Properties

Label 4489.2.a.h.1.3
Level $4489$
Weight $2$
Character 4489.1
Self dual yes
Analytic conductor $35.845$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4489,2,Mod(1,4489)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4489, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4489.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4489 = 67^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4489.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.8448454674\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 67)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.68251\) of defining polynomial
Character \(\chi\) \(=\) 4489.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.478891 q^{2} +1.83083 q^{3} -1.77066 q^{4} +0.830830 q^{5} -0.876769 q^{6} +1.08816 q^{7} +1.80574 q^{8} +0.351939 q^{9} -0.397877 q^{10} -2.87677 q^{11} -3.24178 q^{12} +4.39011 q^{13} -0.521109 q^{14} +1.52111 q^{15} +2.67657 q^{16} -3.28463 q^{17} -0.168540 q^{18} +3.55131 q^{19} -1.47112 q^{20} +1.99223 q^{21} +1.37766 q^{22} +6.41437 q^{23} +3.30600 q^{24} -4.30972 q^{25} -2.10238 q^{26} -4.84815 q^{27} -1.92676 q^{28} -1.97270 q^{29} -0.728446 q^{30} -2.68807 q^{31} -4.89326 q^{32} -5.26687 q^{33} +1.57298 q^{34} +0.904073 q^{35} -0.623165 q^{36} +8.07686 q^{37} -1.70069 q^{38} +8.03754 q^{39} +1.50026 q^{40} +2.71113 q^{41} -0.954061 q^{42} +7.74408 q^{43} +5.09379 q^{44} +0.292401 q^{45} -3.07179 q^{46} +10.9626 q^{47} +4.90035 q^{48} -5.81592 q^{49} +2.06389 q^{50} -6.01360 q^{51} -7.77340 q^{52} -7.49900 q^{53} +2.32174 q^{54} -2.39011 q^{55} +1.96492 q^{56} +6.50184 q^{57} +0.944707 q^{58} +10.6543 q^{59} -2.69337 q^{60} +9.25103 q^{61} +1.28729 q^{62} +0.382964 q^{63} -3.00980 q^{64} +3.64743 q^{65} +2.52226 q^{66} +5.81597 q^{68} +11.7436 q^{69} -0.432953 q^{70} -1.73418 q^{71} +0.635509 q^{72} -1.46398 q^{73} -3.86794 q^{74} -7.89037 q^{75} -6.28817 q^{76} -3.13037 q^{77} -3.84911 q^{78} -15.4857 q^{79} +2.22378 q^{80} -9.93195 q^{81} -1.29833 q^{82} -8.08733 q^{83} -3.52757 q^{84} -2.72897 q^{85} -3.70857 q^{86} -3.61167 q^{87} -5.19469 q^{88} +15.4408 q^{89} -0.140028 q^{90} +4.77712 q^{91} -11.3577 q^{92} -4.92139 q^{93} -5.24990 q^{94} +2.95053 q^{95} -8.95874 q^{96} -1.03304 q^{97} +2.78519 q^{98} -1.01245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{3} + 4 q^{4} - q^{5} + 5 q^{6} + 2 q^{7} + 9 q^{8} - 3 q^{9} + 7 q^{10} - 5 q^{11} + 12 q^{12} - 2 q^{13} - 3 q^{14} + 8 q^{15} + 6 q^{16} - 16 q^{17} + 21 q^{18} + 10 q^{19} + 8 q^{20}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.478891 −0.338627 −0.169314 0.985562i \(-0.554155\pi\)
−0.169314 + 0.985562i \(0.554155\pi\)
\(3\) 1.83083 1.05703 0.528515 0.848924i \(-0.322749\pi\)
0.528515 + 0.848924i \(0.322749\pi\)
\(4\) −1.77066 −0.885331
\(5\) 0.830830 0.371558 0.185779 0.982592i \(-0.440519\pi\)
0.185779 + 0.982592i \(0.440519\pi\)
\(6\) −0.876769 −0.357939
\(7\) 1.08816 0.411284 0.205642 0.978627i \(-0.434072\pi\)
0.205642 + 0.978627i \(0.434072\pi\)
\(8\) 1.80574 0.638425
\(9\) 0.351939 0.117313
\(10\) −0.397877 −0.125820
\(11\) −2.87677 −0.867378 −0.433689 0.901063i \(-0.642788\pi\)
−0.433689 + 0.901063i \(0.642788\pi\)
\(12\) −3.24178 −0.935822
\(13\) 4.39011 1.21760 0.608798 0.793325i \(-0.291652\pi\)
0.608798 + 0.793325i \(0.291652\pi\)
\(14\) −0.521109 −0.139272
\(15\) 1.52111 0.392749
\(16\) 2.67657 0.669143
\(17\) −3.28463 −0.796640 −0.398320 0.917247i \(-0.630407\pi\)
−0.398320 + 0.917247i \(0.630407\pi\)
\(18\) −0.168540 −0.0397253
\(19\) 3.55131 0.814726 0.407363 0.913266i \(-0.366448\pi\)
0.407363 + 0.913266i \(0.366448\pi\)
\(20\) −1.47112 −0.328952
\(21\) 1.99223 0.434740
\(22\) 1.37766 0.293718
\(23\) 6.41437 1.33749 0.668745 0.743492i \(-0.266832\pi\)
0.668745 + 0.743492i \(0.266832\pi\)
\(24\) 3.30600 0.674834
\(25\) −4.30972 −0.861944
\(26\) −2.10238 −0.412311
\(27\) −4.84815 −0.933027
\(28\) −1.92676 −0.364123
\(29\) −1.97270 −0.366320 −0.183160 0.983083i \(-0.558633\pi\)
−0.183160 + 0.983083i \(0.558633\pi\)
\(30\) −0.728446 −0.132995
\(31\) −2.68807 −0.482791 −0.241396 0.970427i \(-0.577605\pi\)
−0.241396 + 0.970427i \(0.577605\pi\)
\(32\) −4.89326 −0.865015
\(33\) −5.26687 −0.916845
\(34\) 1.57298 0.269764
\(35\) 0.904073 0.152816
\(36\) −0.623165 −0.103861
\(37\) 8.07686 1.32783 0.663914 0.747809i \(-0.268894\pi\)
0.663914 + 0.747809i \(0.268894\pi\)
\(38\) −1.70069 −0.275889
\(39\) 8.03754 1.28704
\(40\) 1.50026 0.237212
\(41\) 2.71113 0.423407 0.211703 0.977334i \(-0.432099\pi\)
0.211703 + 0.977334i \(0.432099\pi\)
\(42\) −0.954061 −0.147215
\(43\) 7.74408 1.18096 0.590480 0.807052i \(-0.298938\pi\)
0.590480 + 0.807052i \(0.298938\pi\)
\(44\) 5.09379 0.767917
\(45\) 0.292401 0.0435886
\(46\) −3.07179 −0.452910
\(47\) 10.9626 1.59906 0.799530 0.600626i \(-0.205082\pi\)
0.799530 + 0.600626i \(0.205082\pi\)
\(48\) 4.90035 0.707305
\(49\) −5.81592 −0.830845
\(50\) 2.06389 0.291878
\(51\) −6.01360 −0.842072
\(52\) −7.77340 −1.07798
\(53\) −7.49900 −1.03007 −0.515034 0.857170i \(-0.672221\pi\)
−0.515034 + 0.857170i \(0.672221\pi\)
\(54\) 2.32174 0.315948
\(55\) −2.39011 −0.322282
\(56\) 1.96492 0.262574
\(57\) 6.50184 0.861190
\(58\) 0.944707 0.124046
