Properties

Label 448.3.r.f.319.2
Level $448$
Weight $3$
Character 448.319
Analytic conductor $12.207$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(191,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 319.2
Root \(0.385124 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.319
Dual form 448.3.r.f.191.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.53177 - 0.884367i) q^{3} +(-4.10168 - 7.10432i) q^{5} +(5.46804 - 4.37041i) q^{7} +(-2.93579 - 5.08494i) q^{9} +(-9.10155 - 5.25478i) q^{11} +5.87158 q^{13} +14.5096i q^{15} +(-13.5084 + 23.3972i) q^{17} +(10.6595 - 6.15427i) q^{19} +(-12.2408 + 1.85871i) q^{21} +(36.2985 - 20.9570i) q^{23} +(-21.1475 + 36.6286i) q^{25} +26.3039i q^{27} -36.4235 q^{29} +(-6.61671 - 3.82016i) q^{31} +(9.29431 + 16.0982i) q^{33} +(-53.4770 - 20.9207i) q^{35} +(3.62842 + 6.28461i) q^{37} +(-8.99390 - 5.19263i) q^{39} -48.1667 q^{41} +23.4863i q^{43} +(-24.0833 + 41.7136i) q^{45} +(-51.1971 + 29.5587i) q^{47} +(10.7990 - 47.7952i) q^{49} +(41.3835 - 23.8928i) q^{51} +(-2.03281 + 3.52092i) q^{53} +86.2137i q^{55} -21.7705 q^{57} +(23.2280 + 13.4107i) q^{59} +(0.185012 + 0.320450i) q^{61} +(-38.2763 - 14.9740i) q^{63} +(-24.0833 - 41.7136i) q^{65} +(1.80658 + 1.04303i) q^{67} -74.1346 q^{69} -121.781i q^{71} +(38.5726 - 66.8097i) q^{73} +(64.7863 - 37.4044i) q^{75} +(-72.7332 + 11.0442i) q^{77} +(31.8785 - 18.4050i) q^{79} +(-3.15983 + 5.47298i) q^{81} +98.2951i q^{83} +221.628 q^{85} +(55.7924 + 32.2118i) q^{87} +(15.1729 + 26.2802i) q^{89} +(32.1060 - 25.6612i) q^{91} +(6.75684 + 11.7032i) q^{93} +(-87.4437 - 50.4857i) q^{95} -5.87158 q^{97} +61.7077i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{5} - 6 q^{17} - 18 q^{21} + 186 q^{33} + 114 q^{37} + 180 q^{49} + 18 q^{53} - 684 q^{57} - 318 q^{61} + 228 q^{69} + 342 q^{73} - 318 q^{77} - 186 q^{81} + 996 q^{85} + 150 q^{89} + 222 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.53177 0.884367i −0.510590 0.294789i 0.222486 0.974936i \(-0.428583\pi\)
−0.733076 + 0.680147i \(0.761916\pi\)
\(4\) 0 0
\(5\) −4.10168 7.10432i −0.820336 1.42086i −0.905432 0.424491i \(-0.860453\pi\)
0.0850965 0.996373i \(-0.472880\pi\)
\(6\) 0 0
\(7\) 5.46804 4.37041i 0.781149 0.624345i
\(8\) 0 0
\(9\) −2.93579 5.08494i −0.326199 0.564993i
\(10\) 0 0
\(11\) −9.10155 5.25478i −0.827413 0.477707i 0.0255528 0.999673i \(-0.491865\pi\)
−0.852966 + 0.521966i \(0.825199\pi\)
\(12\) 0 0
\(13\) 5.87158 0.451660 0.225830 0.974167i \(-0.427491\pi\)
0.225830 + 0.974167i \(0.427491\pi\)
\(14\) 0 0
\(15\) 14.5096i 0.967304i
\(16\) 0 0
\(17\) −13.5084 + 23.3972i −0.794612 + 1.37631i 0.128474 + 0.991713i \(0.458992\pi\)
−0.923086 + 0.384595i \(0.874341\pi\)
\(18\) 0 0
\(19\) 10.6595 6.15427i 0.561026 0.323909i −0.192531 0.981291i \(-0.561670\pi\)
0.753557 + 0.657382i \(0.228336\pi\)
\(20\) 0 0
\(21\) −12.2408 + 1.85871i −0.582897 + 0.0885098i
\(22\) 0 0
\(23\) 36.2985 20.9570i 1.57820 0.911173i 0.583086 0.812410i \(-0.301845\pi\)
0.995111 0.0987627i \(-0.0314885\pi\)
\(24\) 0 0
\(25\) −21.1475 + 36.6286i −0.845902 + 1.46514i
\(26\) 0 0
\(27\) 26.3039i 0.974217i
\(28\) 0 0
\(29\) −36.4235 −1.25598 −0.627992 0.778220i \(-0.716123\pi\)
−0.627992 + 0.778220i \(0.716123\pi\)
\(30\) 0 0
\(31\) −6.61671 3.82016i −0.213442 0.123231i 0.389468 0.921040i \(-0.372659\pi\)
−0.602910 + 0.797809i \(0.705992\pi\)
\(32\) 0 0
\(33\) 9.29431 + 16.0982i 0.281646 + 0.487825i
\(34\) 0 0
\(35\) −53.4770 20.9207i −1.52791 0.597733i
\(36\) 0 0
\(37\) 3.62842 + 6.28461i 0.0980654 + 0.169854i 0.910884 0.412663i \(-0.135401\pi\)
−0.812818 + 0.582517i \(0.802068\pi\)
\(38\) 0 0
\(39\) −8.99390 5.19263i −0.230613 0.133144i
\(40\) 0 0
\(41\) −48.1667 −1.17480 −0.587398 0.809298i \(-0.699848\pi\)
−0.587398 + 0.809298i \(0.699848\pi\)
\(42\) 0 0
\(43\) 23.4863i 0.546193i 0.961987 + 0.273097i \(0.0880479\pi\)
−0.961987 + 0.273097i \(0.911952\pi\)
\(44\) 0 0
\(45\) −24.0833 + 41.7136i −0.535185 + 0.926968i
\(46\) 0 0
\(47\) −51.1971 + 29.5587i −1.08930 + 0.628907i −0.933390 0.358864i \(-0.883164\pi\)
−0.155910 + 0.987771i \(0.549831\pi\)
\(48\) 0 0
\(49\) 10.7990 47.7952i 0.220387 0.975412i
\(50\) 0 0
\(51\) 41.3835 23.8928i 0.811441 0.468486i
\(52\) 0 0
\(53\) −2.03281 + 3.52092i −0.0383548 + 0.0664325i −0.884566 0.466416i \(-0.845545\pi\)
0.846211 + 0.532848i \(0.178878\pi\)
\(54\) 0 0
\(55\) 86.2137i 1.56752i
\(56\) 0 0
\(57\) −21.7705 −0.381939
\(58\) 0 0
\(59\) 23.2280 + 13.4107i 0.393696 + 0.227300i 0.683760 0.729707i \(-0.260343\pi\)
−0.290064 + 0.957007i \(0.593677\pi\)
\(60\) 0 0
\(61\) 0.185012 + 0.320450i 0.00303298 + 0.00525328i 0.867538 0.497371i \(-0.165701\pi\)
−0.864505 + 0.502624i \(0.832368\pi\)
\(62\) 0 0
\(63\) −38.2763 14.9740i −0.607560 0.237683i
\(64\) 0 0
\(65\) −24.0833 41.7136i −0.370513 0.641747i
\(66\) 0 0
\(67\) 1.80658 + 1.04303i 0.0269638 + 0.0155676i 0.513421 0.858137i \(-0.328378\pi\)
−0.486458 + 0.873704i \(0.661711\pi\)
\(68\) 0 0
\(69\) −74.1346 −1.07442
\(70\) 0 0
\(71\) 121.781i 1.71523i −0.514291 0.857616i \(-0.671945\pi\)
0.514291 0.857616i \(-0.328055\pi\)
\(72\) 0 0
\(73\) 38.5726 66.8097i 0.528392 0.915202i −0.471060 0.882101i \(-0.656129\pi\)
0.999452 0.0331005i \(-0.0105381\pi\)
\(74\) 0 0
\(75\) 64.7863 37.4044i 0.863817 0.498725i
