035 −0.707305
\(49\) −5.81592 −0.830845
\(50\) −2.06389 −0.291878
\(51\) 6.01360 0.842072
\(52\) 7.77340 1.07798
\(53\) 7.49900 1.03007 0.515034 0.857170i \(-0.327779\pi\)
0.515034 + 0.857170i \(0.327779\pi\)
\(54\) 2.32174 0.315948
\(55\) −2.39011 −0.322282
\(56\) 1.96492 0.262574
\(57\) −6.50184 −0.861190
\(58\) −0.944707 −0.124046
\(59\) 10.6543 1.38707 0.693533 0.720424i \(-0.256053\pi\)
0.693533 + 0.720424i \(0.256053\pi\)
\(60\) −2.69337 −0.347713
\(61\) −9.25103 −1.18447 −0.592237 0.805764i \(-0.701755\pi\)
−0.592237 + 0.805764i \(0.701755\pi\)
\(62\) 1.28729 0.163486
\(63\) −0.382964 −0.0482489
\(64\) −3.00980 −0.376226
\(65\) 3.64743 0.452408
\(66\) −2.52226 −0.310469
\(67\) 0 0
\(68\) 5.81597 0.705290
\(69\) −11.7436 −1.41377
\(70\) 0.432953 0.0517477
\(71\) −1.73418 −0.205810 −0.102905 0.994691i \(-0.532814\pi\)
−0.102905 + 0.994691i \(0.532814\pi\)
\(72\) −0.635509 −0.0748954
\(73\) −1.46398 −0.171346 −0.0856728 0.996323i \(-0.527304\pi\)
−0.0856728 + 0.996323i \(0.527304\pi\)
\(74\) 3.86794 0.449639
\(75\) 7.89037 0.911101
\(76\) −6.28817 −0.721303
\(77\) −3.13037 −0.356739
\(78\) 3.84911 0.435826
\(79\) 15.4857 1.74227 0.871137 0.491040i \(-0.163383\pi\)
0.871137 + 0.491040i \(0.163383\pi\)
\(80\) −2.22378 −0.248626
\(81\) −9.93195 −1.10355
\(82\) −1.29833 −0.143377
\(83\) −8.08733 −0.887700 −0.443850 0.896101i \(-0.646388\pi\)
−0.443850 + 0.896101i \(0.646388\pi\)
\(84\) −3.52757 −0.384889
\(85\) 2.72897 0.295998
\(86\) −3.70857 −0.399906
\(87\) 3.61167 0.387212
\(88\) −5.19469 −0.553756
\(89\) 15.4408 1.63672 0.818361 0.574704i \(-0.194883\pi\)
0.818361 + 0.574704i \(0.194883\pi\)
\(90\) −0.140028 −0.0147603
\(91\) 4.77712 0.500778
\(92\) −11.3577 −1.18412
\(93\) −4.92139 −0.510325
\(94\) 5.24990 0.541486
\(95\) −2.95053 −0.302718
\(96\) −8.95874 −0.914347
\(97\) 1.03304 0.104890 0.0524448 0.998624i \(-0.483299\pi\)
0.0524448 + 0.998624i \(0.483299\pi\)
\(98\) −2.78519 −0.281347
\(99\) 1.01245 0.101755
\(100\) 7.63106 0.763106
\(101\) −15.4230 −1.53464 −0.767321 0.641263i \(-0.778411\pi\)
−0.767321 + 0.641263i \(0.778411\pi\)
\(102\) 2.87986 0.285149
\(103\) −4.04222 −0.398291 −0.199146 0.979970i \(-0.563817\pi\)
−0.199146 + 0.979970i \(0.563817\pi\)
\(104\) 7.92738 0.777344
\(105\) −1.65520 −0.161531
\(106\) 3.59121 0.348809
\(107\) 10.2876 0.994541 0.497271 0.867595i \(-0.334336\pi\)
0.497271 + 0.867595i \(0.334336\pi\)
\(108\) −8.58444 −0.826038
\(109\) −7.91008 −0.757648 −0.378824 0.925469i \(-0.623671\pi\)
−0.378824 + 0.925469i \(0.623671\pi\)
\(110\) −1.14460 −0.109133
\(111\) −14.7874 −1.40355
\(112\) −2.91253 −0.275208
\(113\) −13.1872 −1.24055 −0.620273 0.784386i \(-0.712978\pi\)
−0.620273 + 0.784386i \(0.712978\pi\)
\(114\) −3.11368 −0.291623
\(115\) −5.32925 −0.496955
\(116\) 3.49298 0.324315
\(117\) −1.54505 −0.142840
\(118\) 5.10224 0.469699
\(119\) 3.57419 0.327645
\(120\) −2.74672 −0.250740
\(121\) −2.72420 −0.247655
\(122\) −4.43024 −0.401095
\(123\) 4.96361 0.447554
\(124\) −4.75966 −0.427430
\(125\) 7.73480 0.691821
\(126\) −0.183398 −0.0163384
\(127\) 1.12811 0.100103 0.0500516 0.998747i \(-0.484061\pi\)
0.0500516 + 0.998747i \(0.484061\pi\)
\(128\) −11.2279 −0.992415
\(129\) 14.1781 1.24831
\(130\) 1.74672 0.153198
\(131\) 2.13769 0.186771 0.0933856 0.995630i \(-0.470231\pi\)
0.0933856 + 0.995630i \(0.470231\pi\)
\(132\) 9.32586 0.811712
\(133\) −3.86438 −0.335084
\(134\) 0 0
\(135\) −4.02799 −0.346674
\(136\) 5.93118 0.508595
\(137\) −10.6793 −0.912393 −0.456197 0.889879i \(-0.650789\pi\)
−0.456197 + 0.889879i \(0.650789\pi\)
\(138\) −5.62392 −0.478740
\(139\) 0.839840 0.0712343 0.0356171 0.999366i \(-0.488660\pi\)
0.0356171 + 0.999366i \(0.488660\pi\)
\(140\) −1.60081 −0.135293
\(141\) −20.0707 −1.69026
\(142\) −0.830486 −0.0696928
\(143\) −12.6293 −1.05612
\(144\) 0.941989 0.0784991
\(145\) 1.63898 0.136109
\(146\) −0.701087 −0.0580223
\(147\) 10.6480 0.878229
\(148\) −14.3014 −1.17557
\(149\) 12.3234 1.00957 0.504785 0.863245i \(-0.331572\pi\)
0.504785 + 0.863245i \(0.331572\pi\)
\(150\) 3.77863 0.308524
\(151\) −11.0223 −0.896984 −0.448492 0.893787i \(-0.648039\pi\)
−0.448492 + 0.893787i \(0.648039\pi\)
\(152\) −6.41274 −0.520142
\(153\) −1.15599 −0.0934561
\(154\) −1.49911 −0.120802
\(155\) −2.23333 −0.179385
\(156\) −14.2318 −1.13945
\(157\) 8.31265 0.663422 0.331711 0.943381i \(-0.392374\pi\)
0.331711 + 0.943381i \(0.392374\pi\)
\(158\) 7.41596 0.589982
\(159\) −13.7294 −1.08881
\(160\) −4.06547 −0.321404
\(161\) −6.97984 −0.550088
\(162\) −4.75633 −0.373692
\(163\) 6.95133 0.544470 0.272235 0.962231i \(-0.412237\pi\)