\(59\) 10.6543 1.38707 0.693533 0.720424i \(-0.256053\pi\)
0.693533 + 0.720424i \(0.256053\pi\)
\(60\) −2.69337 −0.347713
\(61\) 9.25103 1.18447 0.592237 0.805764i \(-0.298245\pi\)
0.592237 + 0.805764i \(0.298245\pi\)
\(62\) 1.28729 0.163486
\(63\) 0.382964 0.0482489
\(64\) −3.00980 −0.376226
\(65\) 3.64743 0.452408
\(66\) 2.52226 0.310469
\(67\) 0 0
\(68\) 5.81597 0.705290
\(69\) 11.7436 1.41377
\(70\) −0.432953 −0.0517477
\(71\) −1.73418 −0.205810 −0.102905 0.994691i \(-0.532814\pi\)
−0.102905 + 0.994691i \(0.532814\pi\)
\(72\) 0.635509 0.0748954
\(73\) −1.46398 −0.171346 −0.0856728 0.996323i \(-0.527304\pi\)
−0.0856728 + 0.996323i \(0.527304\pi\)
\(74\) −3.86794 −0.449639
\(75\) −7.89037 −0.911101
\(76\) −6.28817 −0.721303
\(77\) −3.13037 −0.356739
\(78\) −3.84911 −0.435826
\(79\) −15.4857 −1.74227 −0.871137 0.491040i \(-0.836617\pi\)
−0.871137 + 0.491040i \(0.836617\pi\)
\(80\) 2.22378 0.248626
\(81\) −9.93195 −1.10355
\(82\) −1.29833 −0.143377
\(83\) −8.08733 −0.887700 −0.443850 0.896101i \(-0.646388\pi\)
−0.443850 + 0.896101i \(0.646388\pi\)
\(84\) −3.52757 −0.384889
\(85\) −2.72897 −0.295998
\(86\) −3.70857 −0.399906
\(87\) −3.61167 −0.387212
\(88\) −5.19469 −0.553756
\(89\) 15.4408 1.63672 0.818361 0.574704i \(-0.194883\pi\)
0.818361 + 0.574704i \(0.194883\pi\)
\(90\) −0.140028 −0.0147603
\(91\) 4.77712 0.500778
\(92\) −11.3577 −1.18412
\(93\) −4.92139 −0.510325
\(94\) −5.24990 −0.541486
\(95\) 2.95053 0.302718
\(96\) −8.95874 −0.914347
\(97\) −1.03304 −0.104890 −0.0524448 0.998624i \(-0.516701\pi\)
−0.0524448 + 0.998624i \(0.516701\pi\)
\(98\) 2.78519 0.281347
\(99\) −1.01245 −0.101755
\(100\) 7.63106 0.763106
\(101\) 15.4230 1.53464 0.767321 0.641263i \(-0.221589\pi\)
0.767321 + 0.641263i \(0.221589\pi\)
\(102\) 2.87986 0.285149
\(103\) −4.04222 −0.398291 −0.199146 0.979970i \(-0.563817\pi\)
−0.199146 + 0.979970i \(0.563817\pi\)
\(104\) 7.92738 0.777344
\(105\) 1.65520 0.161531
\(106\) 3.59121 0.348809
\(107\) 10.2876 0.994541 0.497271 0.867595i \(-0.334336\pi\)
0.497271 + 0.867595i \(0.334336\pi\)
\(108\) 8.58444 0.826038
\(109\) 7.91008 0.757648 0.378824 0.925469i \(-0.376329\pi\)
0.378824 + 0.925469i \(0.376329\pi\)
\(110\) 1.14460 0.109133
\(111\) 14.7874 1.40355
\(112\) 2.91253 0.275208
\(113\) 13.1872 1.24055 0.620273 0.784386i \(-0.287022\pi\)
0.620273 + 0.784386i \(0.287022\pi\)
\(114\) −3.11368 −0.291623
\(115\) 5.32925 0.496955
\(116\) 3.49298 0.324315
\(117\) 1.54505 0.142840
\(118\) −5.10224 −0.469699
\(119\) −3.57419 −0.327645
\(120\) 2.74672 0.250740
\(121\) −2.72420 −0.247655
\(122\) −4.43024 −0.401095
\(123\) 4.96361 0.447554
\(124\) 4.75966 0.427430
\(125\) −7.73480 −0.691821
\(126\) −0.183398 −0.0163384
\(127\) 1.12811 0.100103 0.0500516 0.998747i \(-0.484061\pi\)
0.0500516 + 0.998747i \(0.484061\pi\)
\(128\) 11.2279 0.992415
\(129\) 14.1781 1.24831
\(130\) −1.74672 −0.153198
\(131\) 2.13769 0.186771 0.0933856 0.995630i \(-0.470231\pi\)
0.0933856 + 0.995630i \(0.470231\pi\)
\(132\) 9.32586 0.811712
\(133\) 3.86438 0.335084
\(134\) 0 0
\(135\) −4.02799 −0.346674
\(136\) −5.93118 −0.508595
\(137\) 10.6793 0.912393 0.456197 0.889879i \(-0.349211\pi\)
0.456197 + 0.889879i \(0.349211\pi\)
\(138\) −5.62392 −0.478740
\(139\) −0.839840 −0.0712343 −0.0356171 0.999366i \(-0.511340\pi\)
−0.0356171 + 0.999366i \(0.511340\pi\)
\(140\) −1.60081 −0.135293
\(141\) 20.0707 1.69026
\(142\) 0.830486 0.0696928
\(143\) −12.6293 −1.05612
\(144\) 0.941989 0.0784991
\(145\) −1.63898 −0.136109
\(146\) 0.701087 0.0580223
\(147\) −10.6480 −0.878229
\(148\) −14.3014 −1.17557
\(149\) 12.3234 1.00957 0.504785 0.863245i \(-0.331572\pi\)
0.504785 + 0.863245i \(0.331572\pi\)
\(150\) 3.77863 0.308524
\(151\) −11.0223 −0.896984 −0.448492 0.893787i \(-0.648039\pi\)
−0.448492 + 0.893787i \(0.648039\pi\)
\(152\) 6.41274 0.520142
\(153\) −1.15599 −0.0934561
\(154\) 1.49911 0.120802
\(155\) −2.23333 −0.179385
\(156\) −14.2318 −1.13945
\(157\) 8.31265 0.663422 0.331711 0.943381i \(-0.392374\pi\)
0.331711 + 0.943381i \(0.392374\pi\)
\(158\) 7.41596 0.589982
\(159\) −13.7294 −1.08881
\(160\) −4.06547 −0.321404
\(161\) 6.97984 0.550088
\(162\) 4.75633 0.373692
\(163\) 6.95133 0.544470 0.272235 0.962231i \(-0.412237\pi\)
0.272235 + 0.962231i \(0.412237\pi\)
\(164\) −4.80049 −0.374855
\(165\) −4.37588 −0.340662
\(166\) 3.87295 0.300600
\(167\) −18.9954 −1.46991 −0.734956 0.678115i \(-0.762797\pi\)
−0.734956 + 0.678115i \(0.762797\pi\)
\(168\) 3.59744 0.277549
\(169\) 6.27303 0.482541
\(170\) 1.30688 0.100233
\(171\) 1.24984 0.0955779
\(172\) −13.7122 −1.04554
\(173\) 9.82344 0.746862 0.373431 0.927658i \(-0.378181\pi\)
0.373431 + 0.927658i \(0.378181\pi\)
\(174\) 1.72960 0.131121
\(175\) −4.68965 −0.354504
\(176\) −7.69988 −0.580401
\(177\) 19.5061 1.46617
\(178\) −7.39447 −0.554239
\(179\) 21.7154 1.62309 0.811544 0.584291i \(-0.198627\pi\)
0.811544 + 0.584291i \(0.198627\pi\)
\(180\) −0.517744 −0.0385904
\(181\) −25.7742 −1.91578 −0.957889 0.287138i \(-0.907296\pi\)
−0.957889 + 0.287138i \(0.907296\pi\)
\(182\) −2.28772 −0.169577
\(183\) 16.9371 1.25202
\(184\) 11.5827 0.853886
\(185\) 6.71050 0.493365
\(186\) 2.35681 0.172810
\(187\) 9.44912 0.690988