\(76\) 0 0
\(77\) −72.7332 + 11.0442i −0.944587 + 0.143431i
\(78\) 0 0
\(79\) 31.8785 18.4050i 0.403525 0.232975i −0.284479 0.958682i \(-0.591821\pi\)
0.688004 + 0.725707i \(0.258487\pi\)
\(80\) 0 0
\(81\) −3.15983 + 5.47298i −0.0390102 + 0.0675676i
\(82\) 0 0
\(83\) 98.2951i 1.18428i 0.805836 + 0.592139i \(0.201716\pi\)
−0.805836 + 0.592139i \(0.798284\pi\)
\(84\) 0 0
\(85\) 221.628 2.60739
\(86\) 0 0
\(87\) 55.7924 + 32.2118i 0.641292 + 0.370250i
\(88\) 0 0
\(89\) 15.1729 + 26.2802i 0.170482 + 0.295283i 0.938588 0.345039i \(-0.112134\pi\)
−0.768107 + 0.640322i \(0.778801\pi\)
\(90\) 0 0
\(91\) 32.1060 25.6612i 0.352814 0.281992i
\(92\) 0 0
\(93\) 6.75684 + 11.7032i 0.0726542 + 0.125841i
\(94\) 0 0
\(95\) −87.4437 50.4857i −0.920460 0.531428i
\(96\) 0 0
\(97\) −5.87158 −0.0605317 −0.0302659 0.999542i \(-0.509635\pi\)
−0.0302659 + 0.999542i \(0.509635\pi\)
\(98\) 0 0
\(99\) 61.7077i 0.623310i
\(100\) 0 0
\(101\) −76.6583 + 132.776i −0.758993 + 1.31461i 0.184372 + 0.982857i \(0.440975\pi\)
−0.943365 + 0.331757i \(0.892358\pi\)
\(102\) 0 0
\(103\) −67.3135 + 38.8635i −0.653529 + 0.377315i −0.789807 0.613356i \(-0.789819\pi\)
0.136278 + 0.990671i \(0.456486\pi\)
\(104\) 0 0
\(105\) 63.4128 + 79.3389i 0.603931 + 0.755609i
\(106\) 0 0
\(107\) 142.798 82.4447i 1.33456 0.770511i 0.348569 0.937283i \(-0.386668\pi\)
0.985995 + 0.166772i \(0.0533344\pi\)
\(108\) 0 0
\(109\) 30.6298 53.0524i 0.281008 0.486719i −0.690626 0.723212i \(-0.742665\pi\)
0.971633 + 0.236493i \(0.0759981\pi\)
\(110\) 0 0
\(111\) 12.8354i 0.115634i
\(112\) 0 0
\(113\) −9.79509 −0.0866822 −0.0433411 0.999060i \(-0.513800\pi\)
−0.0433411 + 0.999060i \(0.513800\pi\)
\(114\) 0 0
\(115\) −297.770 171.918i −2.58930 1.49494i
\(116\) 0 0
\(117\) −17.2377 29.8566i −0.147331 0.255185i
\(118\) 0 0
\(119\) 28.3911 + 186.974i 0.238580 + 1.57121i
\(120\) 0 0
\(121\) −5.27456 9.13581i −0.0435914 0.0755026i
\(122\) 0 0
\(123\) 73.7802 + 42.5970i 0.599839 + 0.346317i
\(124\) 0 0
\(125\) 141.878 1.13502
\(126\) 0 0
\(127\) 125.705i 0.989802i −0.868949 0.494901i \(-0.835204\pi\)
0.868949 0.494901i \(-0.164796\pi\)
\(128\) 0 0
\(129\) 20.7705 35.9756i 0.161012 0.278881i
\(130\) 0 0
\(131\) −30.8455 + 17.8087i −0.235462 + 0.135944i −0.613089 0.790014i \(-0.710073\pi\)
0.377627 + 0.925958i \(0.376740\pi\)
\(132\) 0 0
\(133\) 31.3899 80.2382i 0.236014 0.603295i
\(134\) 0 0
\(135\) 186.871 107.890i 1.38423 0.799185i
\(136\) 0 0
\(137\) 59.7500 103.490i 0.436131 0.755402i −0.561256 0.827642i \(-0.689682\pi\)
0.997387 + 0.0722407i \(0.0230150\pi\)
\(138\) 0 0
\(139\) 47.3989i 0.341000i −0.985358 0.170500i \(-0.945462\pi\)
0.985358 0.170500i \(-0.0545382\pi\)
\(140\) 0 0
\(141\) 104.563 0.741580
\(142\) 0 0
\(143\) −53.4405 30.8539i −0.373709 0.215761i
\(144\) 0 0
\(145\) 149.398 + 258.764i 1.03033 + 1.78458i
\(146\) 0 0
\(147\) −58.8100 + 63.6610i −0.400068 + 0.433068i
\(148\) 0 0
\(149\) −94.6872 164.003i −0.635485 1.10069i −0.986412 0.164289i \(-0.947467\pi\)
0.350928 0.936403i \(-0.385866\pi\)
\(150\) 0 0
\(151\) 212.442 + 122.654i 1.40690 + 0.812276i 0.995088 0.0989909i \(-0.0315615\pi\)
0.411816 + 0.911267i \(0.364895\pi\)
\(152\) 0 0
\(153\) 158.631 1.03681
\(154\) 0 0
\(155\) 62.6762i 0.404363i
\(156\) 0 0
\(157\) 110.359 191.148i 0.702924 1.21750i −0.264511 0.964383i \(-0.585211\pi\)
0.967435 0.253118i \(-0.0814562\pi\)
\(158\) 0 0
\(159\) 6.22758 3.59549i 0.0391672 0.0226132i
\(160\) 0 0
\(161\) 106.891 273.233i 0.663921 1.69710i
\(162\) 0 0
\(163\) −235.589 + 136.017i −1.44533 + 0.834461i −0.998198 0.0600075i \(-0.980888\pi\)
−0.447131 + 0.894469i \(0.647554\pi\)
\(164\) 0 0
\(165\) 76.2446 132.059i 0.462088 0.800360i
\(166\) 0 0
\(167\) 88.8674i 0.532140i −0.963954 0.266070i \(-0.914275\pi\)
0.963954 0.266070i \(-0.0857252\pi\)
\(168\) 0 0
\(169\) −134.525 −0.796003
\(170\) 0 0
\(171\) −62.5881 36.1353i −0.366012 0.211317i
\(172\) 0 0
\(173\) −159.591 276.420i −0.922491 1.59780i −0.795547 0.605891i \(-0.792817\pi\)
−0.126944 0.991910i \(-0.540517\pi\)
\(174\) 0 0
\(175\) 44.4465 + 292.710i 0.253980 + 1.67263i
\(176\) 0 0
\(177\) −23.7200 41.0842i −0.134011 0.232114i
\(178\) 0 0
\(179\) 120.755 + 69.7179i 0.674608 + 0.389485i 0.797820 0.602895i \(-0.205986\pi\)
−0.123212 + 0.992380i \(0.539320\pi\)
\(180\) 0 0
\(181\) 73.1328 0.404048 0.202024 0.979381i \(-0.435248\pi\)
0.202024 + 0.979381i \(0.435248\pi\)
\(182\) 0 0
\(183\) 0.654474i 0.00357636i
\(184\) 0 0
\(185\) 29.7652 51.5549i 0.160893 0.278675i
\(186\) 0 0
\(187\) 245.895 141.967i 1.31494 0.759183i
\(188\) 0 0
\(189\) 114.959 + 143.831i 0.608248 + 0.761009i
\(190\) 0 0
\(191\) −111.101 + 64.1442i −0.581680 + 0.335833i −0.761801 0.647811i \(-0.775685\pi\)
0.180121 + 0.983645i \(0.442351\pi\)
\(192\) 0 0
\(193\) −139.769 + 242.087i −0.724192 + 1.25434i 0.235113 + 0.971968i \(0.424454\pi\)
−0.959306 + 0.282370i \(0.908879\pi\)
\(194\) 0 0
\(195\) 85.1940i 0.436892i
\(196\) 0 0
\(197\) 99.0628 0.502857 0.251428 0.967876i \(-0.419100\pi\)
0.251428 + 0.967876i \(0.419100\pi\)
\(198\) 0 0
\(199\) −204.657 118.159i −1.02843 0.593763i −0.111894 0.993720i \(-0.535692\pi\)
−0.916534 + 0.399957i \(0.869025\pi\)
\(200\) 0 0
\(201\) −1.84484 3.19535i −0.00917829 0.0158973i
\(202\) 0 0
