Properties

Label 1568.3.d.i.1471.5
Level $1568$
Weight $3$
Character 1568.1471
Analytic conductor $42.725$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,3,Mod(1471,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.1471"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1568.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-18,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.7249054517\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.9144576.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1471.5
Root \(-2.60168i\) of defining polynomial
Character \(\chi\) \(=\) 1568.1471
Dual form 1568.3.d.i.1471.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.76873i q^{3} -8.20336 q^{5} +5.87158 q^{9} +10.5096i q^{11} -5.87158 q^{13} -14.5096i q^{15} +27.0168 q^{17} +12.3085i q^{19} -41.9139i q^{23} +42.2951 q^{25} +26.3039i q^{27} +36.4235 q^{29} -7.64031i q^{31} -18.5886 q^{33} +7.25684 q^{37} -10.3853i q^{39} -48.1667 q^{41} +23.4863i q^{43} -48.1667 q^{45} +59.1173i q^{47} +47.7855i q^{51} -4.06561 q^{53} -86.2137i q^{55} -21.7705 q^{57} -26.8214i q^{59} +0.370024 q^{61} +48.1667 q^{65} -2.08605i q^{67} +74.1346 q^{69} +121.781i q^{71} -77.1452 q^{73} +74.8088i q^{75} -36.8101i q^{79} +6.31965 q^{81} +98.2951i q^{83} -221.628 q^{85} +64.4235i q^{87} -30.3458 q^{89} +13.5137 q^{93} -100.971i q^{95} -5.87158 q^{97} +61.7077i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 18 q^{5} + 6 q^{17} - 186 q^{33} + 114 q^{37} + 18 q^{53} - 342 q^{57} - 318 q^{61} - 114 q^{69} - 342 q^{73} + 186 q^{81} - 498 q^{85} - 150 q^{89} + 222 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.76873i 0.589578i 0.955562 + 0.294789i \(0.0952494\pi\)
−0.955562 + 0.294789i \(0.904751\pi\)
\(4\) 0 0
\(5\) −8.20336 −1.64067 −0.820336 0.571882i \(-0.806213\pi\)
−0.820336 + 0.571882i \(0.806213\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.87158 0.652398
\(10\) 0 0
\(11\) 10.5096i 0.955415i 0.878519 + 0.477707i \(0.158532\pi\)
−0.878519 + 0.477707i \(0.841468\pi\)
\(12\) 0 0
\(13\) −5.87158 −0.451660 −0.225830 0.974167i \(-0.572509\pi\)
−0.225830 + 0.974167i \(0.572509\pi\)
\(14\) 0 0
\(15\) − 14.5096i − 0.967304i
\(16\) 0 0
\(17\) 27.0168 1.58922 0.794612 0.607118i \(-0.207675\pi\)
0.794612 + 0.607118i \(0.207675\pi\)
\(18\) 0 0
\(19\) 12.3085i 0.647818i 0.946088 + 0.323909i \(0.104997\pi\)
−0.946088 + 0.323909i \(0.895003\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 41.9139i − 1.82235i −0.412025 0.911173i \(-0.635178\pi\)
0.412025 0.911173i \(-0.364822\pi\)
\(24\) 0 0
\(25\) 42.2951 1.69180
\(26\) 0 0
\(27\) 26.3039i 0.974217i
\(28\) 0 0
\(29\) 36.4235 1.25598 0.627992 0.778220i \(-0.283877\pi\)
0.627992 + 0.778220i \(0.283877\pi\)
\(30\) 0 0
\(31\) − 7.64031i − 0.246462i −0.992378 0.123231i \(-0.960674\pi\)
0.992378 0.123231i \(-0.0393256\pi\)
\(32\) 0 0
\(33\) −18.5886 −0.563292
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.25684 0.196131 0.0980654 0.995180i \(-0.468735\pi\)
0.0980654 + 0.995180i \(0.468735\pi\)
\(38\) 0 0
\(39\) − 10.3853i − 0.266289i
\(40\) 0 0
\(41\) −48.1667 −1.17480 −0.587398 0.809298i \(-0.699848\pi\)
−0.587398 + 0.809298i \(0.699848\pi\)
\(42\) 0 0
\(43\) 23.4863i 0.546193i 0.961987 + 0.273097i \(0.0880479\pi\)
−0.961987 + 0.273097i \(0.911952\pi\)
\(44\) 0 0
\(45\) −48.1667 −1.07037