0.272235 + 0.962231i \(0.412237\pi\)
\(164\) 4.80049 0.374855
\(165\) 4.37588 0.340662
\(166\) −3.87295 −0.300600
\(167\) −18.9954 −1.46991 −0.734956 0.678115i \(-0.762797\pi\)
−0.734956 + 0.678115i \(0.762797\pi\)
\(168\) −3.59744 −0.277549
\(169\) 6.27303 0.482541
\(170\) 1.30688 0.100233
\(171\) 1.24984 0.0955779
\(172\) 13.7122 1.04554
\(173\) 9.82344 0.746862 0.373431 0.927658i \(-0.378181\pi\)
0.373431 + 0.927658i \(0.378181\pi\)
\(174\) 1.72960 0.131121
\(175\) 4.68965 0.354504
\(176\) 7.69988 0.580401
\(177\) −19.5061 −1.46617
\(178\) 7.39447 0.554239
\(179\) −21.7154 −1.62309 −0.811544 0.584291i \(-0.801373\pi\)
−0.811544 + 0.584291i \(0.801373\pi\)
\(180\) 0.517744 0.0385904
\(181\) −25.7742 −1.91578 −0.957889 0.287138i \(-0.907296\pi\)
−0.957889 + 0.287138i \(0.907296\pi\)
\(182\) 2.28772 0.169577
\(183\) 16.9371 1.25202
\(184\) −11.5827 −0.853886
\(185\) −6.71050 −0.493365
\(186\) −2.35681 −0.172810
\(187\) −9.44912 −0.690988
\(188\) −19.4111 −1.41570
\(189\) −5.27554 −0.383739
\(190\) −1.41299 −0.102509
\(191\) 16.0976 1.16478 0.582392 0.812908i \(-0.302117\pi\)
0.582392 + 0.812908i \(0.302117\pi\)
\(192\) 5.51044 0.397682
\(193\) 24.9141 1.79335 0.896677 0.442686i \(-0.145974\pi\)
0.896677 + 0.442686i \(0.145974\pi\)
\(194\) 0.494715 0.0355185
\(195\) −6.67783 −0.478209
\(196\) 10.2980 0.735573
\(197\) −12.0793 −0.860612 −0.430306 0.902683i \(-0.641594\pi\)
−0.430306 + 0.902683i \(0.641594\pi\)
\(198\) 0.484852 0.0344569
\(199\) −2.35813 −0.167163 −0.0835816 0.996501i \(-0.526636\pi\)
−0.0835816 + 0.996501i \(0.526636\pi\)
\(200\) 7.78223 0.550287
\(201\) 0 0
\(202\) −7.38593 −0.519672
\(203\) 2.14660 0.150662
\(204\) −10.6481 −0.745513
\(205\) 2.25248 0.157320
\(206\) −1.93578 −0.134872
\(207\) 2.25747 0.156905
\(208\) −11.7504 −0.814746
\(209\) 10.2163 0.706676
\(210\) −0.792663 −0.0546989
\(211\) −0.703159 −0.0484075 −0.0242037 0.999707i \(-0.507705\pi\)
−0.0242037 + 0.999707i \(0.507705\pi\)
\(212\) −13.2782 −0.911951
\(213\) 3.17500 0.217547
\(214\) 4.92665 0.336779
\(215\) 6.43401 0.438796
\(216\) −8.75449 −0.595668
\(217\) −2.92504 −0.198564
\(218\) −3.78807 −0.256560
\(219\) 2.68030 0.181118
\(220\) 4.23207 0.285326
\(221\) 14.4199 0.969986
\(222\) −7.08154 −0.475282
\(223\) 7.64266 0.511791 0.255895 0.966704i \(-0.417630\pi\)
0.255895 + 0.966704i \(0.417630\pi\)
\(224\) −5.32463 −0.355767
\(225\) −1.51676 −0.101117
\(226\) −6.31523 −0.420083
\(227\) 10.9267 0.725229 0.362615 0.931939i \(-0.381884\pi\)
0.362615 + 0.931939i \(0.381884\pi\)
\(228\) 11.5126 0.762439
\(229\) −26.5908 −1.75717 −0.878585 0.477586i \(-0.841512\pi\)
−0.878585 + 0.477586i \(0.841512\pi\)
\(230\) −2.55213 −0.168283
\(231\) 5.73118 0.377084
\(232\) 3.56217 0.233868
\(233\) −2.47015 −0.161825 −0.0809123 0.996721i \(-0.525783\pi\)
−0.0809123 + 0.996721i \(0.525783\pi\)
\(234\) −0.739910 −0.0483694
\(235\) −9.10806 −0.594144
\(236\) −18.8651 −1.22801
\(237\) −28.3516 −1.84164
\(238\) 1.71165 0.110950
\(239\) −15.7639 −1.01968 −0.509839 0.860270i \(-0.670295\pi\)
−0.509839 + 0.860270i \(0.670295\pi\)
\(240\) 4.07136 0.262805
\(241\) −18.5929 −1.19768 −0.598838 0.800870i \(-0.704371\pi\)
−0.598838 + 0.800870i \(0.704371\pi\)
\(242\) −1.30460 −0.0838626
\(243\) 3.63927 0.233459
\(244\) 16.3805 1.04865
\(245\) 4.83204 0.308708
\(246\) 2.37703 0.151554
\(247\) −15.5906 −0.992008
\(248\) −4.85394 −0.308226
\(249\) 14.8065 0.938326
\(250\) 3.70413 0.234270
\(251\) −13.6325 −0.860477 −0.430238 0.902715i \(-0.641571\pi\)
−0.430238 + 0.902715i \(0.641571\pi\)
\(252\) 0.678100 0.0427163
\(253\) 18.4527 1.16011
\(254\) 0.540240 0.0338977
\(255\) −4.99628 −0.312879
\(256\) 0.642664 0.0401665
\(257\) −4.85968 −0.303138 −0.151569 0.988447i \(-0.548433\pi\)
−0.151569 + 0.988447i \(0.548433\pi\)
\(258\) 6.78977 0.422712
\(259\) −8.78888 −0.546114
\(260\) −6.45837 −0.400531
\(261\) −0.694268 −0.0429741
\(262\) 1.02372 0.0632458
\(263\) 12.4893 0.770125 0.385063 0.922890i \(-0.374180\pi\)
0.385063 + 0.922890i \(0.374180\pi\)
\(264\) 9.51060 0.585337
\(265\) −6.23040 −0.382730
\(266\) −1.85062 −0.113469
\(267\) −28.2695 −1.73007
\(268\) 0 0
\(269\) −10.3046 −0.628282 −0.314141 0.949376i \(-0.601716\pi\)
−0.314141 + 0.949376i \(0.601716\pi\)
\(270\) −1.92897 −0.117393
\(271\) −4.31277 −0.261982 −0.130991 0.991384i \(-0.541816\pi\)
−0.130991 + 0.991384i \(0.541816\pi\)
\(272\) −8.79155 −0.533066
\(273\) −8.74609 −0.529338
\(274\) −5.11422 −0.308961
\(275\) −12.3981 −0.747632
\(276\) 20.7940 1.25165
\(277\) −16.4124 −0.986128 −0.493064 0.869993i \(-0.664123\pi\)