\(203\) −199.165 + 159.186i −0.981110 + 0.784166i
\(204\) 0 0
\(205\) 197.564 + 342.191i 0.963728 + 1.66923i
\(206\) 0 0
\(207\) −213.130 123.051i −1.02961 0.594447i
\(208\) 0 0
\(209\) −129.357 −0.618934
\(210\) 0 0
\(211\) 389.683i 1.84684i −0.383791 0.923420i \(-0.625382\pi\)
0.383791 0.923420i \(-0.374618\pi\)
\(212\) 0 0
\(213\) −107.699 + 186.541i −0.505631 + 0.875779i
\(214\) 0 0
\(215\) 166.854 96.3333i 0.776066 0.448062i
\(216\) 0 0
\(217\) −52.8761 + 8.02896i −0.243669 + 0.0369998i
\(218\) 0 0
\(219\) −118.169 + 68.2247i −0.539583 + 0.311528i
\(220\) 0 0
\(221\) −79.3156 + 137.379i −0.358894 + 0.621623i
\(222\) 0 0
\(223\) 102.219i 0.458379i 0.973382 + 0.229190i \(0.0736076\pi\)
−0.973382 + 0.229190i \(0.926392\pi\)
\(224\) 0 0
\(225\) 248.339 1.10373
\(226\) 0 0
\(227\) −200.037 115.491i −0.881219 0.508772i −0.0101588 0.999948i \(-0.503234\pi\)
−0.871060 + 0.491176i \(0.836567\pi\)
\(228\) 0 0
\(229\) −8.40221 14.5530i −0.0366909 0.0635504i 0.847097 0.531439i \(-0.178348\pi\)
−0.883788 + 0.467888i \(0.845015\pi\)
\(230\) 0 0
\(231\) 121.178 + 47.4058i 0.524578 + 0.205220i
\(232\) 0 0
\(233\) 60.3074 + 104.455i 0.258830 + 0.448307i 0.965929 0.258808i \(-0.0833298\pi\)
−0.707099 + 0.707115i \(0.749996\pi\)
\(234\) 0 0
\(235\) 419.988 + 242.480i 1.78718 + 1.03183i
\(236\) 0 0
\(237\) −65.1073 −0.274714
\(238\) 0 0
\(239\) 109.863i 0.459679i −0.973229 0.229840i \(-0.926180\pi\)
0.973229 0.229840i \(-0.0738202\pi\)
\(240\) 0 0
\(241\) −92.4493 + 160.127i −0.383607 + 0.664427i −0.991575 0.129535i \(-0.958652\pi\)
0.607968 + 0.793962i \(0.291985\pi\)
\(242\) 0 0
\(243\) 214.699 123.956i 0.883533 0.510108i
\(244\) 0 0
\(245\) −383.846 + 119.321i −1.56672 + 0.487026i
\(246\) 0 0
\(247\) 62.5881 36.1353i 0.253393 0.146297i
\(248\) 0 0
\(249\) 86.9289 150.565i 0.349112 0.604680i
\(250\) 0 0
\(251\) 224.827i 0.895724i 0.894103 + 0.447862i \(0.147814\pi\)
−0.894103 + 0.447862i \(0.852186\pi\)
\(252\) 0 0
\(253\) −440.497 −1.74110
\(254\) 0 0
\(255\) −339.484 196.001i −1.33131 0.768631i
\(256\) 0 0
\(257\) −89.2071 154.511i −0.347109 0.601211i 0.638625 0.769518i \(-0.279503\pi\)
−0.985735 + 0.168307i \(0.946170\pi\)
\(258\) 0 0
\(259\) 47.3067 + 18.5068i 0.182651 + 0.0714549i
\(260\) 0 0
\(261\) 106.932 + 185.211i 0.409700 + 0.709622i
\(262\) 0 0
\(263\) 249.946 + 144.307i 0.950367 + 0.548694i 0.893195 0.449670i \(-0.148458\pi\)
0.0571718 + 0.998364i \(0.481792\pi\)
\(264\) 0 0
\(265\) 33.3517 0.125855
\(266\) 0 0
\(267\) 53.6736i 0.201025i
\(268\) 0 0
\(269\) 112.649 195.113i 0.418768 0.725328i −0.577048 0.816710i \(-0.695795\pi\)
0.995816 + 0.0913828i \(0.0291287\pi\)
\(270\) 0 0
\(271\) −169.467 + 97.8417i −0.625339 + 0.361039i −0.778945 0.627093i \(-0.784245\pi\)
0.153606 + 0.988132i \(0.450911\pi\)
\(272\) 0 0
\(273\) −71.8730 + 10.9135i −0.263271 + 0.0399763i
\(274\) 0 0
\(275\) 384.951 222.251i 1.39982 0.808187i
\(276\) 0 0
\(277\) −67.8142 + 117.458i −0.244817 + 0.424035i −0.962080 0.272767i \(-0.912061\pi\)
0.717263 + 0.696802i \(0.245394\pi\)
\(278\) 0 0
\(279\) 44.8607i 0.160791i
\(280\) 0 0
\(281\) −372.495 −1.32560 −0.662802 0.748795i \(-0.730633\pi\)
−0.662802 + 0.748795i \(0.730633\pi\)
\(282\) 0 0
\(283\) −248.903 143.704i −0.879517 0.507789i −0.00901792 0.999959i \(-0.502871\pi\)
−0.870499 + 0.492170i \(0.836204\pi\)
\(284\) 0 0
\(285\) 89.2957 + 154.665i 0.313318 + 0.542683i
\(286\) 0 0
\(287\) −263.377 + 210.508i −0.917691 + 0.733478i
\(288\) 0 0
\(289\) −220.454 381.837i −0.762815 1.32123i
\(290\) 0 0
\(291\) 8.99390 + 5.19263i 0.0309069 + 0.0178441i
\(292\) 0 0
\(293\) −131.947 −0.450332 −0.225166 0.974320i \(-0.572292\pi\)
−0.225166 + 0.974320i \(0.572292\pi\)
\(294\) 0 0
\(295\) 220.026i 0.745850i
\(296\) 0 0
\(297\) 138.221 239.406i 0.465391 0.806081i
\(298\) 0 0
\(299\) 213.130 123.051i 0.712809 0.411540i
\(300\) 0 0
\(301\) 102.645 + 128.424i 0.341013 + 0.426658i
\(302\) 0 0
\(303\) 234.845 135.588i 0.775068 0.447486i
\(304\) 0 0
\(305\) 1.51772 2.62877i 0.00497613 0.00861891i
\(306\) 0 0
\(307\) 47.8253i 0.155783i −0.996962 0.0778913i \(-0.975181\pi\)
0.996962 0.0778913i \(-0.0248187\pi\)
\(308\) 0 0
\(309\) 137.478 0.444913
\(310\) 0 0
\(311\) −197.020 113.749i −0.633505 0.365754i 0.148604 0.988897i \(-0.452522\pi\)
−0.782108 + 0.623143i \(0.785856\pi\)
\(312\) 0 0
\(313\) −61.5483 106.605i −0.196640 0.340591i 0.750797 0.660533i \(-0.229670\pi\)
−0.947437 + 0.319943i \(0.896336\pi\)
\(314\) 0 0
\(315\) 50.6168 + 333.346i 0.160688 + 1.05824i
\(316\) 0 0
\(317\) −240.148 415.948i −0.757563 1.31214i −0.944090 0.329688i \(-0.893056\pi\)
0.186527 0.982450i \(-0.440277\pi\)
\(318\) 0 0
\(319\) 331.510 + 191.398i 1.03922 + 0.599992i
\(320\) 0 0
\(321\) −291.646 −0.908553
\(322\) 0 0
\(323\) 332.537i 1.02953i
\(324\) 0 0
\(325\) −124.169 + 215.068i −0.382060 + 0.661747i
\(326\) 0 0
\(327\) −93.8356 + 54.1760i −0.286959 + 0.165676i
\(328\) 0 0
\(329\) −150.764 + 385.380i −0.458250 + 1.17137i
\(330\) 0 0
\(331\) 410.836 237.196i 1.24119 0.716604i 0.271857 0.962338i \(-0.412362\pi\)
0.969337 + 0.245733i \(0.0790287\pi\)
\(332\) 0 0
\(333\) 21.3046 36.9006i 0.0639777 0.110813i
\(334\) 0 0
\(335\) 17.1126i 0.0510825i
\(336\) 0 0
\(337\) −305.861 −0.907599 −0.453799 0.891104i \(-0.649932\pi\)