\(188\) −19.4111 −1.41570
\(189\) −5.27554 −0.383739
\(190\) −1.41299 −0.102509
\(191\) −16.0976 −1.16478 −0.582392 0.812908i \(-0.697883\pi\)
−0.582392 + 0.812908i \(0.697883\pi\)
\(192\) −5.51044 −0.397682
\(193\) 24.9141 1.79335 0.896677 0.442686i \(-0.145974\pi\)
0.896677 + 0.442686i \(0.145974\pi\)
\(194\) 0.494715 0.0355185
\(195\) 6.67783 0.478209
\(196\) 10.2980 0.735573
\(197\) 12.0793 0.860612 0.430306 0.902683i \(-0.358406\pi\)
0.430306 + 0.902683i \(0.358406\pi\)
\(198\) 0.484852 0.0344569
\(199\) −2.35813 −0.167163 −0.0835816 0.996501i \(-0.526636\pi\)
−0.0835816 + 0.996501i \(0.526636\pi\)
\(200\) −7.78223 −0.550287
\(201\) 0 0
\(202\) −7.38593 −0.519672
\(203\) −2.14660 −0.150662
\(204\) 10.6481 0.745513
\(205\) 2.25248 0.157320
\(206\) 1.93578 0.134872
\(207\) 2.25747 0.156905
\(208\) 11.7504 0.814746
\(209\) −10.2163 −0.706676
\(210\) −0.792663 −0.0546989
\(211\) −0.703159 −0.0484075 −0.0242037 0.999707i \(-0.507705\pi\)
−0.0242037 + 0.999707i \(0.507705\pi\)
\(212\) 13.2782 0.911951
\(213\) −3.17500 −0.217547
\(214\) −4.92665 −0.336779
\(215\) 6.43401 0.438796
\(216\) −8.75449 −0.595668
\(217\) −2.92504 −0.198564
\(218\) −3.78807 −0.256560
\(219\) −2.68030 −0.181118
\(220\) 4.23207 0.285326
\(221\) −14.4199 −0.969986
\(222\) −7.08154 −0.475282
\(223\) 7.64266 0.511791 0.255895 0.966704i \(-0.417630\pi\)
0.255895 + 0.966704i \(0.417630\pi\)
\(224\) −5.32463 −0.355767
\(225\) −1.51676 −0.101117
\(226\) −6.31523 −0.420083
\(227\) 10.9267 0.725229 0.362615 0.931939i \(-0.381884\pi\)
0.362615 + 0.931939i \(0.381884\pi\)
\(228\) −11.5126 −0.762439
\(229\) 26.5908 1.75717 0.878585 0.477586i \(-0.158488\pi\)
0.878585 + 0.477586i \(0.158488\pi\)
\(230\) −2.55213 −0.168283
\(231\) −5.73118 −0.377084
\(232\) −3.56217 −0.233868
\(233\) 2.47015 0.161825 0.0809123 0.996721i \(-0.474217\pi\)
0.0809123 + 0.996721i \(0.474217\pi\)
\(234\) −0.739910 −0.0483694
\(235\) 9.10806 0.594144
\(236\) −18.8651 −1.22801
\(237\) −28.3516 −1.84164
\(238\) 1.71165 0.110950
\(239\) 15.7639 1.01968 0.509839 0.860270i \(-0.329705\pi\)
0.509839 + 0.860270i \(0.329705\pi\)
\(240\) 4.07136 0.262805
\(241\) −18.5929 −1.19768 −0.598838 0.800870i \(-0.704371\pi\)
−0.598838 + 0.800870i \(0.704371\pi\)
\(242\) 1.30460 0.0838626
\(243\) −3.63927 −0.233459
\(244\) −16.3805 −1.04865
\(245\) −4.83204 −0.308708
\(246\) −2.37703 −0.151554
\(247\) 15.5906 0.992008
\(248\) −4.85394 −0.308226
\(249\) −14.8065 −0.938326
\(250\) 3.70413 0.234270
\(251\) 13.6325 0.860477 0.430238 0.902715i \(-0.358429\pi\)
0.430238 + 0.902715i \(0.358429\pi\)
\(252\) −0.678100 −0.0427163
\(253\) −18.4527 −1.16011
\(254\) −0.540240 −0.0338977
\(255\) −4.99628 −0.312879
\(256\) 0.642664 0.0401665
\(257\) −4.85968 −0.303138 −0.151569 0.988447i \(-0.548433\pi\)
−0.151569 + 0.988447i \(0.548433\pi\)
\(258\) −6.78977 −0.422712
\(259\) 8.78888 0.546114
\(260\) −6.45837 −0.400531
\(261\) −0.694268 −0.0429741
\(262\) −1.02372 −0.0632458
\(263\) 12.4893 0.770125 0.385063 0.922890i \(-0.374180\pi\)
0.385063 + 0.922890i \(0.374180\pi\)
\(264\) −9.51060 −0.585337
\(265\) −6.23040 −0.382730
\(266\) −1.85062 −0.113469
\(267\) 28.2695 1.73007
\(268\) 0 0
\(269\) −10.3046 −0.628282 −0.314141 0.949376i \(-0.601716\pi\)
−0.314141 + 0.949376i \(0.601716\pi\)
\(270\) 1.92897 0.117393
\(271\) 4.31277 0.261982 0.130991 0.991384i \(-0.458184\pi\)
0.130991 + 0.991384i \(0.458184\pi\)
\(272\) −8.79155 −0.533066
\(273\) 8.74609 0.529338
\(274\) −5.11422 −0.308961
\(275\) 12.3981 0.747632
\(276\) −20.7940 −1.25165
\(277\) −16.4124 −0.986128 −0.493064 0.869993i \(-0.664123\pi\)
−0.493064 + 0.869993i \(0.664123\pi\)
\(278\) 0.402192 0.0241219
\(279\) −0.946034 −0.0566376
\(280\) 1.63252 0.0975616
\(281\) −24.1040 −1.43793 −0.718963 0.695048i \(-0.755383\pi\)
−0.718963 + 0.695048i \(0.755383\pi\)
\(282\) −9.61167 −0.572367
\(283\) −26.2489 −1.56034 −0.780169 0.625569i \(-0.784867\pi\)
−0.780169 + 0.625569i \(0.784867\pi\)
\(284\) 3.07066 0.182210
\(285\) 5.40193 0.319983
\(286\) 6.04807 0.357630
\(287\) 2.95013 0.174141
\(288\) −1.72213 −0.101477
\(289\) −6.21121 −0.365365
\(290\) 0.784891 0.0460904
\(291\) −1.89133 −0.110871
\(292\) 2.59221 0.151698
\(293\) 17.1283 1.00065 0.500323 0.865839i \(-0.333215\pi\)
0.500323 + 0.865839i \(0.333215\pi\)
\(294\) 5.09921 0.297392
\(295\) 8.85188 0.515376
\(296\) 14.5847 0.847718
\(297\) 13.9470 0.809287
\(298\) −5.90156 −0.341868
\(299\) 28.1598 1.62852
\(300\) 13.9712 0.806627
\(301\) 8.42676 0.485711
\(302\) 5.27850 0.303743
\(303\) 28.2368 1.62216
\(304\) 9.50534 0.545169
\(305\) 7.68603 0.440101
\(306\) 0.553593 0.0316468
\(307\) 8.83455 0.504214 0.252107 0.967699i \(-0.418876\pi\)
0.252107 + 0.967699i \(0.418876\pi\)
\(308\) 5.54284 0.315832
\(309\) −7.40061 −0.421006
\(310\) 1.06952 0.0607447
\(311\) −21.3828 −1.21251 −0.606254 0.795271i \(-0.707328\pi\)
−0.606254 + 0.795271i \(0.707328\pi\)
\(312\) 14.5137 0.821676
\(313\) −2.92283 −0.165208 −0.0826040 0.996582i \(-0.526324\pi\)
−0.0826040 + 0.996582i \(0.526324\pi\)
\(314\) −3.98086 −0.224653
\(315\) 0.318178 0.0179273
\(316\) 27.4199 1.54249
\(317\) −7.77890 −0.436906 −0.218453 0.975847i \(-0.570101\pi\)