−0.493064 + 0.869993i \(0.664123\pi\)
\(278\) 0.402192 0.0241219
\(279\) 0.946034 0.0566376
\(280\) −1.63252 −0.0975616
\(281\) 24.1040 1.43793 0.718963 0.695048i \(-0.244617\pi\)
0.718963 + 0.695048i \(0.244617\pi\)
\(282\) −9.61167 −0.572367
\(283\) −26.2489 −1.56034 −0.780169 0.625569i \(-0.784867\pi\)
−0.780169 + 0.625569i \(0.784867\pi\)
\(284\) 3.07066 0.182210
\(285\) 5.40193 0.319983
\(286\) −6.04807 −0.357630
\(287\) 2.95013 0.174141
\(288\) 1.72213 0.101477
\(289\) −6.21121 −0.365365
\(290\) 0.784891 0.0460904
\(291\) −1.89133 −0.110871
\(292\) 2.59221 0.151698
\(293\) 17.1283 1.00065 0.500323 0.865839i \(-0.333215\pi\)
0.500323 + 0.865839i \(0.333215\pi\)
\(294\) 5.09921 0.297392
\(295\) −8.85188 −0.515376
\(296\) −14.5847 −0.847718
\(297\) 13.9470 0.809287
\(298\) 5.90156 0.341868
\(299\) −28.1598 −1.62852
\(300\) −13.9712 −0.806627
\(301\) 8.42676 0.485711
\(302\) −5.27850 −0.303743
\(303\) 28.2368 1.62216
\(304\) 9.50534 0.545169
\(305\) 7.68603 0.440101
\(306\) −0.553593 −0.0316468
\(307\) 8.83455 0.504214 0.252107 0.967699i \(-0.418876\pi\)
0.252107 + 0.967699i \(0.418876\pi\)
\(308\) 5.54284 0.315832
\(309\) 7.40061 0.421006
\(310\) −1.06952 −0.0607447
\(311\) 21.3828 1.21251 0.606254 0.795271i \(-0.292672\pi\)
0.606254 + 0.795271i \(0.292672\pi\)
\(312\) −14.5137 −0.821676
\(313\) 2.92283 0.165208 0.0826040 0.996582i \(-0.473676\pi\)
0.0826040 + 0.996582i \(0.473676\pi\)
\(314\) 3.98086 0.224653
\(315\) 0.318178 0.0179273
\(316\) −27.4199 −1.54249
\(317\) −7.77890 −0.436906 −0.218453 0.975847i \(-0.570101\pi\)
−0.218453 + 0.975847i \(0.570101\pi\)
\(318\) −6.57489 −0.368702
\(319\) −5.67499 −0.317738
\(320\) 2.50064 0.139790
\(321\) −18.8349 −1.05126
\(322\) −3.34258 −0.186275
\(323\) −11.6647 −0.649043
\(324\) 17.5861 0.977008
\(325\) 18.9201 1.04950
\(326\) 3.32893 0.184372
\(327\) 14.4820 0.800857
\(328\) 4.89558 0.270313
\(329\) −11.9290 −0.657668
\(330\) 2.09557 0.115357
\(331\) −32.9661 −1.81198 −0.905992 0.423296i \(-0.860873\pi\)
−0.905992 + 0.423296i \(0.860873\pi\)
\(332\) 14.3199 0.785909
\(333\) 2.84256 0.155771
\(334\) −9.09676 −0.497752
\(335\) 0 0
\(336\) 5.33235 0.290903
\(337\) −27.5402 −1.50021 −0.750104 0.661320i \(-0.769997\pi\)
−0.750104 + 0.661320i \(0.769997\pi\)
\(338\) 3.00410 0.163402
\(339\) 24.1435 1.31129
\(340\) −4.83208 −0.262057
\(341\) 7.73295 0.418763
\(342\) 0.598539 0.0323653
\(343\) 13.9457 0.752998
\(344\) 13.9838 0.753955
\(345\) 9.75696 0.525297
\(346\) 4.70436 0.252908
\(347\) 8.46173 0.454250 0.227125 0.973866i \(-0.427067\pi\)
0.227125 + 0.973866i \(0.427067\pi\)
\(348\) −6.39505 −0.342811
\(349\) 28.7613 1.53956 0.769778 0.638311i \(-0.220367\pi\)
0.769778 + 0.638311i \(0.220367\pi\)
\(350\) 2.24583 0.120045
\(351\) −21.2839 −1.13605
\(352\) 14.0768 0.750295
\(353\) −22.1501 −1.17893 −0.589465 0.807794i \(-0.700661\pi\)
−0.589465 + 0.807794i \(0.700661\pi\)
\(354\) −9.34133 −0.496486
\(355\) 1.44081 0.0764704
\(356\) −27.3405 −1.44904
\(357\) −6.54373 −0.346331
\(358\) −10.3993 −0.549622
\(359\) 8.40059 0.443366 0.221683 0.975119i \(-0.428845\pi\)
0.221683 + 0.975119i \(0.428845\pi\)
\(360\) 0.528000 0.0278280
\(361\) −6.38820 −0.336221
\(362\) −12.3430 −0.648735
\(363\) 4.98755 0.261778
\(364\) −8.45867 −0.443355
\(365\) 1.21632 0.0636649
\(366\) 8.11102 0.423970
\(367\) −3.70888 −0.193602 −0.0968010 0.995304i \(-0.530861\pi\)
−0.0968010 + 0.995304i \(0.530861\pi\)
\(368\) 17.1685 0.894972
\(369\) −0.954150 −0.0496710
\(370\) −3.21360 −0.167067
\(371\) −8.16008 −0.423650
\(372\) 8.71413 0.451807
\(373\) 11.2150 0.580689 0.290345 0.956922i \(-0.406230\pi\)
0.290345 + 0.956922i \(0.406230\pi\)
\(374\) −4.52510 −0.233987
\(375\) −14.1611 −0.731276
\(376\) −19.7956 −1.02088
\(377\) 8.66035 0.446030
\(378\) −2.52641 −0.129945
\(379\) 5.95507 0.305891 0.152946 0.988235i \(-0.451124\pi\)
0.152946 + 0.988235i \(0.451124\pi\)
\(380\) 5.22440 0.268006
\(381\) −2.06537 −0.105812
\(382\) 7.70902 0.394428
\(383\) −14.2175 −0.726482 −0.363241 0.931695i \(-0.618330\pi\)
−0.363241 + 0.931695i \(0.618330\pi\)
\(384\) 20.5564 1.04901
\(385\) 2.60081 0.132549
\(386\) 11.9311 0.607279
\(387\) −2.72544 −0.138542
\(388\) −1.82917 −0.0928620
\(389\) −14.1432 −0.717091 −0.358545 0.933512i \(-0.616727\pi\)
−0.358545 + 0.933512i \(0.616727\pi\)
\(390\) −3.19795 −0.161935
\(391\) −21.0688 −1.06550
\(392\) 10.5020 0.530432
\(393\) −3.91375 −0.197423
\(394\) −5.78466 −0.291427
\(395\) −12.8660 −0.647357
\(396\) −1.79270 −0.0900866
\(397\) −0.316050 −0.0158621 −0.00793105 0.999969i \(-0.502525\pi\)
−0.00793105 + 0.999969i \(0.502525\pi\)