−0.453799 + 0.891104i \(0.649932\pi\)
\(338\) 0 0
\(339\) 15.0038 + 8.66246i 0.0442590 + 0.0255530i
\(340\) 0 0
\(341\) 40.1482 + 69.5387i 0.117737 + 0.203926i
\(342\) 0 0
\(343\) −149.836 308.542i −0.436838 0.899540i
\(344\) 0 0
\(345\) 304.076 + 526.676i 0.881381 + 1.52660i
\(346\) 0 0
\(347\) −596.404 344.334i −1.71874 0.992317i −0.921233 0.389012i \(-0.872816\pi\)
−0.797511 0.603305i \(-0.793850\pi\)
\(348\) 0 0
\(349\) −128.861 −0.369228 −0.184614 0.982811i \(-0.559104\pi\)
−0.184614 + 0.982811i \(0.559104\pi\)
\(350\) 0 0
\(351\) 154.445i 0.440015i
\(352\) 0 0
\(353\) 47.5462 82.3524i 0.134692 0.233293i −0.790788 0.612090i \(-0.790329\pi\)
0.925480 + 0.378797i \(0.123662\pi\)
\(354\) 0 0
\(355\) −865.174 + 499.508i −2.43711 + 1.40707i
\(356\) 0 0
\(357\) 121.865 311.510i 0.341360 0.872576i
\(358\) 0 0
\(359\) 31.3627 18.1072i 0.0873612 0.0504380i −0.455683 0.890142i \(-0.650605\pi\)
0.543044 + 0.839704i \(0.317272\pi\)
\(360\) 0 0
\(361\) −104.750 + 181.432i −0.290166 + 0.502583i
\(362\) 0 0
\(363\) 18.6586i 0.0514011i
\(364\) 0 0
\(365\) −632.850 −1.73384
\(366\) 0 0
\(367\) −20.6725 11.9353i −0.0563284 0.0325212i 0.471571 0.881828i \(-0.343687\pi\)
−0.527900 + 0.849307i \(0.677020\pi\)
\(368\) 0 0
\(369\) 141.407 + 244.924i 0.383217 + 0.663752i
\(370\) 0 0
\(371\) 4.27242 + 28.1368i 0.0115160 + 0.0758403i
\(372\) 0 0
\(373\) −85.6886 148.417i −0.229728 0.397901i 0.727999 0.685578i \(-0.240450\pi\)
−0.957727 + 0.287677i \(0.907117\pi\)
\(374\) 0 0
\(375\) −217.324 125.472i −0.579531 0.334592i
\(376\) 0 0
\(377\) −213.864 −0.567277
\(378\) 0 0
\(379\) 22.8798i 0.0603689i 0.999544 + 0.0301845i \(0.00960947\pi\)
−0.999544 + 0.0301845i \(0.990391\pi\)
\(380\) 0 0
\(381\) −111.169 + 192.551i −0.291783 + 0.505383i
\(382\) 0 0
\(383\) 489.108 282.387i 1.27705 0.737302i 0.300741 0.953706i \(-0.402766\pi\)
0.976304 + 0.216404i \(0.0694327\pi\)
\(384\) 0 0
\(385\) 376.789 + 471.420i 0.978674 + 1.22447i
\(386\) 0 0
\(387\) 119.426 68.9509i 0.308595 0.178168i
\(388\) 0 0
\(389\) 59.7609 103.509i 0.153627 0.266090i −0.778931 0.627109i \(-0.784238\pi\)
0.932558 + 0.361020i \(0.117571\pi\)
\(390\) 0 0
\(391\) 1132.38i 2.89611i
\(392\) 0 0
\(393\) 62.9975 0.160299
\(394\) 0 0
\(395\) −261.511 150.983i −0.662052 0.382236i
\(396\) 0 0
\(397\) 262.734 + 455.069i 0.661799 + 1.14627i 0.980143 + 0.198294i \(0.0635402\pi\)
−0.318343 + 0.947975i \(0.603126\pi\)
\(398\) 0 0
\(399\) −119.042 + 95.1462i −0.298351 + 0.238462i
\(400\) 0 0
\(401\) 83.2528 + 144.198i 0.207613 + 0.359596i 0.950962 0.309307i \(-0.100097\pi\)
−0.743349 + 0.668904i \(0.766764\pi\)
\(402\) 0 0
\(403\) −38.8505 22.4304i −0.0964032 0.0556584i
\(404\) 0 0
\(405\) 51.8424 0.128006
\(406\) 0 0
\(407\) 76.2662i 0.187386i
\(408\) 0 0
\(409\) −237.672 + 411.660i −0.581106 + 1.00650i 0.414243 + 0.910166i \(0.364046\pi\)
−0.995349 + 0.0963383i \(0.969287\pi\)
\(410\) 0 0
\(411\) −183.046 + 105.682i −0.445368 + 0.257134i
\(412\) 0 0
\(413\) 185.622 28.1858i 0.449449 0.0682465i
\(414\) 0 0
\(415\) 698.319 403.175i 1.68270 0.971506i
\(416\) 0 0
\(417\) −41.9181 + 72.6042i −0.100523 + 0.174111i
\(418\) 0 0
\(419\) 370.547i 0.884360i 0.896926 + 0.442180i \(0.145795\pi\)
−0.896926 + 0.442180i \(0.854205\pi\)
\(420\) 0 0
\(421\) 248.779 0.590924 0.295462 0.955355i \(-0.404526\pi\)
0.295462 + 0.955355i \(0.404526\pi\)
\(422\) 0 0
\(423\) 300.608 + 173.556i 0.710657 + 0.410298i
\(424\) 0 0
\(425\) −571.339 989.588i −1.34433 2.32844i
\(426\) 0 0
\(427\) 2.41215 + 0.943656i 0.00564907 + 0.00220997i
\(428\) 0 0
\(429\) 54.5723 + 94.5220i 0.127208 + 0.220331i
\(430\) 0 0
\(431\) 57.1732 + 33.0090i 0.132653 + 0.0765870i 0.564858 0.825188i \(-0.308931\pi\)
−0.432205 + 0.901775i \(0.642264\pi\)
\(432\) 0 0
\(433\) 753.932 1.74118 0.870591 0.492007i \(-0.163737\pi\)
0.870591 + 0.492007i \(0.163737\pi\)
\(434\) 0 0
\(435\) 528.489i 1.21492i
\(436\) 0 0
\(437\) 257.950 446.782i 0.590274 1.02238i
\(438\) 0 0
\(439\) −32.2488 + 18.6188i −0.0734596 + 0.0424119i −0.536280 0.844040i \(-0.680171\pi\)
0.462820 + 0.886452i \(0.346838\pi\)
\(440\) 0 0
\(441\) −274.739 + 85.4046i −0.622991 + 0.193661i
\(442\) 0 0
\(443\) 486.899 281.111i 1.09909 0.634562i 0.163111 0.986608i \(-0.447847\pi\)
0.935983 + 0.352045i \(0.114514\pi\)
\(444\) 0 0
\(445\) 124.469 215.586i 0.279705 0.484463i
\(446\) 0 0
\(447\) 334.953i 0.749335i
\(448\) 0 0
\(449\) 265.855 0.592105 0.296052 0.955172i \(-0.404330\pi\)
0.296052 + 0.955172i \(0.404330\pi\)
\(450\) 0 0
\(451\) 438.391 + 253.105i 0.972043 + 0.561209i
\(452\) 0 0
\(453\) −216.942 375.754i −0.478900 0.829480i
\(454\) 0 0
\(455\) −313.994 122.837i −0.690097 0.269972i
\(456\) 0 0
\(457\) 33.0409 + 57.2285i 0.0722995 + 0.125226i 0.899909 0.436078i \(-0.143633\pi\)
−0.827609 + 0.561305i \(0.810300\pi\)
\(458\) 0 0
\(459\) −615.438 355.323i −1.34082 0.774124i
\(460\) 0 0
\(461\) −59.0572 −0.128107 −0.0640534 0.997946i \(-0.520403\pi\)
−0.0640534 + 0.997946i \(0.520403\pi\)
\(462\) 0 0
\(463\) 390.109i 0.842569i −0.906929 0.421285i \(-0.861579\pi\)
0.906929 0.421285i \(-0.138421\pi\)
\(464\) 0 0
\(465\) 55.4288 96.0055i 0.119202 0.206463i
\(466\) 0 0
\(467\) 312.811 180.601i 0.669830 0.386727i −0.126182 0.992007i \(-0.540272\pi\)
0.796012 + 0.605280i \(0.206939\pi\)