\(46\) 0 0
\(47\) 59.1173i 1.25781i 0.777480 + 0.628907i \(0.216498\pi\)
−0.777480 + 0.628907i \(0.783502\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 47.7855i 0.936971i
\(52\) 0 0
\(53\) −4.06561 −0.0767097 −0.0383548 0.999264i \(-0.512212\pi\)
−0.0383548 + 0.999264i \(0.512212\pi\)
\(54\) 0 0
\(55\) − 86.2137i − 1.56752i
\(56\) 0 0
\(57\) −21.7705 −0.381939
\(58\) 0 0
\(59\) − 26.8214i − 0.454601i −0.973825 0.227300i \(-0.927010\pi\)
0.973825 0.227300i \(-0.0729899\pi\)
\(60\) 0 0
\(61\) 0.370024 0.00606597 0.00303298 0.999995i \(-0.499035\pi\)
0.00303298 + 0.999995i \(0.499035\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 48.1667 0.741026
\(66\) 0 0
\(67\) − 2.08605i − 0.0311351i −0.999879 0.0155676i \(-0.995044\pi\)
0.999879 0.0155676i \(-0.00495551\pi\)
\(68\) 0 0
\(69\) 74.1346 1.07442
\(70\) 0 0
\(71\) 121.781i 1.71523i 0.514291 + 0.857616i \(0.328055\pi\)
−0.514291 + 0.857616i \(0.671945\pi\)
\(72\) 0 0
\(73\) −77.1452 −1.05678 −0.528392 0.849001i \(-0.677205\pi\)
−0.528392 + 0.849001i \(0.677205\pi\)
\(74\) 0 0
\(75\) 74.8088i 0.997450i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 36.8101i − 0.465950i −0.972483 0.232975i \(-0.925154\pi\)
0.972483 0.232975i \(-0.0748461\pi\)
\(80\) 0 0
\(81\) 6.31965 0.0780204
\(82\) 0 0
\(83\) 98.2951i 1.18428i 0.805836 + 0.592139i \(0.201716\pi\)
−0.805836 + 0.592139i \(0.798284\pi\)
\(84\) 0 0
\(85\) −221.628 −2.60739
\(86\) 0 0
\(87\) 64.4235i 0.740500i
\(88\) 0 0
\(89\) −30.3458 −0.340964 −0.170482 0.985361i \(-0.554532\pi\)
−0.170482 + 0.985361i \(0.554532\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 13.5137 0.145308
\(94\) 0 0
\(95\) − 100.971i − 1.06286i
\(96\) 0 0
\(97\) −5.87158 −0.0605317 −0.0302659 0.999542i \(-0.509635\pi\)
−0.0302659 + 0.999542i \(0.509635\pi\)
\(98\) 0 0
\(99\) 61.7077i 0.623310i
\(100\) 0 0
\(101\) −153.317 −1.51799 −0.758993 0.651099i \(-0.774308\pi\)
−0.758993 + 0.651099i \(0.774308\pi\)
\(102\) 0 0
\(103\) 77.7269i 0.754630i 0.926085 + 0.377315i \(0.123153\pi\)
−0.926085 + 0.377315i \(0.876847\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 164.889i 1.54102i 0.637427 + 0.770511i \(0.279999\pi\)
−0.637427 + 0.770511i \(0.720001\pi\)
\(108\) 0 0
\(109\) 61.2596 0.562015 0.281008 0.959706i \(-0.409331\pi\)
0.281008 + 0.959706i \(0.409331\pi\)
\(110\) 0 0
\(111\) 12.8354i 0.115634i
\(112\) 0 0
\(113\) −9.79509 −0.0866822 −0.0433411 0.999060i \(-0.513800\pi\)
−0.0433411 + 0.999060i \(0.513800\pi\)
\(114\) 0 0
\(115\) 343.835i 2.98987i
\(116\) 0 0
\(117\) −34.4754 −0.294662
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5491 0.0871828
\(122\) 0 0
\(123\) − 85.1940i − 0.692634i
\(124\) 0 0
\(125\) −141.878 −1.13502
\(126\) 0 0
\(127\) 125.705i 0.989802i 0.868949 + 0.494901i \(0.164796\pi\)
−0.868949 + 0.494901i \(0.835204\pi\)
\(128\) 0 0
\(129\) −41.5411 −0.322024
\(130\) 0 0
\(131\) − 35.6173i − 0.271888i −0.990717 0.135944i \(-0.956593\pi\)
0.990717 0.135944i \(-0.0434067\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 215.780i − 1.59837i
\(136\) 0 0
\(137\) −119.500 −0.872263 −0.436131 0.899883i \(-0.643652\pi\)
−0.436131 + 0.899883i \(0.643652\pi\)
\(138\) 0 0
\(139\) − 47.3989i − 0.341000i −0.985358 0.170500i \(-0.945462\pi\)
0.985358 0.170500i \(-0.0545382\pi\)
\(140\) 0 0
\(141\) −104.563 −0.741580