\(398\) −1.12929 −0.0566061
\(399\) 7.07502 0.354194
\(400\) −11.5353 −0.576764
\(401\) 30.4915 1.52267 0.761336 0.648358i \(-0.224544\pi\)
0.761336 + 0.648358i \(0.224544\pi\)
\(402\) 0 0
\(403\) −11.8009 −0.587845
\(404\) 27.3089 1.35867
\(405\) 8.25177 0.410034
\(406\) 1.02799 0.0510182
\(407\) 23.2353 1.15173
\(408\) −10.8590 −0.537600
\(409\) −10.7150 −0.529825 −0.264912 0.964272i \(-0.585343\pi\)
−0.264912 + 0.964272i \(0.585343\pi\)
\(410\) 1.07870 0.0532730
\(411\) 19.5520 0.964427
\(412\) 7.15740 0.352620
\(413\) −11.5935 −0.570479
\(414\) 1.08108 0.0531322
\(415\) 6.71920 0.329832
\(416\) −21.4819 −1.05324
\(417\) −1.53760 −0.0752968
\(418\) 4.89250 0.239300
\(419\) −4.40477 −0.215187 −0.107594 0.994195i \(-0.534315\pi\)
−0.107594 + 0.994195i \(0.534315\pi\)
\(420\) 2.93081 0.143009
\(421\) −2.66691 −0.129977 −0.0649886 0.997886i \(-0.520701\pi\)
−0.0649886 + 0.997886i \(0.520701\pi\)
\(422\) −0.336737 −0.0163921
\(423\) 3.85816 0.187590
\(424\) −13.5412 −0.657621
\(425\) 14.1558 0.686659
\(426\) 1.52048 0.0736674
\(427\) 10.0666 0.487155
\(428\) −18.2159 −0.880499
\(429\) 23.1221 1.11635
\(430\) 3.08119 0.148588
\(431\) −10.2150 −0.492037 −0.246019 0.969265i \(-0.579122\pi\)
−0.246019 + 0.969265i \(0.579122\pi\)
\(432\) 12.9764 0.624329
\(433\) −0.208104 −0.0100009 −0.00500043 0.999987i \(-0.501592\pi\)
−0.00500043 + 0.999987i \(0.501592\pi\)
\(434\) −1.40077 −0.0672393
\(435\) −3.00069 −0.143872
\(436\) 14.0061 0.670770
\(437\) 22.7794 1.08969
\(438\) 1.28357 0.0613314
\(439\) −4.44240 −0.212024 −0.106012 0.994365i \(-0.533808\pi\)
−0.106012 + 0.994365i \(0.533808\pi\)
\(440\) 4.31591 0.205753
\(441\) −2.04685 −0.0974688
\(442\) 6.90555 0.328464
\(443\) 28.0190 1.33122 0.665611 0.746299i \(-0.268171\pi\)
0.665611 + 0.746299i \(0.268171\pi\)
\(444\) 26.1834 1.24261
\(445\) −12.8287 −0.608138
\(446\) 3.66001 0.173306
\(447\) −22.5620 −1.06715
\(448\) 3.27514 0.154736
\(449\) 0.295186 0.0139307 0.00696534 0.999976i \(-0.497783\pi\)
0.00696534 + 0.999976i \(0.497783\pi\)
\(450\) −0.726362 −0.0342410
\(451\) −7.79928 −0.367254
\(452\) 23.3500 1.09829
\(453\) 20.1800 0.948139
\(454\) 5.23269 0.245583
\(455\) −3.96897 −0.186068
\(456\) 11.7406 0.549805
\(457\) 17.7444 0.830047 0.415024 0.909811i \(-0.363773\pi\)
0.415024 + 0.909811i \(0.363773\pi\)
\(458\) −12.7341 −0.595026
\(459\) −15.9244 −0.743286
\(460\) 9.43631 0.439970
\(461\) −22.4541 −1.04579 −0.522896 0.852396i \(-0.675149\pi\)
−0.522896 + 0.852396i \(0.675149\pi\)
\(462\) 2.74461 0.127691
\(463\) 19.7880 0.919626 0.459813 0.888016i \(-0.347916\pi\)
0.459813 + 0.888016i \(0.347916\pi\)
\(464\) −5.28007 −0.245121
\(465\) 4.08884 0.189615
\(466\) −1.18293 −0.0547983
\(467\) 22.1724 1.02602 0.513008 0.858384i \(-0.328531\pi\)
0.513008 + 0.858384i \(0.328531\pi\)
\(468\) 2.73576 0.126460
\(469\) 0 0
\(470\) −4.36177 −0.201194
\(471\) −15.2191 −0.701257
\(472\) −19.2388 −0.885538
\(473\) −22.2779 −1.02434
\(474\) −13.5774 −0.623629
\(475\) −15.3052 −0.702249
\(476\) −6.32868 −0.290075
\(477\) 2.63919 0.120840
\(478\) −7.54917 −0.345291
\(479\) −3.90594 −0.178467 −0.0892336 0.996011i \(-0.528442\pi\)
−0.0892336 + 0.996011i \(0.528442\pi\)
\(480\) 7.44319 0.339733
\(481\) −35.4583 −1.61676
\(482\) −8.90400 −0.405566
\(483\) 12.7789 0.581460
\(484\) 4.82364 0.219256
\(485\) −0.858283 −0.0389726
\(486\) 1.74282 0.0790557
\(487\) 26.8235 1.21549 0.607745 0.794132i \(-0.292074\pi\)
0.607745 + 0.794132i \(0.292074\pi\)
\(488\) 16.7049 0.756197
\(489\) −12.7267 −0.575521
\(490\) 2.31402 0.104537
\(491\) 36.8371 1.66244 0.831218 0.555946i \(-0.187644\pi\)
0.831218 + 0.555946i \(0.187644\pi\)
\(492\) −8.78888 −0.396233
\(493\) 6.47958 0.291825
\(494\) −7.46622 −0.335921
\(495\) −0.841170 −0.0378078
\(496\) 7.19481 0.323056
\(497\) 1.88706 0.0846464
\(498\) 7.09072 0.317743
\(499\) 3.06877 0.137377 0.0686885 0.997638i \(-0.478119\pi\)
0.0686885 + 0.997638i \(0.478119\pi\)
\(500\) −13.6957 −0.612491
\(501\) 34.7774 1.55374
\(502\) −6.52850 −0.291381
\(503\) 3.67220 0.163735 0.0818676 0.996643i \(-0.473912\pi\)
0.0818676 + 0.996643i \(0.473912\pi\)
\(504\) 0.691533 0.0308033
\(505\) 12.8139 0.570210
\(506\) 8.83683 0.392845
\(507\) −11.4849 −0.510060
\(508\) −1.99749 −0.0886245
\(509\) 15.5016 0.687095 0.343548 0.939135i \(-0.388371\pi\)
0.343548 + 0.939135i \(0.388371\pi\)
\(510\) −2.39267 −0.105949
\(511\) 1.59304 0.0704718
\(512\) 22.7636 1.00602
\(513\) 17.2173 0.760162
\(514\) −2.32726 −0.102651
\(515\) 3.35840 0.147989
\(516\) −25.1046 −1.10517
\(517\) 31.5369 1.38699
\(518\) −4.20892 −0.184929