\(468\) 0 0
\(469\) 14.4369 2.19217i 0.0307823 0.00467413i
\(470\) 0 0
\(471\) −338.089 + 195.196i −0.717812 + 0.414429i
\(472\) 0 0
\(473\) 123.415 213.762i 0.260921 0.451928i
\(474\) 0 0
\(475\) 520.591i 1.09598i
\(476\) 0 0
\(477\) 23.8716 0.0500452
\(478\) 0 0
\(479\) 83.4872 + 48.2014i 0.174295 + 0.100629i 0.584609 0.811315i \(-0.301248\pi\)
−0.410315 + 0.911944i \(0.634581\pi\)
\(480\) 0 0
\(481\) 21.3046 + 36.9006i 0.0442922 + 0.0767164i
\(482\) 0 0
\(483\) −405.371 + 323.999i −0.839278 + 0.670805i
\(484\) 0 0
\(485\) 24.0833 + 41.7136i 0.0496564 + 0.0860073i
\(486\) 0 0
\(487\) −49.0925 28.3435i −0.100806 0.0582003i 0.448750 0.893658i \(-0.351870\pi\)
−0.549555 + 0.835457i \(0.685203\pi\)
\(488\) 0 0
\(489\) 481.156 0.983960
\(490\) 0 0
\(491\) 559.896i 1.14032i −0.821534 0.570159i \(-0.806882\pi\)
0.821534 0.570159i \(-0.193118\pi\)
\(492\) 0 0
\(493\) 492.023 852.209i 0.998019 1.72862i
\(494\) 0 0
\(495\) 438.391 253.105i 0.885639 0.511324i
\(496\) 0 0
\(497\) −532.235 665.906i −1.07090 1.33985i
\(498\) 0 0
\(499\) 322.766 186.349i 0.646826 0.373445i −0.140413 0.990093i \(-0.544843\pi\)
0.787239 + 0.616648i \(0.211510\pi\)
\(500\) 0 0
\(501\) −78.5914 + 136.124i −0.156869 + 0.271705i
\(502\) 0 0
\(503\) 648.033i 1.28834i −0.764884 0.644168i \(-0.777204\pi\)
0.764884 0.644168i \(-0.222796\pi\)
\(504\) 0 0
\(505\) 1257.71 2.49052
\(506\) 0 0
\(507\) 206.061 + 118.969i 0.406431 + 0.234653i
\(508\) 0 0
\(509\) 210.281 + 364.217i 0.413125 + 0.715554i 0.995230 0.0975601i \(-0.0311038\pi\)
−0.582104 + 0.813114i \(0.697770\pi\)
\(510\) 0 0
\(511\) −81.0694 533.897i −0.158649 1.04481i
\(512\) 0 0
\(513\) 161.881 + 280.386i 0.315558 + 0.546562i
\(514\) 0 0
\(515\) 552.197 + 318.811i 1.07223 + 0.619050i
\(516\) 0 0
\(517\) 621.297 1.20173
\(518\) 0 0
\(519\) 564.548i 1.08776i
\(520\) 0 0
\(521\) −138.832 + 240.464i −0.266472 + 0.461543i −0.967948 0.251150i \(-0.919191\pi\)
0.701476 + 0.712693i \(0.252525\pi\)
\(522\) 0 0
\(523\) −565.536 + 326.512i −1.08133 + 0.624307i −0.931255 0.364368i \(-0.881285\pi\)
−0.150076 + 0.988674i \(0.547952\pi\)
\(524\) 0 0
\(525\) 190.782 487.672i 0.363393 0.928898i
\(526\) 0 0
\(527\) 178.762 103.208i 0.339207 0.195841i
\(528\) 0 0
\(529\) 613.889 1063.29i 1.16047 2.01000i
\(530\) 0 0
\(531\) 157.484i 0.296580i
\(532\) 0 0
\(533\) −282.814 −0.530609
\(534\) 0 0
\(535\) −1171.43 676.323i −2.18958 1.26416i
\(536\) 0 0
\(537\) −123.312 213.583i −0.229632 0.397734i
\(538\) 0 0
\(539\) −349.441 + 378.264i −0.648313 + 0.701789i
\(540\) 0 0
\(541\) 133.144 + 230.612i 0.246107 + 0.426269i 0.962442 0.271487i \(-0.0875153\pi\)
−0.716336 + 0.697756i \(0.754182\pi\)
\(542\) 0 0
\(543\) −112.023 64.6762i −0.206303 0.119109i
\(544\) 0 0
\(545\) −502.535 −0.922082
\(546\) 0 0
\(547\) 291.492i 0.532892i −0.963850 0.266446i \(-0.914151\pi\)
0.963850 0.266446i \(-0.0858493\pi\)
\(548\) 0 0
\(549\) 1.08631 1.88155i 0.00197871 0.00342723i
\(550\) 0 0
\(551\) −388.256 + 224.160i −0.704640 + 0.406824i
\(552\) 0 0
\(553\) 93.8752 239.962i 0.169756 0.433927i
\(554\) 0 0
\(555\) −91.1869 + 52.6468i −0.164301 + 0.0948591i
\(556\) 0 0
\(557\) −288.069 + 498.951i −0.517180 + 0.895783i 0.482621 + 0.875830i \(0.339685\pi\)
−0.999801 + 0.0199531i \(0.993648\pi\)
\(558\) 0 0
\(559\) 137.902i 0.246694i
\(560\) 0 0
\(561\) −502.205 −0.895196
\(562\) 0 0
\(563\) 498.094 + 287.575i 0.884714 + 0.510790i 0.872210 0.489132i \(-0.162686\pi\)
0.0125043 + 0.999922i \(0.496020\pi\)
\(564\) 0 0
\(565\) 40.1763 + 69.5874i 0.0711085 + 0.123164i
\(566\) 0 0
\(567\) 6.64112 + 43.7362i 0.0117127 + 0.0771362i
\(568\) 0 0
\(569\) −428.609 742.373i −0.753268 1.30470i −0.946231 0.323492i \(-0.895143\pi\)
0.192963 0.981206i \(-0.438190\pi\)
\(570\) 0 0
\(571\) 255.486 + 147.505i 0.447436 + 0.258327i 0.706747 0.707467i \(-0.250162\pi\)
−0.259311 + 0.965794i \(0.583495\pi\)
\(572\) 0 0
\(573\) 226.908 0.396000
\(574\) 0 0
\(575\) 1772.75i 3.08305i
\(576\) 0 0
\(577\) 283.201 490.519i 0.490817 0.850119i −0.509127 0.860691i \(-0.670032\pi\)
0.999944 + 0.0105718i \(0.00336517\pi\)
\(578\) 0 0
\(579\) 428.188 247.214i 0.739530 0.426968i
\(580\) 0 0
\(581\) 429.590 + 537.482i 0.739398 + 0.925098i
\(582\) 0 0
\(583\) 37.0034 21.3639i 0.0634706 0.0366448i
\(584\) 0 0
\(585\) −141.407 + 244.924i −0.241722 + 0.418674i
\(586\) 0 0
\(587\) 882.011i 1.50257i −0.659975 0.751287i \(-0.729433\pi\)
0.659975 0.751287i \(-0.270567\pi\)
\(588\) 0 0
\(589\) −94.0411 −0.159662
\(590\) 0 0
\(591\) −151.741 87.6079i −0.256754 0.148237i
\(592\) 0 0
\(593\) 462.541 + 801.145i 0.780003 + 1.35100i 0.931939 + 0.362614i \(0.118116\pi\)
−0.151937 + 0.988390i \(0.548551\pi\)
\(594\) 0 0
\(595\) 1211.87 968.608i 2.03676 1.62791i
\(596\) 0 0
\(597\) 208.992 + 361.984i 0.350070 + 0.606339i
\(598\) 0 0
\(599\) 131.504 + 75.9240i 0.219540 + 0.126751i 0.605737 0.795665i \(-0.292878\pi\)
−0.386197 + 0.922416i \(0.626212\pi\)
\(600\) 0 0
\(601\) 485.178 0.807284 0.403642 0.914917i \(-0.367744\pi\)
0.403642 + 0.914917i \(0.367744\pi\)
\(602\) 0 0
\(603\) 12.2484i 0.0203125i
\(604\) 0 0
\(605\) −43.2691 + 74.9443i −0.0715192 + 0.123875i
\(606\) 0 0
\(607\) 327.526 189.097i 0.539581 0.311527i −0.205328 0.978693i \(-0.565826\pi\)
0.744909 + 0.667166i \(0.232493\pi\)
\(608\) 0 0