−0.218453 + 0.975847i \(0.570101\pi\)
\(318\) 6.57489 0.368702
\(319\) 5.67499 0.317738
\(320\) −2.50064 −0.139790
\(321\) 18.8349 1.05126
\(322\) −3.34258 −0.186275
\(323\) −11.6647 −0.649043
\(324\) 17.5861 0.977008
\(325\) −18.9201 −1.04950
\(326\) −3.32893 −0.184372
\(327\) 14.4820 0.800857
\(328\) 4.89558 0.270313
\(329\) 11.9290 0.657668
\(330\) 2.09557 0.115357
\(331\) 32.9661 1.81198 0.905992 0.423296i \(-0.139127\pi\)
0.905992 + 0.423296i \(0.139127\pi\)
\(332\) 14.3199 0.785909
\(333\) 2.84256 0.155771
\(334\) 9.09676 0.497752
\(335\) 0 0
\(336\) 5.33235 0.290903
\(337\) 27.5402 1.50021 0.750104 0.661320i \(-0.230003\pi\)
0.750104 + 0.661320i \(0.230003\pi\)
\(338\) −3.00410 −0.163402
\(339\) 24.1435 1.31129
\(340\) 4.83208 0.262057
\(341\) 7.73295 0.418763
\(342\) −0.598539 −0.0323653
\(343\) −13.9457 −0.752998
\(344\) 13.9838 0.753955
\(345\) 9.75696 0.525297
\(346\) −4.70436 −0.252908
\(347\) −8.46173 −0.454250 −0.227125 0.973866i \(-0.572933\pi\)
−0.227125 + 0.973866i \(0.572933\pi\)
\(348\) 6.39505 0.342811
\(349\) 28.7613 1.53956 0.769778 0.638311i \(-0.220367\pi\)
0.769778 + 0.638311i \(0.220367\pi\)
\(350\) 2.24583 0.120045
\(351\) −21.2839 −1.13605
\(352\) 14.0768 0.750295
\(353\) 22.1501 1.17893 0.589465 0.807794i \(-0.299339\pi\)
0.589465 + 0.807794i \(0.299339\pi\)
\(354\) −9.34133 −0.496486
\(355\) −1.44081 −0.0764704
\(356\) −27.3405 −1.44904
\(357\) −6.54373 −0.346331
\(358\) −10.3993 −0.549622
\(359\) 8.40059 0.443366 0.221683 0.975119i \(-0.428845\pi\)
0.221683 + 0.975119i \(0.428845\pi\)
\(360\) 0.528000 0.0278280
\(361\) −6.38820 −0.336221
\(362\) 12.3430 0.648735
\(363\) −4.98755 −0.261778
\(364\) −8.45867 −0.443355
\(365\) −1.21632 −0.0636649
\(366\) −8.11102 −0.423970
\(367\) 3.70888 0.193602 0.0968010 0.995304i \(-0.469139\pi\)
0.0968010 + 0.995304i \(0.469139\pi\)
\(368\) 17.1685 0.894972
\(369\) 0.954150 0.0496710
\(370\) −3.21360 −0.167067
\(371\) −8.16008 −0.423650
\(372\) 8.71413 0.451807
\(373\) −11.2150 −0.580689 −0.290345 0.956922i \(-0.593770\pi\)
−0.290345 + 0.956922i \(0.593770\pi\)
\(374\) −4.52510 −0.233987
\(375\) −14.1611 −0.731276
\(376\) 19.7956 1.02088
\(377\) −8.66035 −0.446030
\(378\) 2.52641 0.129945
\(379\) −5.95507 −0.305891 −0.152946 0.988235i \(-0.548876\pi\)
−0.152946 + 0.988235i \(0.548876\pi\)
\(380\) −5.22440 −0.268006
\(381\) 2.06537 0.105812
\(382\) 7.70902 0.394428
\(383\) 14.2175 0.726482 0.363241 0.931695i \(-0.381670\pi\)
0.363241 + 0.931695i \(0.381670\pi\)
\(384\) 20.5564 1.04901
\(385\) −2.60081 −0.132549
\(386\) −11.9311 −0.607279
\(387\) 2.72544 0.138542
\(388\) 1.82917 0.0928620
\(389\) −14.1432 −0.717091 −0.358545 0.933512i \(-0.616727\pi\)
−0.358545 + 0.933512i \(0.616727\pi\)
\(390\) −3.19795 −0.161935
\(391\) −21.0688 −1.06550
\(392\) −10.5020 −0.530432
\(393\) 3.91375 0.197423
\(394\) −5.78466 −0.291427
\(395\) −12.8660 −0.647357
\(396\) 1.79270 0.0900866
\(397\) −0.316050 −0.0158621 −0.00793105 0.999969i \(-0.502525\pi\)
−0.00793105 + 0.999969i \(0.502525\pi\)
\(398\) 1.12929 0.0566061
\(399\) 7.07502 0.354194
\(400\) −11.5353 −0.576764
\(401\) −30.4915 −1.52267 −0.761336 0.648358i \(-0.775456\pi\)
−0.761336 + 0.648358i \(0.775456\pi\)
\(402\) 0 0
\(403\) −11.8009 −0.587845
\(404\) −27.3089 −1.35867
\(405\) −8.25177 −0.410034
\(406\) 1.02799 0.0510182
\(407\) −23.2353 −1.15173
\(408\) −10.8590 −0.537600
\(409\) 10.7150 0.529825 0.264912 0.964272i \(-0.414657\pi\)
0.264912 + 0.964272i \(0.414657\pi\)
\(410\) −1.07870 −0.0532730
\(411\) 19.5520 0.964427
\(412\) 7.15740 0.352620
\(413\) 11.5935 0.570479
\(414\) −1.08108 −0.0531322
\(415\) −6.71920 −0.329832
\(416\) −21.4819 −1.05324
\(417\) −1.53760 −0.0752968
\(418\) 4.89250 0.239300
\(419\) −4.40477 −0.215187 −0.107594 0.994195i \(-0.534315\pi\)
−0.107594 + 0.994195i \(0.534315\pi\)
\(420\) −2.93081 −0.143009
\(421\) −2.66691 −0.129977 −0.0649886 0.997886i \(-0.520701\pi\)
−0.0649886 + 0.997886i \(0.520701\pi\)
\(422\) 0.336737 0.0163921
\(423\) 3.85816 0.187590
\(424\) −13.5412 −0.657621
\(425\) 14.1558 0.686659
\(426\) 1.52048 0.0736674
\(427\) 10.0666 0.487155
\(428\) −18.2159 −0.880499
\(429\) −23.1221 −1.11635
\(430\) −3.08119 −0.148588
\(431\) −10.2150 −0.492037 −0.246019 0.969265i \(-0.579122\pi\)
−0.246019 + 0.969265i \(0.579122\pi\)
\(432\) −12.9764 −0.624329
\(433\) 0.208104 0.0100009 0.00500043 0.999987i \(-0.498408\pi\)
0.00500043 + 0.999987i \(0.498408\pi\)
\(434\) 1.40077 0.0672393
\(435\) −3.00069 −0.143872
\(436\) −14.0061 −0.670770
\(437\) 22.7794 1.08969
\(438\) 1.28357 0.0613314
\(439\) −4.44240 −0.212024 −0.106012 0.994365i \(-0.533808\pi\)
−0.106012 + 0.994365i \(0.533808\pi\)
\(440\) −4.31591 −0.205753
\(441\) −2.04685 −0.0974688
\(442\) 6.90555 0.328464
\(443\) −28.0190 −1.33122 −0.665611 0.746299i \(-0.731829\pi\)
−0.665611 + 0.746299i \(0.731829\pi\)
\(444\) −26.1834 −1.24261
\(445\) 12.8287 0.608138
\(446\) −3.66001 −0.173306
\(447\) 22.5620 1.06715
\(448\) −3.27514 −0.154736
\(449\) 0.295186 0.0139307 0.00696534 0.999976i \(-0.497783\pi\)
0.00696534 + 0.999976i \(0.497783\pi\)
\(450\) 0.726362 0.0342410
\(451\) −7.79928 −0.367254
\(452\) −23.3500 −1.09829
\(453\) −20.1800 −0.948139
\(454\) −5.23269 −0.245583