\(519\) −17.9851 −0.789456
\(520\) −6.58631 −0.288829
\(521\) −11.0777 −0.485321 −0.242661 0.970111i \(-0.578020\pi\)
−0.242661 + 0.970111i \(0.578020\pi\)
\(522\) −0.332479 −0.0145522
\(523\) 19.3717 0.847067 0.423533 0.905881i \(-0.360790\pi\)
0.423533 + 0.905881i \(0.360790\pi\)
\(524\) −3.78514 −0.165354
\(525\) −8.58595 −0.374722
\(526\) 5.98103 0.260785
\(527\) −8.82930 −0.384610
\(528\) −14.0972 −0.613501
\(529\) 18.1442 0.788877
\(530\) −2.98368 −0.129603
\(531\) 3.74965 0.162721
\(532\) 6.84251 0.296661
\(533\) 11.9021 0.515538
\(534\) −13.5380 −0.585848
\(535\) −8.54726 −0.369530
\(536\) 0 0
\(537\) 39.7573 1.71565
\(538\) −4.93478 −0.212754
\(539\) −16.7310 −0.720657
\(540\) 7.13221 0.306921
\(541\) −6.89287 −0.296347 −0.148174 0.988961i \(-0.547339\pi\)
−0.148174 + 0.988961i \(0.547339\pi\)
\(542\) −2.06535 −0.0887143
\(543\) 47.1881 2.02504
\(544\) −16.0726 −0.689105
\(545\) 6.57193 0.281511
\(546\) −4.18843 −0.179248
\(547\) 9.68042 0.413905 0.206952 0.978351i \(-0.433645\pi\)
0.206952 + 0.978351i \(0.433645\pi\)
\(548\) 18.9094 0.807771
\(549\) −3.25579 −0.138954
\(550\) −5.93733 −0.253169
\(551\) −7.00565 −0.298451
\(552\) 21.2059 0.902584
\(553\) −16.8508 −0.716570
\(554\) −7.85978 −0.333930
\(555\) 12.2858 0.521502
\(556\) −1.48707 −0.0630660
\(557\) 16.2834 0.689951 0.344976 0.938612i \(-0.387887\pi\)
0.344976 + 0.938612i \(0.387887\pi\)
\(558\) 0.453048 0.0191790
\(559\) 33.9973 1.43793
\(560\) 2.41982 0.102256
\(561\) 17.2997 0.730395
\(562\) 11.5432 0.486921
\(563\) −13.2273 −0.557463 −0.278731 0.960369i \(-0.589914\pi\)
−0.278731 + 0.960369i \(0.589914\pi\)
\(564\) 35.5384 1.49644
\(565\) 10.9563 0.460935
\(566\) −12.5704 −0.528373
\(567\) 10.8075 0.453873
\(568\) 3.13148 0.131394
\(569\) −45.3651 −1.90180 −0.950902 0.309492i \(-0.899841\pi\)
−0.950902 + 0.309492i \(0.899841\pi\)
\(570\) 2.58694 0.108355
\(571\) −21.1131 −0.883554 −0.441777 0.897125i \(-0.645652\pi\)
−0.441777 + 0.897125i \(0.645652\pi\)
\(572\) 22.3623 0.935013
\(573\) −29.4720 −1.23121
\(574\) 1.41279 0.0589687
\(575\) −27.6442 −1.15284
\(576\) −1.05927 −0.0441361
\(577\) −23.9403 −0.996646 −0.498323 0.866991i \(-0.666051\pi\)
−0.498323 + 0.866991i \(0.666051\pi\)
\(578\) −2.97449 −0.123723
\(579\) −45.6134 −1.89563
\(580\) −2.90207 −0.120502
\(581\) 8.80028 0.365097
\(582\) −0.905739 −0.0375441
\(583\) 21.5729 0.893458
\(584\) 2.64356 0.109391
\(585\) 1.28367 0.0530733
\(586\) 8.20260 0.338846
\(587\) −38.1142 −1.57314 −0.786570 0.617501i \(-0.788145\pi\)
−0.786570 + 0.617501i \(0.788145\pi\)
\(588\) −18.8539 −0.777523
\(589\) 9.54616 0.393343
\(590\) −4.23909 −0.174521
\(591\) 22.1151 0.909693
\(592\) 21.6183 0.888507
\(593\) −21.1357 −0.867940 −0.433970 0.900927i \(-0.642888\pi\)
−0.433970 + 0.900927i \(0.642888\pi\)
\(594\) 6.67910 0.274047
\(595\) −2.96954 −0.121739
\(596\) −21.8205 −0.893804
\(597\) 4.31733 0.176697
\(598\) −13.4855 −0.551462
\(599\) 11.6156 0.474600 0.237300 0.971436i \(-0.423737\pi\)
0.237300 + 0.971436i \(0.423737\pi\)
\(600\) −14.2479 −0.581670
\(601\) −48.4579 −1.97664 −0.988319 0.152399i \(-0.951300\pi\)
−0.988319 + 0.152399i \(0.951300\pi\)
\(602\) 4.03550 0.164475
\(603\) 0 0
\(604\) 19.5168 0.794128
\(605\) 2.26335 0.0920182
\(606\) 13.5224 0.549309
\(607\) −22.0351 −0.894376 −0.447188 0.894440i \(-0.647575\pi\)
−0.447188 + 0.894440i \(0.647575\pi\)
\(608\) 17.3775 0.704751
\(609\) −3.93006 −0.159254
\(610\) 3.68078 0.149030
\(611\) −48.1270 −1.94701
\(612\) 2.04687 0.0827396
\(613\) −19.4122 −0.784052 −0.392026 0.919954i \(-0.628226\pi\)
−0.392026 + 0.919954i \(0.628226\pi\)
\(614\) 4.23079 0.170741
\(615\) −4.12392 −0.166292
\(616\) 5.65263 0.227751
\(617\) 7.68409 0.309350 0.154675 0.987965i \(-0.450567\pi\)
0.154675 + 0.987965i \(0.450567\pi\)
\(618\) 3.54409 0.142564
\(619\) −28.1469 −1.13132 −0.565659 0.824639i \(-0.691378\pi\)
−0.565659 + 0.824639i \(0.691378\pi\)
\(620\) 3.95447 0.158815
\(621\) 31.0978 1.24791
\(622\) 10.2400 0.410588
\(623\) −16.8020 −0.673158
\(624\) 21.5131 0.861212
\(625\) 15.1223 0.604892
\(626\) 1.39972 0.0559439
\(627\) −18.7043 −0.746978
\(628\) −14.7189 −0.587348
\(629\) −26.5295 −1.05780
\(630\) 0.152373 0.00607068
\(631\) 7.40083 0.294622 0.147311 0.989090i \(-0.452938\pi\)
0.147311 + 0.989090i \(0.452938\pi\)
\(632\) −27.9631 −1.11231
\(633\) 1.28736 0.0511682
\(634\) −3.72525 −0.147948
\(635\) −0.937264 −0.0371942
\(636\) 24.3101 0.963960
\(637\) 25.5325 1.01163
\(638\) −2.71770 −0.107595
\(639\) −0.610326 −0.0241441
\(640\) 9.32848 0.368740
\(641\) −6.58756 −0.260193 −0.130097 0.991501i \(-0.541529\pi\)