\(609\) 445.854 67.7006i 0.732108 0.111167i
\(610\) 0 0
\(611\) −300.608 + 173.556i −0.491993 + 0.284052i
\(612\) 0 0
\(613\) −307.141 + 531.983i −0.501045 + 0.867836i 0.498954 + 0.866628i \(0.333718\pi\)
−0.999999 + 0.00120729i \(0.999616\pi\)
\(614\) 0 0
\(615\) 698.877i 1.13639i
\(616\) 0 0
\(617\) 1193.13 1.93377 0.966883 0.255220i \(-0.0821479\pi\)
0.966883 + 0.255220i \(0.0821479\pi\)
\(618\) 0 0
\(619\) 423.076 + 244.263i 0.683483 + 0.394609i 0.801166 0.598442i \(-0.204213\pi\)
−0.117683 + 0.993051i \(0.537547\pi\)
\(620\) 0 0
\(621\) 551.250 + 954.792i 0.887680 + 1.53751i
\(622\) 0 0
\(623\) 197.821 + 77.3895i 0.317530 + 0.124221i
\(624\) 0 0
\(625\) −53.2486 92.2293i −0.0851978 0.147567i
\(626\) 0 0
\(627\) 198.145 + 114.399i 0.316021 + 0.182455i
\(628\) 0 0
\(629\) −196.057 −0.311696
\(630\) 0 0
\(631\) 384.907i 0.609995i −0.952353 0.304998i \(-0.901344\pi\)
0.952353 0.304998i \(-0.0986557\pi\)
\(632\) 0 0
\(633\) −344.623 + 596.905i −0.544428 + 0.942977i
\(634\) 0 0
\(635\) −893.048 + 515.601i −1.40637 + 0.811970i
\(636\) 0 0
\(637\) 63.4070 280.633i 0.0995401 0.440555i
\(638\) 0 0
\(639\) −619.251 + 357.525i −0.969093 + 0.559506i
\(640\) 0 0
\(641\) −546.981 + 947.399i −0.853325 + 1.47800i 0.0248661 + 0.999691i \(0.492084\pi\)
−0.878191 + 0.478311i \(0.841249\pi\)
\(642\) 0 0
\(643\) 866.317i 1.34731i 0.739048 + 0.673653i \(0.235276\pi\)
−0.739048 + 0.673653i \(0.764724\pi\)
\(644\) 0 0
\(645\) −340.776 −0.528335
\(646\) 0 0
\(647\) 32.2070 + 18.5947i 0.0497790 + 0.0287399i 0.524683 0.851298i \(-0.324184\pi\)
−0.474904 + 0.880038i \(0.657517\pi\)
\(648\) 0 0
\(649\) −140.941 244.117i −0.217166 0.376143i
\(650\) 0 0
\(651\) 88.0945 + 34.4634i 0.135322 + 0.0529391i
\(652\) 0 0
\(653\) −547.956 949.088i −0.839137 1.45343i −0.890617 0.454754i \(-0.849727\pi\)
0.0514806 0.998674i \(-0.483606\pi\)
\(654\) 0 0
\(655\) 253.037 + 146.091i 0.386315 + 0.223039i
\(656\) 0 0
\(657\) −452.964 −0.689443
\(658\) 0 0
\(659\) 13.9021i 0.0210957i −0.999944 0.0105479i \(-0.996642\pi\)
0.999944 0.0105479i \(-0.00335755\pi\)
\(660\) 0 0
\(661\) −50.8103 + 88.0061i −0.0768689 + 0.133141i −0.901897 0.431950i \(-0.857826\pi\)
0.825029 + 0.565091i \(0.191159\pi\)
\(662\) 0 0
\(663\) 242.986 140.288i 0.366495 0.211596i
\(664\) 0 0
\(665\) −698.789 + 106.108i −1.05081 + 0.159560i
\(666\) 0 0
\(667\) −1322.12 + 763.326i −1.98219 + 1.14442i
\(668\) 0 0
\(669\) 90.3988 156.575i 0.135125 0.234044i
\(670\) 0 0
\(671\) 3.88879i 0.00579551i
\(672\) 0 0
\(673\) −71.7077 −0.106549 −0.0532747 0.998580i \(-0.516966\pi\)
−0.0532747 + 0.998580i \(0.516966\pi\)
\(674\) 0 0
\(675\) −963.475 556.262i −1.42737 0.824092i
\(676\) 0 0
\(677\) −524.998 909.323i −0.775477 1.34317i −0.934526 0.355895i \(-0.884176\pi\)
0.159049 0.987271i \(-0.449157\pi\)
\(678\) 0 0
\(679\) −32.1060 + 25.6612i −0.0472843 + 0.0377927i
\(680\) 0 0
\(681\) 204.273 + 353.812i 0.299961 + 0.519547i
\(682\) 0 0
\(683\) −116.044 66.9981i −0.169904 0.0980939i 0.412637 0.910896i \(-0.364608\pi\)
−0.582540 + 0.812802i \(0.697941\pi\)
\(684\) 0 0
\(685\) −980.301 −1.43110
\(686\) 0 0
\(687\) 29.7225i 0.0432643i
\(688\) 0 0
\(689\) −11.9358 + 20.6734i −0.0173233 + 0.0300049i
\(690\) 0 0
\(691\) 390.403 225.399i 0.564982 0.326193i −0.190161 0.981753i \(-0.560901\pi\)
0.755143 + 0.655560i \(0.227568\pi\)
\(692\) 0 0
\(693\) 269.688 + 337.420i 0.389161 + 0.486898i
\(694\) 0 0
\(695\) −336.737 + 194.415i −0.484514 + 0.279734i
\(696\) 0 0
\(697\) 650.654 1126.97i 0.933507 1.61688i
\(698\) 0 0
\(699\) 213.335i 0.305201i
\(700\) 0 0
\(701\) 524.776 0.748611 0.374305 0.927306i \(-0.377881\pi\)
0.374305 + 0.927306i \(0.377881\pi\)
\(702\) 0 0
\(703\) 77.3543 + 44.6605i 0.110035 + 0.0635285i
\(704\) 0 0
\(705\) −428.883 742.847i −0.608345 1.05368i
\(706\) 0 0
\(707\) 161.115 + 1061.05i 0.227886 + 1.50078i
\(708\) 0 0
\(709\) −22.2186 38.4837i −0.0313379 0.0542789i 0.849931 0.526894i \(-0.176643\pi\)
−0.881269 + 0.472615i \(0.843310\pi\)
\(710\) 0 0
\(711\) −187.177 108.067i −0.263259 0.151993i
\(712\) 0 0
\(713\) −320.236 −0.449138
\(714\) 0 0
\(715\) 506.211i 0.707987i
\(716\) 0 0
\(717\) −97.1595 + 168.285i −0.135508 + 0.234707i
\(718\) 0 0
\(719\) 465.543 268.781i 0.647487 0.373827i −0.140006 0.990151i \(-0.544712\pi\)
0.787493 + 0.616324i \(0.211379\pi\)
\(720\) 0 0
\(721\) −198.224 + 506.695i −0.274929 + 0.702767i
\(722\) 0 0
\(723\) 283.222 163.518i 0.391732 0.226166i
\(724\) 0 0
\(725\) 770.268 1334.14i 1.06244 1.84020i
\(726\) 0 0
\(727\) 168.754i 0.232124i 0.993242 + 0.116062i \(0.0370271\pi\)
−0.993242 + 0.116062i \(0.962973\pi\)
\(728\) 0 0
\(729\) −381.615 −0.523477
\(730\) 0 0
\(731\) −549.515 317.262i −0.751730 0.434012i
\(732\) 0 0
\(733\) 100.846 + 174.671i 0.137580 + 0.238296i 0.926580 0.376097i \(-0.122734\pi\)
−0.789000 + 0.614393i \(0.789401\pi\)
\(734\) 0 0
\(735\) 693.488 + 156.688i 0.943520 + 0.213181i
\(736\) 0 0
\(737\) −10.9618 18.9863i −0.0148735 0.0257616i
\(738\) 0 0
\(739\) −192.074 110.894i −0.259911 0.150059i 0.364383 0.931249i \(-0.381280\pi\)
−0.624294 + 0.781190i \(0.714613\pi\)
\(740\) 0 0
\(741\) −127.827 −0.172507
\(742\) 0 0
\(743\) 344.416i 0.463547i −0.972770 0.231774i \(-0.925547\pi\)
0.972770 0.231774i \(-0.0744529\pi\)
\(744\) 0 0