\(455\) 3.96897 0.186068
\(456\) 11.7406 0.549805
\(457\) 17.7444 0.830047 0.415024 0.909811i \(-0.363773\pi\)
0.415024 + 0.909811i \(0.363773\pi\)
\(458\) −12.7341 −0.595026
\(459\) 15.9244 0.743286
\(460\) −9.43631 −0.439970
\(461\) −22.4541 −1.04579 −0.522896 0.852396i \(-0.675149\pi\)
−0.522896 + 0.852396i \(0.675149\pi\)
\(462\) 2.74461 0.127691
\(463\) −19.7880 −0.919626 −0.459813 0.888016i \(-0.652084\pi\)
−0.459813 + 0.888016i \(0.652084\pi\)
\(464\) −5.28007 −0.245121
\(465\) −4.08884 −0.189615
\(466\) −1.18293 −0.0547983
\(467\) 22.1724 1.02602 0.513008 0.858384i \(-0.328531\pi\)
0.513008 + 0.858384i \(0.328531\pi\)
\(468\) −2.73576 −0.126460
\(469\) 0 0
\(470\) −4.36177 −0.201194
\(471\) 15.2191 0.701257
\(472\) 19.2388 0.885538
\(473\) −22.2779 −1.02434
\(474\) 13.5774 0.623629
\(475\) −15.3052 −0.702249
\(476\) 6.32868 0.290075
\(477\) −2.63919 −0.120840
\(478\) −7.54917 −0.345291
\(479\) −3.90594 −0.178467 −0.0892336 0.996011i \(-0.528442\pi\)
−0.0892336 + 0.996011i \(0.528442\pi\)
\(480\) −7.44319 −0.339733
\(481\) 35.4583 1.61676
\(482\) 8.90400 0.405566
\(483\) 12.7789 0.581460
\(484\) 4.82364 0.219256
\(485\) −0.858283 −0.0389726
\(486\) 1.74282 0.0790557
\(487\) −26.8235 −1.21549 −0.607745 0.794132i \(-0.707926\pi\)
−0.607745 + 0.794132i \(0.707926\pi\)
\(488\) 16.7049 0.756197
\(489\) 12.7267 0.575521
\(490\) 2.31402 0.104537
\(491\) 36.8371 1.66244 0.831218 0.555946i \(-0.187644\pi\)
0.831218 + 0.555946i \(0.187644\pi\)
\(492\) −8.78888 −0.396233
\(493\) 6.47958 0.291825
\(494\) −7.46622 −0.335921
\(495\) −0.841170 −0.0378078
\(496\) −7.19481 −0.323056
\(497\) −1.88706 −0.0846464
\(498\) 7.09072 0.317743
\(499\) −3.06877 −0.137377 −0.0686885 0.997638i \(-0.521881\pi\)
−0.0686885 + 0.997638i \(0.521881\pi\)
\(500\) 13.6957 0.612491
\(501\) −34.7774 −1.55374
\(502\) −6.52850 −0.291381
\(503\) −3.67220 −0.163735 −0.0818676 0.996643i \(-0.526088\pi\)
−0.0818676 + 0.996643i \(0.526088\pi\)
\(504\) 0.691533 0.0308033
\(505\) 12.8139 0.570210
\(506\) 8.83683 0.392845
\(507\) 11.4849 0.510060
\(508\) −1.99749 −0.0886245
\(509\) 15.5016 0.687095 0.343548 0.939135i \(-0.388371\pi\)
0.343548 + 0.939135i \(0.388371\pi\)
\(510\) 2.39267 0.105949
\(511\) −1.59304 −0.0704718
\(512\) −22.7636 −1.00602
\(513\) −17.2173 −0.760162
\(514\) 2.32726 0.102651
\(515\) −3.35840 −0.147989
\(516\) −25.1046 −1.10517
\(517\) −31.5369 −1.38699
\(518\) −4.20892 −0.184929
\(519\) 17.9851 0.789456
\(520\) 6.58631 0.288829
\(521\) 11.0777 0.485321 0.242661 0.970111i \(-0.421980\pi\)
0.242661 + 0.970111i \(0.421980\pi\)
\(522\) 0.332479 0.0145522
\(523\) 19.3717 0.847067 0.423533 0.905881i \(-0.360790\pi\)
0.423533 + 0.905881i \(0.360790\pi\)
\(524\) −3.78514 −0.165354
\(525\) −8.58595 −0.374722
\(526\) −5.98103 −0.260785
\(527\) 8.82930 0.384610
\(528\) −14.0972 −0.613501
\(529\) 18.1442 0.788877
\(530\) 2.98368 0.129603
\(531\) 3.74965 0.162721
\(532\) −6.84251 −0.296661
\(533\) 11.9021 0.515538
\(534\) −13.5380 −0.585848
\(535\) 8.54726 0.369530
\(536\) 0 0
\(537\) 39.7573 1.71565
\(538\) 4.93478 0.212754
\(539\) 16.7310 0.720657
\(540\) 7.13221 0.306921
\(541\) 6.89287 0.296347 0.148174 0.988961i \(-0.452661\pi\)
0.148174 + 0.988961i \(0.452661\pi\)
\(542\) −2.06535 −0.0887143
\(543\) −47.1881 −2.02504
\(544\) 16.0726 0.689105
\(545\) 6.57193 0.281511
\(546\) −4.18843 −0.179248
\(547\) −9.68042 −0.413905 −0.206952 0.978351i \(-0.566355\pi\)
−0.206952 + 0.978351i \(0.566355\pi\)
\(548\) −18.9094 −0.807771
\(549\) 3.25579 0.138954
\(550\) −5.93733 −0.253169
\(551\) −7.00565 −0.298451
\(552\) 21.2059 0.902584
\(553\) −16.8508 −0.716570
\(554\) 7.85978 0.333930
\(555\) 12.2858 0.521502
\(556\) 1.48707 0.0630660
\(557\) 16.2834 0.689951 0.344976 0.938612i \(-0.387887\pi\)
0.344976 + 0.938612i \(0.387887\pi\)
\(558\) 0.453048 0.0191790
\(559\) 33.9973 1.43793
\(560\) 2.41982 0.102256
\(561\) 17.2997 0.730395
\(562\) 11.5432 0.486921
\(563\) 13.2273 0.557463 0.278731 0.960369i \(-0.410086\pi\)
0.278731 + 0.960369i \(0.410086\pi\)
\(564\) −35.5384 −1.49644
\(565\) 10.9563 0.460935
\(566\) 12.5704 0.528373
\(567\) −10.8075 −0.453873
\(568\) −3.13148 −0.131394
\(569\) −45.3651 −1.90180 −0.950902 0.309492i \(-0.899841\pi\)
−0.950902 + 0.309492i \(0.899841\pi\)
\(570\) −2.58694 −0.108355
\(571\) −21.1131 −0.883554 −0.441777 0.897125i \(-0.645652\pi\)
−0.441777 + 0.897125i \(0.645652\pi\)
\(572\) 22.3623 0.935013
\(573\) −29.4720 −1.23121
\(574\) −1.41279 −0.0589687
\(575\) −27.6442 −1.15284
\(576\) −1.05927 −0.0441361
\(577\) 23.9403 0.996646 0.498323 0.866991i \(-0.333949\pi\)
0.498323 + 0.866991i \(0.333949\pi\)
\(578\) 2.97449 0.123723
\(579\) 45.6134 1.89563
\(580\) 2.90207 0.120502
\(581\) −8.80028 −0.365097
\(582\) 0.905739 0.0375441
\(583\) 21.5729 0.893458
\(584\) −2.64356 −0.109391
\(585\) 1.28367 0.0530733
\(586\) −8.20260 −0.338846
\(587\) 38.1142 1.57314 0.786570 0.617501i \(-0.211855\pi\)
0.786570 + 0.617501i \(0.211855\pi\)
\(588\) 18.8539 0.777523
\(589\) −9.54616 −0.393343
\(590\) −4.23909 −0.174521
\(591\) 22.1151 0.909693
\(592\) 21.6183 0.888507
\(593\) 21.1357 0.867940 0.433970 0.900927i \(-0.357112\pi\)
0.433970 + 0.900927i \(0.357112\pi\)