−0.130097 + 0.991501i \(0.541529\pi\)
\(642\) −9.01986 −0.355985
\(643\) 0.345529 0.0136263 0.00681317 0.999977i \(-0.497831\pi\)
0.00681317 + 0.999977i \(0.497831\pi\)
\(644\) 12.3589 0.487010
\(645\) −11.7796 −0.463821
\(646\) −5.58614 −0.219784
\(647\) −7.87818 −0.309723 −0.154862 0.987936i \(-0.549493\pi\)
−0.154862 + 0.987936i \(0.549493\pi\)
\(648\) 17.9345 0.704534
\(649\) 30.6499 1.20311
\(650\) 9.06069 0.355390
\(651\) 5.35524 0.209889
\(652\) −12.3085 −0.482036
\(653\) 31.6335 1.23791 0.618957 0.785425i \(-0.287555\pi\)
0.618957 + 0.785425i \(0.287555\pi\)
\(654\) 6.93531 0.271192
\(655\) −1.77606 −0.0693964
\(656\) −7.25653 −0.283320
\(657\) −0.515230 −0.0201011
\(658\) −5.71271 −0.222705
\(659\) 4.33886 0.169018 0.0845091 0.996423i \(-0.473068\pi\)
0.0845091 + 0.996423i \(0.473068\pi\)
\(660\) −7.74820 −0.301598
\(661\) −8.55237 −0.332649 −0.166324 0.986071i \(-0.553190\pi\)
−0.166324 + 0.986071i \(0.553190\pi\)
\(662\) −15.7872 −0.613587
\(663\) −26.4003 −1.02530
\(664\) 14.6036 0.566730
\(665\) 3.21064 0.124503
\(666\) 1.36128 0.0527484
\(667\) −12.6536 −0.489950
\(668\) 33.6345 1.30136
\(669\) −13.9924 −0.540978
\(670\) 0 0
\(671\) −26.6131 −1.02739
\(672\) 9.74850 0.376057
\(673\) 36.6687 1.41347 0.706736 0.707477i \(-0.250167\pi\)
0.706736 + 0.707477i \(0.250167\pi\)
\(674\) −13.1887 −0.508012
\(675\) −20.8942 −0.804217
\(676\) −11.1074 −0.427209
\(677\) 28.4485 1.09337 0.546683 0.837340i \(-0.315890\pi\)
0.546683 + 0.837340i \(0.315890\pi\)
\(678\) 11.5621 0.444040
\(679\) −1.12411 −0.0431394
\(680\) −4.92780 −0.188973
\(681\) −20.0049 −0.766589
\(682\) 3.70324 0.141804
\(683\) −35.8081 −1.37016 −0.685080 0.728468i \(-0.740233\pi\)
−0.685080 + 0.728468i \(0.740233\pi\)
\(684\) −2.21305 −0.0846181
\(685\) 8.87268 0.339008
\(686\) 6.67848 0.254986
\(687\) 48.6832 1.85738
\(688\) −20.7276 −0.790232
\(689\) −32.9214 −1.25421
\(690\) 4.67252 0.177880
\(691\) 22.1819 0.843840 0.421920 0.906633i \(-0.361356\pi\)
0.421920 + 0.906633i \(0.361356\pi\)
\(692\) −17.3940 −0.661221
\(693\) −1.10170 −0.0418501
\(694\) 4.05225 0.153821
\(695\) −0.697764 −0.0264677
\(696\) −6.52173 −0.247206
\(697\) 8.90504 0.337303
\(698\) 13.7735 0.521336
\(699\) 4.52242 0.171054
\(700\) −8.30379 −0.313854
\(701\) 12.3989 0.468300 0.234150 0.972200i \(-0.424769\pi\)
0.234150 + 0.972200i \(0.424769\pi\)
\(702\) −10.1927 −0.384698
\(703\) 28.6834 1.08182
\(704\) −8.65851 −0.326330
\(705\) 16.6753 0.628029
\(706\) −10.6075 −0.399218
\(707\) 16.7826 0.631174
\(708\) 34.5388 1.29805
\(709\) 24.9837 0.938284 0.469142 0.883123i \(-0.344563\pi\)
0.469142 + 0.883123i \(0.344563\pi\)
\(710\) 0.689993 0.0258950
\(711\) 5.45001 0.204391
\(712\) −27.8821 −1.04492
\(713\) 17.2423 0.645728
\(714\) −3.13374 −0.117277
\(715\) 10.4928 0.392409
\(716\) 38.4507 1.43697
\(717\) 28.8609 1.07783
\(718\) 4.02297 0.150136
\(719\) −45.1649 −1.68437 −0.842184 0.539191i \(-0.818730\pi\)
−0.842184 + 0.539191i \(0.818730\pi\)
\(720\) −0.782633 −0.0291670
\(721\) 4.39856 0.163811
\(722\) −3.05925 −0.113854
\(723\) 34.0405 1.26598
\(724\) 45.6374 1.69610
\(725\) 8.50177 0.315748
\(726\) 2.38849 0.0886453
\(727\) −37.2055 −1.37988 −0.689938 0.723868i \(-0.742362\pi\)
−0.689938 + 0.723868i \(0.742362\pi\)
\(728\) −8.62623 −0.319709
\(729\) 23.1330 0.856777
\(730\) 0.582484 0.0215587
\(731\) 25.4364 0.940800
\(732\) −29.9898 −1.10846
\(733\) 21.9918 0.812287 0.406144 0.913809i \(-0.366873\pi\)
0.406144 + 0.913809i \(0.366873\pi\)
\(734\) −1.77615 −0.0655589
\(735\) −8.84664 −0.326313
\(736\) 31.3872 1.15695
\(737\) 0 0
\(738\) −0.456934 −0.0168200
\(739\) 27.3506 1.00611 0.503053 0.864255i \(-0.332210\pi\)
0.503053 + 0.864255i \(0.332210\pi\)
\(740\) 11.8820 0.436792
\(741\) 28.5438 1.04858
\(742\) −3.90779 −0.143460
\(743\) 34.6339 1.27059 0.635297 0.772268i \(-0.280878\pi\)
0.635297 + 0.772268i \(0.280878\pi\)
\(744\) 8.88675 0.325804
\(745\) −10.2386 −0.375114
\(746\) 5.37075 0.196637
\(747\) −2.84624 −0.104139
\(748\) 16.7312 0.611754
\(749\) −11.1945 −0.409039
\(750\) −6.78163 −0.247630
\(751\) 20.3387 0.742169 0.371085 0.928599i \(-0.378986\pi\)
0.371085 + 0.928599i \(0.378986\pi\)
\(752\) 29.3422 1.07000
\(753\) 24.9588 0.909550
\(754\) 4.14737 0.151038
\(755\) 9.15768 0.333282
\(756\) 9.34121 0.339737
\(757\) −1.05198 −0.0382348 −0.0191174 0.999817i \(-0.506086\pi\)
−0.0191174 + 0.999817i \(0.506086\pi\)
\(758\) 2.85183 0.103583
\(759\) −33.7837 −1.22627
\(760\) 5.32789 0.193263
\(761\) −42.8478 −1.55323 −0.776615 0.629975i \(-0.783065\pi\)
−0.776615 + 0.629975i \(0.783065\pi\)