\(745\) −776.753 + 1345.38i −1.04262 + 1.80587i
\(746\) 0 0
\(747\) 499.824 288.574i 0.669109 0.386310i
\(748\) 0 0
\(749\) 420.510 1074.90i 0.561429 1.43511i
\(750\) 0 0
\(751\) −1167.06 + 673.805i −1.55401 + 0.897211i −0.556206 + 0.831045i \(0.687743\pi\)
−0.997809 + 0.0661661i \(0.978923\pi\)
\(752\) 0 0
\(753\) 198.829 344.382i 0.264050 0.457347i
\(754\) 0 0
\(755\) 2012.34i 2.66536i
\(756\) 0 0
\(757\) 796.713 1.05246 0.526230 0.850342i \(-0.323605\pi\)
0.526230 + 0.850342i \(0.323605\pi\)
\(758\) 0 0
\(759\) 674.740 + 389.561i 0.888985 + 0.513256i
\(760\) 0 0
\(761\) 407.280 + 705.429i 0.535190 + 0.926976i 0.999154 + 0.0411222i \(0.0130933\pi\)
−0.463964 + 0.885854i \(0.653573\pi\)
\(762\) 0 0
\(763\) −64.3758 423.958i −0.0843720 0.555646i
\(764\) 0 0
\(765\) −650.654 1126.97i −0.850529 1.47316i
\(766\) 0 0
\(767\) 136.385 + 78.7421i 0.177817 + 0.102662i
\(768\) 0 0
\(769\) 60.5653 0.0787585 0.0393792 0.999224i \(-0.487462\pi\)
0.0393792 + 0.999224i \(0.487462\pi\)
\(770\) 0 0
\(771\) 315.567i 0.409296i
\(772\) 0 0
\(773\) −499.210 + 864.657i −0.645809 + 1.11857i 0.338305 + 0.941036i \(0.390146\pi\)
−0.984114 + 0.177537i \(0.943187\pi\)
\(774\) 0 0
\(775\) 279.854 161.574i 0.361102 0.208482i
\(776\) 0 0
\(777\) −56.0961 70.1846i −0.0721958 0.0903277i
\(778\) 0 0
\(779\) −513.433 + 296.431i −0.659092 + 0.380527i
\(780\) 0 0
\(781\) −639.935 + 1108.40i −0.819378 + 1.41921i
\(782\) 0 0
\(783\) 958.079i 1.22360i
\(784\) 0 0
\(785\) −1810.63 −2.30654
\(786\) 0 0
\(787\) 652.956 + 376.984i 0.829677 + 0.479014i 0.853742 0.520696i \(-0.174327\pi\)
−0.0240648 + 0.999710i \(0.507661\pi\)
\(788\) 0 0
\(789\) −255.240 442.089i −0.323498 0.560315i
\(790\) 0 0
\(791\) −53.5600 + 42.8086i −0.0677117 + 0.0541196i
\(792\) 0 0
\(793\) 1.08631 + 1.88155i 0.00136988 + 0.00237270i
\(794\) 0 0
\(795\) −51.0871 29.4951i −0.0642605 0.0371008i
\(796\) 0 0
\(797\) −335.856 −0.421400 −0.210700 0.977551i \(-0.567574\pi\)
−0.210700 + 0.977551i \(0.567574\pi\)
\(798\) 0 0
\(799\) 1597.16i 1.99895i
\(800\) 0 0
\(801\) 89.0888 154.306i 0.111222 0.192642i
\(802\) 0 0
\(803\) −702.141 + 405.381i −0.874397 + 0.504833i
\(804\) 0 0
\(805\) −2379.57 + 361.325i −2.95599 + 0.448851i
\(806\) 0 0
\(807\) −345.103 + 199.245i −0.427637 + 0.246897i
\(808\) 0 0
\(809\) −374.844 + 649.250i −0.463343 + 0.802533i −0.999125 0.0418229i \(-0.986683\pi\)
0.535782 + 0.844356i \(0.320017\pi\)
\(810\) 0 0
\(811\) 790.284i 0.974456i −0.873275 0.487228i \(-0.838008\pi\)
0.873275 0.487228i \(-0.161992\pi\)
\(812\) 0 0
\(813\) 346.112 0.425722
\(814\) 0 0
\(815\) 1932.62 + 1115.80i 2.37131 + 1.36908i
\(816\) 0 0
\(817\) 144.541 + 250.352i 0.176917 + 0.306429i
\(818\) 0 0
\(819\) −224.742 87.9212i −0.274411 0.107352i
\(820\) 0 0
\(821\) 459.548 + 795.961i 0.559742 + 0.969501i 0.997518 + 0.0704171i \(0.0224330\pi\)
−0.437776 + 0.899084i \(0.644234\pi\)
\(822\) 0 0
\(823\) 841.077 + 485.596i 1.02197 + 0.590032i 0.914673 0.404196i \(-0.132448\pi\)
0.107293 + 0.994227i \(0.465782\pi\)
\(824\) 0 0
\(825\) −786.207 −0.952979
\(826\) 0 0
\(827\) 110.492i 0.133606i 0.997766 + 0.0668029i \(0.0212799\pi\)
−0.997766 + 0.0668029i \(0.978720\pi\)
\(828\) 0 0
\(829\) −247.986 + 429.525i −0.299139 + 0.518124i −0.975939 0.218043i \(-0.930033\pi\)
0.676800 + 0.736167i \(0.263366\pi\)
\(830\) 0 0
\(831\) 207.751 119.945i 0.250002 0.144339i
\(832\) 0 0
\(833\) 972.399 + 898.303i 1.16735 + 1.07839i
\(834\) 0 0
\(835\) −631.342 + 364.506i −0.756098 + 0.436534i
\(836\) 0 0
\(837\) 100.485 174.045i 0.120054 0.207939i
\(838\) 0 0
\(839\) 529.377i 0.630962i −0.948932 0.315481i \(-0.897834\pi\)
0.948932 0.315481i \(-0.102166\pi\)
\(840\) 0 0
\(841\) 485.672 0.577493
\(842\) 0 0
\(843\) 570.576 + 329.422i 0.676840 + 0.390774i
\(844\) 0 0
\(845\) 551.777 + 955.705i 0.652990 + 1.13101i
\(846\) 0 0
\(847\) −68.7688 26.9030i −0.0811910 0.0317627i
\(848\) 0 0
\(849\) 254.175 + 440.244i 0.299382 + 0.518544i
\(850\) 0 0
\(851\) 263.413 + 152.081i 0.309533 + 0.178709i
\(852\) 0 0
\(853\) −1122.77 −1.31626 −0.658132 0.752902i \(-0.728653\pi\)
−0.658132 + 0.752902i \(0.728653\pi\)
\(854\) 0 0
\(855\) 592.861i 0.693405i
\(856\) 0 0
\(857\) 334.966 580.178i 0.390859 0.676987i −0.601704 0.798719i \(-0.705511\pi\)
0.992563 + 0.121732i \(0.0388448\pi\)
\(858\) 0 0
\(859\) 202.690 117.023i 0.235961 0.136232i −0.377358 0.926067i \(-0.623167\pi\)
0.613319 + 0.789835i \(0.289834\pi\)
\(860\) 0 0
\(861\) 589.600 89.5277i 0.684785 0.103981i
\(862\) 0 0
\(863\) −44.7766 + 25.8518i −0.0518849 + 0.0299557i −0.525718 0.850659i \(-0.676203\pi\)
0.473833 + 0.880615i \(0.342870\pi\)
\(864\) 0 0
\(865\) −1309.18 + 2267.57i −1.51350 + 2.62147i
\(866\) 0 0
\(867\) 779.847i 0.899478i
\(868\) 0 0
\(869\) −386.858 −0.445176
\(870\) 0 0
\(871\) 10.6074 + 6.12421i 0.0121785 + 0.00703124i
\(872\) 0 0
\(873\) 17.2377 + 29.8566i 0.0197454 + 0.0342000i
\(874\) 0 0
\(875\) 775.794 620.065i 0.886621 0.708645i
\(876\) 0 0
\(877\) −54.1626 93.8124i −0.0617590 0.106970i 0.833493 0.552530i \(-0.186338\pi\)
−0.895252 + 0.445561i \(0.853004\pi\)
\(878\) 0 0
\(879\) 202.113 + 116.690i 0.229935 + 0.132753i
\(880\) 0 0
\(881\) 901.643 1.02343 0.511716 0.859155i \(-0.329010\pi\)
0.511716 + 0.859155i \(0.329010\pi\)
\(882\) 0 0