\(594\) −6.67910 −0.274047
\(595\) −2.96954 −0.121739
\(596\) −21.8205 −0.893804
\(597\) −4.31733 −0.176697
\(598\) −13.4855 −0.551462
\(599\) −11.6156 −0.474600 −0.237300 0.971436i \(-0.576263\pi\)
−0.237300 + 0.971436i \(0.576263\pi\)
\(600\) −14.2479 −0.581670
\(601\) −48.4579 −1.97664 −0.988319 0.152399i \(-0.951300\pi\)
−0.988319 + 0.152399i \(0.951300\pi\)
\(602\) −4.03550 −0.164475
\(603\) 0 0
\(604\) 19.5168 0.794128
\(605\) −2.26335 −0.0920182
\(606\) −13.5224 −0.549309
\(607\) −22.0351 −0.894376 −0.447188 0.894440i \(-0.647575\pi\)
−0.447188 + 0.894440i \(0.647575\pi\)
\(608\) −17.3775 −0.704751
\(609\) −3.93006 −0.159254
\(610\) −3.68078 −0.149030
\(611\) 48.1270 1.94701
\(612\) 2.04687 0.0827396
\(613\) −19.4122 −0.784052 −0.392026 0.919954i \(-0.628226\pi\)
−0.392026 + 0.919954i \(0.628226\pi\)
\(614\) −4.23079 −0.170741
\(615\) 4.12392 0.166292
\(616\) −5.65263 −0.227751
\(617\) 7.68409 0.309350 0.154675 0.987965i \(-0.450567\pi\)
0.154675 + 0.987965i \(0.450567\pi\)
\(618\) 3.54409 0.142564
\(619\) −28.1469 −1.13132 −0.565659 0.824639i \(-0.691378\pi\)
−0.565659 + 0.824639i \(0.691378\pi\)
\(620\) 3.95447 0.158815
\(621\) −31.0978 −1.24791
\(622\) 10.2400 0.410588
\(623\) 16.8020 0.673158
\(624\) 21.5131 0.861212
\(625\) 15.1223 0.604892
\(626\) 1.39972 0.0559439
\(627\) −18.7043 −0.746978
\(628\) −14.7189 −0.587348
\(629\) −26.5295 −1.05780
\(630\) −0.152373 −0.00607068
\(631\) −7.40083 −0.294622 −0.147311 0.989090i \(-0.547062\pi\)
−0.147311 + 0.989090i \(0.547062\pi\)
\(632\) −27.9631 −1.11231
\(633\) −1.28736 −0.0511682
\(634\) 3.72525 0.147948
\(635\) 0.937264 0.0371942
\(636\) 24.3101 0.963960
\(637\) −25.5325 −1.01163
\(638\) −2.71770 −0.107595
\(639\) −0.610326 −0.0241441
\(640\) 9.32848 0.368740
\(641\) 6.58756 0.260193 0.130097 0.991501i \(-0.458471\pi\)
0.130097 + 0.991501i \(0.458471\pi\)
\(642\) −9.01986 −0.355985
\(643\) 0.345529 0.0136263 0.00681317 0.999977i \(-0.497831\pi\)
0.00681317 + 0.999977i \(0.497831\pi\)
\(644\) −12.3589 −0.487010
\(645\) 11.7796 0.463821
\(646\) 5.58614 0.219784
\(647\) 7.87818 0.309723 0.154862 0.987936i \(-0.450507\pi\)
0.154862 + 0.987936i \(0.450507\pi\)
\(648\) −17.9345 −0.704534
\(649\) −30.6499 −1.20311
\(650\) 9.06069 0.355390
\(651\) −5.35524 −0.209889
\(652\) −12.3085 −0.482036
\(653\) −31.6335 −1.23791 −0.618957 0.785425i \(-0.712445\pi\)
−0.618957 + 0.785425i \(0.712445\pi\)
\(654\) −6.93531 −0.271192
\(655\) 1.77606 0.0693964
\(656\) 7.25653 0.283320
\(657\) −0.515230 −0.0201011
\(658\) −5.71271 −0.222705
\(659\) 4.33886 0.169018 0.0845091 0.996423i \(-0.473068\pi\)
0.0845091 + 0.996423i \(0.473068\pi\)
\(660\) 7.74820 0.301598
\(661\) 8.55237 0.332649 0.166324 0.986071i \(-0.446810\pi\)
0.166324 + 0.986071i \(0.446810\pi\)
\(662\) −15.7872 −0.613587
\(663\) −26.4003 −1.02530
\(664\) −14.6036 −0.566730
\(665\) 3.21064 0.124503
\(666\) −1.36128 −0.0527484
\(667\) −12.6536 −0.489950
\(668\) 33.6345 1.30136
\(669\) 13.9924 0.540978
\(670\) 0 0
\(671\) −26.6131 −1.02739
\(672\) −9.74850 −0.376057
\(673\) −36.6687 −1.41347 −0.706736 0.707477i \(-0.749833\pi\)
−0.706736 + 0.707477i \(0.749833\pi\)
\(674\) −13.1887 −0.508012
\(675\) 20.8942 0.804217
\(676\) −11.1074 −0.427209
\(677\) −28.4485 −1.09337 −0.546683 0.837340i \(-0.684110\pi\)
−0.546683 + 0.837340i \(0.684110\pi\)
\(678\) −11.5621 −0.444040
\(679\) −1.12411 −0.0431394
\(680\) −4.92780 −0.188973
\(681\) 20.0049 0.766589
\(682\) −3.70324 −0.141804
\(683\) 35.8081 1.37016 0.685080 0.728468i \(-0.259767\pi\)
0.685080 + 0.728468i \(0.259767\pi\)
\(684\) −2.21305 −0.0846181
\(685\) 8.87268 0.339008
\(686\) 6.67848 0.254986
\(687\) 48.6832 1.85738
\(688\) 20.7276 0.790232
\(689\) −32.9214 −1.25421
\(690\) −4.67252 −0.177880
\(691\) 22.1819 0.843840 0.421920 0.906633i \(-0.361356\pi\)
0.421920 + 0.906633i \(0.361356\pi\)
\(692\) −17.3940 −0.661221
\(693\) −1.10170 −0.0418501
\(694\) 4.05225 0.153821
\(695\) −0.697764 −0.0264677
\(696\) −6.52173 −0.247206
\(697\) −8.90504 −0.337303
\(698\) −13.7735 −0.521336
\(699\) 4.52242 0.171054
\(700\) 8.30379 0.313854
\(701\) −12.3989 −0.468300 −0.234150 0.972200i \(-0.575231\pi\)
−0.234150 + 0.972200i \(0.575231\pi\)
\(702\) 10.1927 0.384698
\(703\) 28.6834 1.08182
\(704\) 8.65851 0.326330
\(705\) 16.6753 0.628029
\(706\) −10.6075 −0.399218
\(707\) 16.7826 0.631174
\(708\) −34.5388 −1.29805
\(709\) 24.9837 0.938284 0.469142 0.883123i \(-0.344563\pi\)
0.469142 + 0.883123i \(0.344563\pi\)
\(710\) 0.689993 0.0258950
\(711\) −5.45001 −0.204391
\(712\) 27.8821 1.04492
\(713\) −17.2423 −0.645728
\(714\) 3.13374 0.117277
\(715\) −10.4928 −0.392409
\(716\) −38.4507 −1.43697
\(717\) 28.8609 1.07783
\(718\) −4.02297 −0.150136
\(719\) −45.1649 −1.68437 −0.842184 0.539191i \(-0.818730\pi\)
−0.842184 + 0.539191i \(0.818730\pi\)
\(720\) 0.782633 0.0291670
\(721\) −4.39856 −0.163811
\(722\) 3.05925 0.113854
\(723\) −34.0405 −1.26598
\(724\) 45.6374 1.69610
\(725\) 8.50177 0.315748
\(726\) 2.38849 0.0886453
\(727\) 37.2055 1.37988 0.689938 0.723868i \(-0.257638\pi\)
0.689938 + 0.723868i \(0.257638\pi\)
\(728\) 8.62623 0.319709
\(729\) 23.1330 0.856777
\(730\) 0.582484 0.0215587
\(731\) −25.4364 −0.940800