\(762\) −0.989088 −0.0358309
\(763\) 8.60740 0.311609
\(764\) −28.5035 −1.03122
\(765\) 0.960429 0.0347244
\(766\) −6.80865 −0.246007
\(767\) −46.7733 −1.68889
\(768\) −1.17661 −0.0424572
\(769\) 20.0059 0.721431 0.360715 0.932676i \(-0.382533\pi\)
0.360715 + 0.932676i \(0.382533\pi\)
\(770\) 1.24550 0.0448849
\(771\) 8.89724 0.320426
\(772\) −44.1144 −1.58771
\(773\) 6.67646 0.240135 0.120068 0.992766i \(-0.461689\pi\)
0.120068 + 0.992766i \(0.461689\pi\)
\(774\) −1.30519 −0.0469141
\(775\) −11.5848 −0.416139
\(776\) −1.86540 −0.0669641
\(777\) 16.0909 0.577259
\(778\) −6.77307 −0.242826
\(779\) −9.62805 −0.344961
\(780\) 11.8242 0.423374
\(781\) −4.98885 −0.178515
\(782\) −10.0897 −0.360806
\(783\) −9.56393 −0.341787
\(784\) −15.5667 −0.555955
\(785\) −6.90640 −0.246500
\(786\) −1.87426 −0.0668528
\(787\) 18.3611 0.654502 0.327251 0.944937i \(-0.393878\pi\)
0.327251 + 0.944937i \(0.393878\pi\)
\(788\) 21.3883 0.761927
\(789\) −22.8658 −0.814045
\(790\) −6.16140 −0.219213
\(791\) 14.3497 0.510217
\(792\) −1.82821 −0.0649627
\(793\) 40.6130 1.44221
\(794\) −0.151354 −0.00537134
\(795\) 11.4068 0.404557
\(796\) 4.17545 0.147995
\(797\) 49.4409 1.75129 0.875644 0.482958i \(-0.160438\pi\)
0.875644 + 0.482958i \(0.160438\pi\)
\(798\) 3.38817 0.119940
\(799\) −36.0081 −1.27388
\(800\) −21.0886 −0.745595
\(801\) 5.43422 0.192009
\(802\) 14.6021 0.515618
\(803\) −4.21153 −0.148622
\(804\) 0 0
\(805\) 5.79906 0.204390
\(806\) −5.65135 −0.199060
\(807\) 18.8660 0.664113
\(808\) 27.8498 0.979754
\(809\) 50.4211 1.77271 0.886355 0.463006i \(-0.153229\pi\)
0.886355 + 0.463006i \(0.153229\pi\)
\(810\) 3.95170 0.138849
\(811\) 37.1590 1.30483 0.652415 0.757862i \(-0.273756\pi\)
0.652415 + 0.757862i \(0.273756\pi\)
\(812\) −3.80091 −0.133386
\(813\) 7.89594 0.276923
\(814\) 11.1272 0.390007
\(815\) −5.77537 −0.202302
\(816\) 16.0958 0.563467
\(817\) −27.5016 −0.962160
\(818\) −5.13134 −0.179413
\(819\) 1.68125 0.0587477
\(820\) −3.98839 −0.139281
\(821\) −35.3955 −1.23531 −0.617656 0.786448i \(-0.711918\pi\)
−0.617656 + 0.786448i \(0.711918\pi\)
\(822\) 9.36327 0.326582
\(823\) −38.0519 −1.32641 −0.663203 0.748440i \(-0.730803\pi\)
−0.663203 + 0.748440i \(0.730803\pi\)
\(824\) 7.29919 0.254279
\(825\) 22.6988 0.790269
\(826\) −5.55203 −0.193180
\(827\) −52.9396 −1.84089 −0.920444 0.390874i \(-0.872173\pi\)
−0.920444 + 0.390874i \(0.872173\pi\)
\(828\) −3.99721 −0.138913
\(829\) 31.1563 1.08210 0.541051 0.840990i \(-0.318027\pi\)
0.541051 + 0.840990i \(0.318027\pi\)
\(830\) 3.21777 0.111690
\(831\) 30.0484 1.04237
\(832\) 13.2134 0.458091
\(833\) 19.1031 0.661884
\(834\) −0.736346 −0.0254976
\(835\) 15.7820 0.546158
\(836\) −18.0896 −0.625643
\(837\) 13.0322 0.450457
\(838\) −2.10941 −0.0728683
\(839\) −32.0479 −1.10642 −0.553209 0.833043i \(-0.686597\pi\)
−0.553209 + 0.833043i \(0.686597\pi\)
\(840\) 2.98886 0.103126
\(841\) −25.1085 −0.865809
\(842\) −1.27716 −0.0440138
\(843\) −44.1304 −1.51993
\(844\) 1.24506 0.0428567
\(845\) −5.21182 −0.179292
\(846\) 1.84764 0.0635232
\(847\) 2.96436 0.101856
\(848\) 20.0716 0.689263
\(849\) 48.0573 1.64932
\(850\) 6.77911 0.232522
\(851\) 51.8080 1.77595
\(852\) −5.62185 −0.192601
\(853\) −11.7743 −0.403145 −0.201573 0.979474i \(-0.564605\pi\)
−0.201573 + 0.979474i \(0.564605\pi\)
\(854\) 4.82079 0.164964
\(855\) −1.03841 −0.0355128
\(856\) −18.5767 −0.634940
\(857\) 32.8390 1.12176 0.560880 0.827897i \(-0.310463\pi\)
0.560880 + 0.827897i \(0.310463\pi\)
\(858\) 11.0730 0.378026
\(859\) −23.1472 −0.789773 −0.394886 0.918730i \(-0.629216\pi\)
−0.394886 + 0.918730i \(0.629216\pi\)
\(860\) −11.3925 −0.388480
\(861\) −5.40118 −0.184072
\(862\) −4.89186 −0.166617
\(863\) −21.3357 −0.726276 −0.363138 0.931735i \(-0.618295\pi\)
−0.363138 + 0.931735i \(0.618295\pi\)
\(864\) 23.7233 0.807082
\(865\) −8.16161 −0.277503
\(866\) −0.0996595 −0.00338657
\(867\) 11.3717 0.386202
\(868\) 5.17925 0.175795
\(869\) 44.5487 1.51121
\(870\) −1.43700 −0.0487189
\(871\) 0 0
\(872\) 14.2835 0.483701
\(873\) 0.363568 0.0123049
\(874\) 10.9089 0.368998
\(875\) −8.41666 −0.284535
\(876\) −4.74590 −0.160349
\(877\) −3.28825 −0.111036 −0.0555181 0.998458i \(-0.517681\pi\)
−0.0555181 + 0.998458i \(0.517681\pi\)
\(878\) −2.12743 −0.0717973
\(879\) −31.3590 −1.05771
\(880\) −6.39729 −0.215653
\(881\) −38.1003 −1.28363 −0.641816 0.766858i \(-0.721819\pi\)
−0.641816 + 0.766858i \(0.721819\pi\)
\(882\) −0.980217 −0.0330056
\(883\) −41.0647 −1.38194 −0.690968 0.722885i \(-0.742816\pi\)
−0.690968 + 0.722885i \(0.742816\pi\)
\(884\) −25.5327 −0.858759
\(885\) 16.2063 0.544768