\(883\) 391.049i 0.442864i 0.975176 + 0.221432i \(0.0710731\pi\)
−0.975176 + 0.221432i \(0.928927\pi\)
\(884\) 0 0
\(885\) −194.584 + 337.029i −0.219869 + 0.380823i
\(886\) 0 0
\(887\) −1123.13 + 648.438i −1.26621 + 0.731047i −0.974269 0.225390i \(-0.927634\pi\)
−0.291941 + 0.956436i \(0.594301\pi\)
\(888\) 0 0
\(889\) −549.382 687.360i −0.617978 0.773183i
\(890\) 0 0
\(891\) 57.5186 33.2084i 0.0645551 0.0372709i
\(892\) 0 0
\(893\) −363.824 + 630.161i −0.407417 + 0.705668i
\(894\) 0 0
\(895\) 1143.84i 1.27803i
\(896\) 0 0
\(897\) −435.287 −0.485270
\(898\) 0 0
\(899\) 241.004 + 139.144i 0.268080 + 0.154776i
\(900\) 0 0
\(901\) −54.9199 95.1241i −0.0609544 0.105576i
\(902\) 0 0
\(903\) −43.6542 287.492i −0.0483435 0.318374i
\(904\) 0 0
\(905\) −299.967 519.558i −0.331455 0.574098i
\(906\) 0 0
\(907\) −399.679 230.755i −0.440660 0.254415i 0.263217 0.964737i \(-0.415216\pi\)
−0.703878 + 0.710321i \(0.748550\pi\)
\(908\) 0 0
\(909\) 900.210 0.990330
\(910\) 0 0
\(911\) 119.595i 0.131279i −0.997843 0.0656395i \(-0.979091\pi\)
0.997843 0.0656395i \(-0.0209087\pi\)
\(912\) 0 0
\(913\) 516.519 894.637i 0.565738 0.979888i
\(914\) 0 0
\(915\) −4.64959 + 2.68444i −0.00508152 + 0.00293382i
\(916\) 0 0
\(917\) −90.8333 + 232.186i −0.0990548 + 0.253202i
\(918\) 0 0
\(919\) −612.884 + 353.849i −0.666903 + 0.385037i −0.794902 0.606737i \(-0.792478\pi\)
0.127999 + 0.991774i \(0.459145\pi\)
\(920\) 0 0
\(921\) −42.2951 + 73.2572i −0.0459230 + 0.0795410i
\(922\) 0 0
\(923\) 715.049i 0.774701i
\(924\) 0 0
\(925\) −306.929 −0.331815
\(926\) 0 0
\(927\) 395.236 + 228.190i 0.426361 + 0.246159i
\(928\) 0 0
\(929\) 198.528 + 343.860i 0.213701 + 0.370140i 0.952870 0.303380i \(-0.0981150\pi\)
−0.739169 + 0.673520i \(0.764782\pi\)
\(930\) 0 0
\(931\) −179.033 575.933i −0.192302 0.618618i
\(932\) 0 0
\(933\) 201.193 + 348.476i 0.215641 + 0.373500i
\(934\) 0 0
\(935\) −2017.16 1164.61i −2.15739 1.24557i
\(936\) 0 0
\(937\) −1227.51 −1.31004 −0.655020 0.755612i \(-0.727340\pi\)
−0.655020 + 0.755612i \(0.727340\pi\)
\(938\) 0 0
\(939\) 217.725i 0.231869i
\(940\) 0 0
\(941\) −343.521 + 594.995i −0.365059 + 0.632301i −0.988786 0.149342i \(-0.952285\pi\)
0.623726 + 0.781643i \(0.285618\pi\)
\(942\) 0 0
\(943\) −1748.38 + 1009.43i −1.85406 + 1.07044i
\(944\) 0 0
\(945\) 550.295 1406.65i 0.582322 1.48852i
\(946\) 0 0
\(947\) −115.670 + 66.7819i −0.122143 + 0.0705194i −0.559827 0.828610i \(-0.689132\pi\)
0.437684 + 0.899129i \(0.355799\pi\)
\(948\) 0 0
\(949\) 226.482 392.279i 0.238653 0.413360i
\(950\) 0 0
\(951\) 849.514i 0.893285i
\(952\) 0 0
\(953\) 1030.34 1.08115 0.540575 0.841296i \(-0.318207\pi\)
0.540575 + 0.841296i \(0.318207\pi\)
\(954\) 0 0
\(955\) 911.401 + 526.198i 0.954346 + 0.550992i
\(956\) 0 0
\(957\) −338.531 586.354i −0.353742 0.612700i
\(958\) 0 0
\(959\) −125.579 827.020i −0.130948 0.862378i
\(960\) 0 0
\(961\) −451.313 781.697i −0.469628 0.813420i
\(962\) 0 0
\(963\) −838.452 484.081i −0.870667 0.502680i
\(964\) 0 0
\(965\) 2293.15 2.37632
\(966\) 0 0
\(967\) 337.880i 0.349410i 0.984621 + 0.174705i \(0.0558972\pi\)
−0.984621 + 0.174705i \(0.944103\pi\)
\(968\) 0 0
\(969\) 294.085 509.370i 0.303493 0.525666i
\(970\) 0 0
\(971\) 1454.36 839.672i 1.49779 0.864750i 0.497794 0.867295i \(-0.334143\pi\)
0.999997 + 0.00254493i \(0.000810076\pi\)
\(972\) 0 0
\(973\) −207.153 259.179i −0.212901 0.266371i
\(974\) 0 0
\(975\) 380.398 219.623i 0.390152 0.225254i
\(976\) 0 0
\(977\) 554.679 960.733i 0.567737 0.983350i −0.429052 0.903280i \(-0.641152\pi\)
0.996789 0.0800700i \(-0.0255144\pi\)
\(978\) 0 0
\(979\) 318.921i 0.325762i
\(980\) 0 0
\(981\) −359.691 −0.366657
\(982\) 0 0
\(983\) 360.616 + 208.202i 0.366852 + 0.211802i 0.672082 0.740476i \(-0.265400\pi\)
−0.305230 + 0.952279i \(0.598733\pi\)
\(984\) 0 0
\(985\) −406.324 703.774i −0.412512 0.714491i
\(986\) 0 0
\(987\) 571.754 456.983i 0.579285 0.463002i
\(988\) 0 0
\(989\) 492.202 + 852.519i 0.497677 + 0.862001i
\(990\) 0 0
\(991\) −1034.76 597.420i −1.04416 0.602846i −0.123151 0.992388i \(-0.539300\pi\)
−0.921009 + 0.389542i \(0.872633\pi\)
\(992\) 0 0
\(993\) −839.073 −0.844988
\(994\) 0 0
\(995\) 1938.60i 1.94834i
\(996\) 0 0
\(997\) 838.567 1452.44i 0.841090 1.45681i −0.0478838 0.998853i \(-0.515248\pi\)
0.888974 0.457958i \(-0.151419\pi\)
\(998\) 0 0
\(999\) −165.310 + 95.4415i −0.165475 + 0.0955371i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.r.f.319.2 12
4.3 odd 2 inner 448.3.r.f.319.5 12
7.2 even 3 inner 448.3.r.f.191.5 12
8.3 odd 2 224.3.r.d.95.2 12
8.5 even 2 224.3.r.d.95.5 yes 12
28.23 odd 6 inner 448.3.r.f.191.2 12
56.3 even 6 1568.3.d.l.1471.2 6
56.11 odd 6 1568.3.d.i.1471.5 6
56.37 even 6 224.3.r.d.191.2 yes 12
56.45 odd 6 1568.3.d.l.1471.5 6
56.51 odd 6 224.3.r.d.191.5 yes 12
56.53 even 6 1568.3.d.i.1471.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.3.r.d.95.2 12 8.3 odd 2
224.3.r.d.95.5 yes 12 8.5 even 2
224.3.r.d.191.2 yes 12 56.37 even 6
224.3.r.d.191.5 yes 12 56.51 odd 6
448.3.r.f.191.2 12 28.23 odd 6 inner
448.3.r.f.191.5 12 7.2 even 3 inner
448.3.r.f.319.2 12 1.1 even 1 trivial
448.3.r.f.319.5 12 4.3 odd 2 inner
1568.3.d.i.1471.2 6 56.53 even 6
1568.3.d.i.1471.5 6 56.11 odd 6
1568.3.d.l.1471.2 6 56.3 even 6
1568.3.d.l.1471.5 6 56.45 odd 6