\(732\) −29.9898 −1.10846
\(733\) −21.9918 −0.812287 −0.406144 0.913809i \(-0.633127\pi\)
−0.406144 + 0.913809i \(0.633127\pi\)
\(734\) −1.77615 −0.0655589
\(735\) −8.84664 −0.326313
\(736\) −31.3872 −1.15695
\(737\) 0 0
\(738\) −0.456934 −0.0168200
\(739\) −27.3506 −1.00611 −0.503053 0.864255i \(-0.667790\pi\)
−0.503053 + 0.864255i \(0.667790\pi\)
\(740\) −11.8820 −0.436792
\(741\) 28.5438 1.04858
\(742\) 3.90779 0.143460
\(743\) 34.6339 1.27059 0.635297 0.772268i \(-0.280878\pi\)
0.635297 + 0.772268i \(0.280878\pi\)
\(744\) −8.88675 −0.325804
\(745\) 10.2386 0.375114
\(746\) 5.37075 0.196637
\(747\) −2.84624 −0.104139
\(748\) −16.7312 −0.611754
\(749\) 11.1945 0.409039
\(750\) 6.78163 0.247630
\(751\) 20.3387 0.742169 0.371085 0.928599i \(-0.378986\pi\)
0.371085 + 0.928599i \(0.378986\pi\)
\(752\) 29.3422 1.07000
\(753\) 24.9588 0.909550
\(754\) 4.14737 0.151038
\(755\) −9.15768 −0.333282
\(756\) 9.34121 0.339737
\(757\) 1.05198 0.0382348 0.0191174 0.999817i \(-0.493914\pi\)
0.0191174 + 0.999817i \(0.493914\pi\)
\(758\) 2.85183 0.103583
\(759\) −33.7837 −1.22627
\(760\) 5.32789 0.193263
\(761\) −42.8478 −1.55323 −0.776615 0.629975i \(-0.783065\pi\)
−0.776615 + 0.629975i \(0.783065\pi\)
\(762\) −0.989088 −0.0358309
\(763\) 8.60740 0.311609
\(764\) 28.5035 1.03122
\(765\) −0.960429 −0.0347244
\(766\) −6.80865 −0.246007
\(767\) 46.7733 1.68889
\(768\) 1.17661 0.0424572
\(769\) −20.0059 −0.721431 −0.360715 0.932676i \(-0.617467\pi\)
−0.360715 + 0.932676i \(0.617467\pi\)
\(770\) 1.24550 0.0448849
\(771\) −8.89724 −0.320426
\(772\) −44.1144 −1.58771
\(773\) 6.67646 0.240135 0.120068 0.992766i \(-0.461689\pi\)
0.120068 + 0.992766i \(0.461689\pi\)
\(774\) −1.30519 −0.0469141
\(775\) 11.5848 0.416139
\(776\) −1.86540 −0.0669641
\(777\) 16.0909 0.577259
\(778\) 6.77307 0.242826
\(779\) 9.62805 0.344961
\(780\) −11.8242 −0.423374
\(781\) 4.98885 0.178515
\(782\) 10.0897 0.360806
\(783\) 9.56393 0.341787
\(784\) −15.5667 −0.555955
\(785\) 6.90640 0.246500
\(786\) −1.87426 −0.0668528
\(787\) −18.3611 −0.654502 −0.327251 0.944937i \(-0.606122\pi\)
−0.327251 + 0.944937i \(0.606122\pi\)
\(788\) −21.3883 −0.761927
\(789\) 22.8658 0.814045
\(790\) 6.16140 0.219213
\(791\) 14.3497 0.510217
\(792\) −1.82821 −0.0649627
\(793\) 40.6130 1.44221
\(794\) 0.151354 0.00537134
\(795\) −11.4068 −0.404557
\(796\) 4.17545 0.147995
\(797\) 49.4409 1.75129 0.875644 0.482958i \(-0.160438\pi\)
0.875644 + 0.482958i \(0.160438\pi\)
\(798\) −3.38817 −0.119940
\(799\) −36.0081 −1.27388
\(800\) 21.0886 0.745595
\(801\) 5.43422 0.192009
\(802\) 14.6021 0.515618
\(803\) 4.21153 0.148622
\(804\) 0 0
\(805\) 5.79906 0.204390
\(806\) 5.65135 0.199060
\(807\) −18.8660 −0.664113
\(808\) 27.8498 0.979754
\(809\) −50.4211 −1.77271 −0.886355 0.463006i \(-0.846771\pi\)
−0.886355 + 0.463006i \(0.846771\pi\)
\(810\) 3.95170 0.138849
\(811\) −37.1590 −1.30483 −0.652415 0.757862i \(-0.726244\pi\)
−0.652415 + 0.757862i \(0.726244\pi\)
\(812\) 3.80091 0.133386
\(813\) 7.89594 0.276923
\(814\) 11.1272 0.390007
\(815\) 5.77537 0.202302
\(816\) −16.0958 −0.563467
\(817\) 27.5016 0.962160
\(818\) −5.13134 −0.179413
\(819\) 1.68125 0.0587477
\(820\) −3.98839 −0.139281
\(821\) −35.3955 −1.23531 −0.617656 0.786448i \(-0.711918\pi\)
−0.617656 + 0.786448i \(0.711918\pi\)
\(822\) −9.36327 −0.326582
\(823\) −38.0519 −1.32641 −0.663203 0.748440i \(-0.730803\pi\)
−0.663203 + 0.748440i \(0.730803\pi\)
\(824\) −7.29919 −0.254279
\(825\) 22.6988 0.790269
\(826\) −5.55203 −0.193180
\(827\) −52.9396 −1.84089 −0.920444 0.390874i \(-0.872173\pi\)
−0.920444 + 0.390874i \(0.872173\pi\)
\(828\) −3.99721 −0.138913
\(829\) 31.1563 1.08210 0.541051 0.840990i \(-0.318027\pi\)
0.541051 + 0.840990i \(0.318027\pi\)
\(830\) 3.21777 0.111690
\(831\) −30.0484 −1.04237
\(832\) −13.2134 −0.458091
\(833\) 19.1031 0.661884
\(834\) 0.736346 0.0254976
\(835\) −15.7820 −0.546158
\(836\) 18.0896 0.625643
\(837\) 13.0322 0.450457
\(838\) 2.10941 0.0728683
\(839\) −32.0479 −1.10642 −0.553209 0.833043i \(-0.686597\pi\)
−0.553209 + 0.833043i \(0.686597\pi\)
\(840\) 2.98886 0.103126
\(841\) −25.1085 −0.865809
\(842\) 1.27716 0.0440138
\(843\) −44.1304 −1.51993
\(844\) 1.24506 0.0428567
\(845\) 5.21182 0.179292
\(846\) −1.84764 −0.0635232
\(847\) −2.96436 −0.101856
\(848\) −20.0716 −0.689263
\(849\) −48.0573 −1.64932
\(850\) −6.77911 −0.232522
\(851\) 51.8080 1.77595
\(852\) 5.62185 0.192601
\(853\) −11.7743 −0.403145 −0.201573 0.979474i \(-0.564605\pi\)
−0.201573 + 0.979474i \(0.564605\pi\)
\(854\) −4.82079 −0.164964
\(855\) 1.03841 0.0355128
\(856\) 18.5767 0.634940
\(857\) −32.8390 −1.12176 −0.560880 0.827897i \(-0.689537\pi\)
−0.560880 + 0.827897i \(0.689537\pi\)
\(858\) 11.0730 0.378026
\(859\) −23.1472 −0.789773 −0.394886 0.918730i \(-0.629216\pi\)
−0.394886 + 0.918730i \(0.629216\pi\)
\(860\) −11.3925 −0.388480
\(861\) 5.40118 0.184072
\(862\) 4.89186 0.166617
\(863\) −21.3357 −0.726276 −0.363138 0.931735i \(-0.618295\pi\)
−0.363138 + 0.931735i \(0.618295\pi\)
\(864\) 23.7233 0.807082
\(865\) 8.16161 0.277503
\(866\) −0.0996595 −0.00338657
\(867\) −11.3717 −0.386202
\(868\) 5.17925 0.175795
\(869\) 44.5487 1.51121
\(870\) 1.43700 0.0487189