\(886\) 13.4181 0.450788
\(887\) 38.1040 1.27941 0.639704 0.768622i \(-0.279057\pi\)
0.639704 + 0.768622i \(0.279057\pi\)
\(888\) 26.7021 0.896063
\(889\) −1.22755 −0.0411709
\(890\) −6.14355 −0.205932
\(891\) −28.5719 −0.957196
\(892\) −13.5326 −0.453104
\(893\) 38.9316 1.30280
\(894\) −10.8048 −0.361365
\(895\) 18.0418 0.603072
\(896\) 12.2177 0.408165
\(897\) 51.5558 1.72140
\(898\) 0.141362 0.00471731
\(899\) −5.30274 −0.176856
\(900\) 2.68567 0.0895222
\(901\) −24.6314 −0.820592
\(902\) −3.73501 −0.124362
\(903\) −15.4280 −0.513411
\(904\) 23.8126 0.791995
\(905\) 21.4139 0.711824
\(906\) 9.66403 0.321066
\(907\) 36.6101 1.21562 0.607808 0.794084i \(-0.292049\pi\)
0.607808 + 0.794084i \(0.292049\pi\)
\(908\) −19.3475 −0.642068
\(909\) −5.42794 −0.180033
\(910\) −1.90071 −0.0630079
\(911\) −43.3269 −1.43548 −0.717742 0.696309i \(-0.754824\pi\)
−0.717742 + 0.696309i \(0.754824\pi\)
\(912\) −17.4027 −0.576260
\(913\) −23.2654 −0.769972
\(914\) 8.49763 0.281077
\(915\) −14.0718 −0.465200
\(916\) 47.0834 1.55568
\(917\) −2.32614 −0.0768161
\(918\) −7.62605 −0.251697
\(919\) 22.9015 0.755452 0.377726 0.925917i \(-0.376706\pi\)
0.377726 + 0.925917i \(0.376706\pi\)
\(920\) 9.62324 0.317269
\(921\) −16.1746 −0.532970
\(922\) −10.7531 −0.354134
\(923\) 7.61325 0.250593
\(924\) −10.1480 −0.333844
\(925\) −34.8090 −1.14451
\(926\) 9.47630 0.311411
\(927\) −1.42261 −0.0467247
\(928\) −9.65292 −0.316873
\(929\) −27.5021 −0.902316 −0.451158 0.892444i \(-0.648989\pi\)
−0.451158 + 0.892444i \(0.648989\pi\)
\(930\) 1.95811 0.0642090
\(931\) −20.6541 −0.676911
\(932\) 4.37380 0.143268
\(933\) −39.1483 −1.28166
\(934\) 10.6182 0.347437
\(935\) 7.85061 0.256742
\(936\) 2.78995 0.0911924
\(937\) 4.58217 0.149693 0.0748464 0.997195i \(-0.476153\pi\)
0.0748464 + 0.997195i \(0.476153\pi\)
\(938\) 0 0
\(939\) −5.35120 −0.174630
\(940\) 16.1273 0.526015
\(941\) 14.0525 0.458097 0.229049 0.973415i \(-0.426439\pi\)
0.229049 + 0.973415i \(0.426439\pi\)
\(942\) −7.28827 −0.237465
\(943\) −17.3902 −0.566302
\(944\) 28.5169 0.928147
\(945\) 4.38308 0.142582
\(946\) −10.6687 −0.346870
\(947\) −9.79821 −0.318399 −0.159200 0.987246i \(-0.550891\pi\)
−0.159200 + 0.987246i \(0.550891\pi\)
\(948\) 50.2012 1.63046
\(949\) 6.42702 0.208630
\(950\) −7.32951 −0.237801
\(951\) 14.2418 0.461823
\(952\) −6.45405 −0.209177
\(953\) 28.6760 0.928908 0.464454 0.885597i \(-0.346251\pi\)
0.464454 + 0.885597i \(0.346251\pi\)
\(954\) 1.26388 0.0409198
\(955\) −13.3744 −0.432785
\(956\) 27.9125 0.902754
\(957\) 10.3899 0.335859
\(958\) −1.87052 −0.0604339
\(959\) 11.6207 0.375253
\(960\) −4.57824 −0.147762
\(961\) −23.7743 −0.766913
\(962\) −16.9807 −0.547478
\(963\) 3.62061 0.116672
\(964\) 32.9218 1.06034
\(965\) −20.6994 −0.666336
\(966\) 6.11970 0.196898
\(967\) 3.62365 0.116529 0.0582644 0.998301i \(-0.481443\pi\)
0.0582644 + 0.998301i \(0.481443\pi\)
\(968\) 4.91919 0.158109
\(969\) 21.3561 0.686058
\(970\) −0.411024 −0.0131972
\(971\) −14.0498 −0.450879 −0.225439 0.974257i \(-0.572382\pi\)
−0.225439 + 0.974257i \(0.572382\pi\)
\(972\) −6.44392 −0.206689
\(973\) −0.913877 −0.0292975
\(974\) 12.8456 0.411598
\(975\) −34.6395 −1.10935
\(976\) −24.7611 −0.792582
\(977\) 13.1192 0.419719 0.209860 0.977732i \(-0.432699\pi\)
0.209860 + 0.977732i \(0.432699\pi\)
\(978\) −6.09471 −0.194887
\(979\) 44.4196 1.41966
\(980\) −8.55591 −0.273309
\(981\) −2.78386 −0.0888819
\(982\) 17.6410 0.562946
\(983\) −26.9322 −0.859004 −0.429502 0.903066i \(-0.641311\pi\)
−0.429502 + 0.903066i \(0.641311\pi\)
\(984\) −8.96298 −0.285729
\(985\) 10.0358 0.319768
\(986\) 3.10301 0.0988201
\(987\) 21.8400 0.695175
\(988\) 27.6057 0.878256
\(989\) −49.6734 −1.57952
\(990\) −0.402829 −0.0128028
\(991\) 32.6333 1.03663 0.518315 0.855190i \(-0.326559\pi\)
0.518315 + 0.855190i \(0.326559\pi\)
\(992\) 13.1534 0.417622
\(993\) 60.3554 1.91532
\(994\) 0.903698 0.0286636
\(995\) 1.95920 0.0621109
\(996\) −26.2174 −0.830729
\(997\) −39.5207 −1.25163 −0.625816 0.779971i \(-0.715234\pi\)
−0.625816 + 0.779971i \(0.715234\pi\)
\(998\) 1.46961 0.0465196
\(999\) 39.1578 1.23890
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4489.2.a.i.1.3 5
67.25 even 11 67.2.e.b.22.1 10
67.59 even 11 67.2.e.b.64.1 yes 10
67.66 odd 2 4489.2.a.h.1.3 5
201.59 odd 22 603.2.u.a.64.1 10
201.92 odd 22 603.2.u.a.424.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
67.2.e.b.22.1 10 67.25 even 11
67.2.e.b.64.1 yes 10 67.59 even 11
603.2.u.a.64.1 10 201.59 odd 22
603.2.u.a.424.1 10 201.92 odd 22
4489.2.a.h.1.3 5 67.66 odd 2
4489.2.a.i.1.3 5 1.1 even 1 trivial