\(871\) 0 0
\(872\) 14.2835 0.483701
\(873\) −0.363568 −0.0123049
\(874\) −10.9089 −0.368998
\(875\) −8.41666 −0.284535
\(876\) 4.74590 0.160349
\(877\) −3.28825 −0.111036 −0.0555181 0.998458i \(-0.517681\pi\)
−0.0555181 + 0.998458i \(0.517681\pi\)
\(878\) 2.12743 0.0717973
\(879\) 31.3590 1.05771
\(880\) −6.39729 −0.215653
\(881\) −38.1003 −1.28363 −0.641816 0.766858i \(-0.721819\pi\)
−0.641816 + 0.766858i \(0.721819\pi\)
\(882\) 0.980217 0.0330056
\(883\) 41.0647 1.38194 0.690968 0.722885i \(-0.257184\pi\)
0.690968 + 0.722885i \(0.257184\pi\)
\(884\) 25.5327 0.858759
\(885\) 16.2063 0.544768
\(886\) 13.4181 0.450788
\(887\) 38.1040 1.27941 0.639704 0.768622i \(-0.279057\pi\)
0.639704 + 0.768622i \(0.279057\pi\)
\(888\) 26.7021 0.896063
\(889\) 1.22755 0.0411709
\(890\) −6.14355 −0.205932
\(891\) 28.5719 0.957196
\(892\) −13.5326 −0.453104
\(893\) 38.9316 1.30280
\(894\) −10.8048 −0.361365
\(895\) 18.0418 0.603072
\(896\) 12.2177 0.408165
\(897\) 51.5558 1.72140
\(898\) −0.141362 −0.00471731
\(899\) 5.30274 0.176856
\(900\) 2.68567 0.0895222
\(901\) 24.6314 0.820592
\(902\) 3.73501 0.124362
\(903\) 15.4280 0.513411
\(904\) 23.8126 0.791995
\(905\) −21.4139 −0.711824
\(906\) 9.66403 0.321066
\(907\) 36.6101 1.21562 0.607808 0.794084i \(-0.292049\pi\)
0.607808 + 0.794084i \(0.292049\pi\)
\(908\) −19.3475 −0.642068
\(909\) 5.42794 0.180033
\(910\) −1.90071 −0.0630079
\(911\) −43.3269 −1.43548 −0.717742 0.696309i \(-0.754824\pi\)
−0.717742 + 0.696309i \(0.754824\pi\)
\(912\) 17.4027 0.576260
\(913\) 23.2654 0.769972
\(914\) −8.49763 −0.281077
\(915\) 14.0718 0.465200
\(916\) −47.0834 −1.55568
\(917\) 2.32614 0.0768161
\(918\) −7.62605 −0.251697
\(919\) −22.9015 −0.755452 −0.377726 0.925917i \(-0.623294\pi\)
−0.377726 + 0.925917i \(0.623294\pi\)
\(920\) 9.62324 0.317269
\(921\) 16.1746 0.532970
\(922\) 10.7531 0.354134
\(923\) −7.61325 −0.250593
\(924\) 10.1480 0.333844
\(925\) −34.8090 −1.14451
\(926\) 9.47630 0.311411
\(927\) −1.42261 −0.0467247
\(928\) 9.65292 0.316873
\(929\) 27.5021 0.902316 0.451158 0.892444i \(-0.351011\pi\)
0.451158 + 0.892444i \(0.351011\pi\)
\(930\) 1.95811 0.0642090
\(931\) −20.6541 −0.676911
\(932\) −4.37380 −0.143268
\(933\) −39.1483 −1.28166
\(934\) −10.6182 −0.347437
\(935\) 7.85061 0.256742
\(936\) 2.78995 0.0911924
\(937\) −4.58217 −0.149693 −0.0748464 0.997195i \(-0.523847\pi\)
−0.0748464 + 0.997195i \(0.523847\pi\)
\(938\) 0 0
\(939\) −5.35120 −0.174630
\(940\) −16.1273 −0.526015
\(941\) −14.0525 −0.458097 −0.229049 0.973415i \(-0.573561\pi\)
−0.229049 + 0.973415i \(0.573561\pi\)
\(942\) −7.28827 −0.237465
\(943\) 17.3902 0.566302
\(944\) 28.5169 0.928147
\(945\) −4.38308 −0.142582
\(946\) 10.6687 0.346870
\(947\) −9.79821 −0.318399 −0.159200 0.987246i \(-0.550891\pi\)
−0.159200 + 0.987246i \(0.550891\pi\)
\(948\) 50.2012 1.63046
\(949\) −6.42702 −0.208630
\(950\) 7.32951 0.237801
\(951\) −14.2418 −0.461823
\(952\) −6.45405 −0.209177
\(953\) 28.6760 0.928908 0.464454 0.885597i \(-0.346251\pi\)
0.464454 + 0.885597i \(0.346251\pi\)
\(954\) 1.26388 0.0409198
\(955\) −13.3744 −0.432785
\(956\) −27.9125 −0.902754
\(957\) 10.3899 0.335859
\(958\) 1.87052 0.0604339
\(959\) 11.6207 0.375253
\(960\) −4.57824 −0.147762
\(961\) −23.7743 −0.766913
\(962\) −16.9807 −0.547478
\(963\) 3.62061 0.116672
\(964\) 32.9218 1.06034
\(965\) 20.6994 0.666336
\(966\) −6.11970 −0.196898
\(967\) 3.62365 0.116529 0.0582644 0.998301i \(-0.481443\pi\)
0.0582644 + 0.998301i \(0.481443\pi\)
\(968\) −4.91919 −0.158109
\(969\) −21.3561 −0.686058
\(970\) 0.411024 0.0131972
\(971\) −14.0498 −0.450879 −0.225439 0.974257i \(-0.572382\pi\)
−0.225439 + 0.974257i \(0.572382\pi\)
\(972\) 6.44392 0.206689
\(973\) −0.913877 −0.0292975
\(974\) 12.8456 0.411598
\(975\) −34.6395 −1.10935
\(976\) 24.7611 0.792582
\(977\) 13.1192 0.419719 0.209860 0.977732i \(-0.432699\pi\)
0.209860 + 0.977732i \(0.432699\pi\)
\(978\) −6.09471 −0.194887
\(979\) −44.4196 −1.41966
\(980\) 8.55591 0.273309
\(981\) 2.78386 0.0888819
\(982\) −17.6410 −0.562946
\(983\) 26.9322 0.859004 0.429502 0.903066i \(-0.358689\pi\)
0.429502 + 0.903066i \(0.358689\pi\)
\(984\) 8.96298 0.285729
\(985\) 10.0358 0.319768
\(986\) −3.10301 −0.0988201
\(987\) 21.8400 0.695175
\(988\) −27.6057 −0.878256
\(989\) 49.6734 1.57952
\(990\) 0.402829 0.0128028
\(991\) −32.6333 −1.03663 −0.518315 0.855190i \(-0.673441\pi\)
−0.518315 + 0.855190i \(0.673441\pi\)
\(992\) 13.1534 0.417622
\(993\) 60.3554 1.91532
\(994\) 0.903698 0.0286636
\(995\) −1.95920 −0.0621109
\(996\) 26.2174 0.830729
\(997\) −39.5207 −1.25163 −0.625816 0.779971i \(-0.715234\pi\)
−0.625816 + 0.779971i \(0.715234\pi\)
\(998\) 1.46961 0.0465196
\(999\) −39.1578 −1.23890
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4489.2.a.h.1.3 5
67.8 odd 22 67.2.e.b.64.1 yes 10
67.42 odd 22 67.2.e.b.22.1 10
67.66 odd 2 4489.2.a.i.1.3 5
201.8 even 22 603.2.u.a.64.1 10
201.176 even 22 603.2.u.a.424.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
67.2.e.b.22.1 10 67.42 odd 22
67.2.e.b.64.1 yes 10 67.8 odd 22
603.2.u.a.64.1 10 201.8 even 22
603.2.u.a.424.1 10 201.176 even 22
4489.2.a.h.1.3 5 1.1 even 1 trivial
4489.2.a.i.1.3 5 67.66 odd 2