\(142\) 0 0
\(143\) − 61.7077i − 0.431523i
\(144\) 0 0
\(145\) −298.795 −2.06066
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −189.374 −1.27097 −0.635485 0.772114i \(-0.719200\pi\)
−0.635485 + 0.772114i \(0.719200\pi\)
\(150\) 0 0
\(151\) 245.307i 1.62455i 0.583273 + 0.812276i \(0.301772\pi\)
−0.583273 + 0.812276i \(0.698228\pi\)
\(152\) 0 0
\(153\) 158.631 1.03681
\(154\) 0 0
\(155\) 62.6762i 0.404363i
\(156\) 0 0
\(157\) 220.718 1.40585 0.702924 0.711264i \(-0.251877\pi\)
0.702924 + 0.711264i \(0.251877\pi\)
\(158\) 0 0
\(159\) − 7.19099i − 0.0452263i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 272.034i − 1.66892i −0.551067 0.834461i \(-0.685779\pi\)
0.551067 0.834461i \(-0.314221\pi\)
\(164\) 0 0
\(165\) 152.489 0.924176
\(166\) 0 0
\(167\) 88.8674i 0.532140i 0.963954 + 0.266070i \(0.0857252\pi\)
−0.963954 + 0.266070i \(0.914275\pi\)
\(168\) 0 0
\(169\) −134.525 −0.796003
\(170\) 0 0
\(171\) 72.2705i 0.422635i
\(172\) 0 0
\(173\) −319.182 −1.84498 −0.922491 0.386019i \(-0.873850\pi\)
−0.922491 + 0.386019i \(0.873850\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 47.4400 0.268023
\(178\) 0 0
\(179\) − 139.436i − 0.778970i −0.921033 0.389485i \(-0.872653\pi\)
0.921033 0.389485i \(-0.127347\pi\)
\(180\) 0 0
\(181\) −73.1328 −0.404048 −0.202024 0.979381i \(-0.564752\pi\)
−0.202024 + 0.979381i \(0.564752\pi\)
\(182\) 0 0
\(183\) 0.654474i 0.00357636i
\(184\) 0 0
\(185\) −59.5305 −0.321786
\(186\) 0 0
\(187\) 283.935i 1.51837i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 128.288i 0.671667i 0.941921 + 0.335833i \(0.109018\pi\)
−0.941921 + 0.335833i \(0.890982\pi\)
\(192\) 0 0
\(193\) 279.538 1.44838 0.724192 0.689598i \(-0.242213\pi\)
0.724192 + 0.689598i \(0.242213\pi\)
\(194\) 0 0
\(195\) 85.1940i 0.436892i
\(196\) 0 0
\(197\) −99.0628 −0.502857 −0.251428 0.967876i \(-0.580900\pi\)
−0.251428 + 0.967876i \(0.580900\pi\)
\(198\) 0 0
\(199\) − 236.318i − 1.18753i −0.804640 0.593763i \(-0.797641\pi\)
0.804640 0.593763i \(-0.202359\pi\)
\(200\) 0 0
\(201\) 3.68967 0.0183566
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 395.128 1.92746
\(206\) 0 0
\(207\) − 246.101i − 1.18889i
\(208\) 0 0
\(209\) −129.357 −0.618934
\(210\) 0 0
\(211\) − 389.683i − 1.84684i −0.383791 0.923420i \(-0.625382\pi\)
0.383791 0.923420i \(-0.374618\pi\)
\(212\) 0 0
\(213\) −215.399 −1.01126
\(214\) 0 0
\(215\) − 192.667i − 0.896124i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 136.449i − 0.623057i
\(220\) 0 0
\(221\) −158.631 −0.717788
\(222\) 0 0
\(223\) − 102.219i − 0.458379i −0.973382 0.229190i \(-0.926392\pi\)
0.973382 0.229190i \(-0.0736076\pi\)
\(224\) 0 0
\(225\) 248.339 1.10373
\(226\) 0 0
\(227\) 230.982i 1.01754i 0.860901 + 0.508772i \(0.169900\pi\)
−0.860901 + 0.508772i \(0.830100\pi\)
\(228\) 0 0
\(229\) −16.8044 −0.0733817 −0.0366909 0.999327i \(-0.511682\pi\)
−0.0366909 + 0.999327i \(0.511682\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −120.615 −0.517660 −0.258830 0.965923i \(-0.583337\pi\)
−0.258830 + 0.965923i \(0.583337\pi\)
\(234\) 0 0
\(235\) − 484.960i − 2.06366i
\(236\) 0 0
\(237\) 65.1073 0.274714
\(238\) 0 0
\(239\) 109.863i 0.459679i 0.973229 + 0.229840i \(0.0738202\pi\)
−0.973229 + 0.229840i \(0.926180\pi\)
\(240\) 0 0
\(241\) 184.899 0.767214 0.383607 0.923496i \(-0.374682\pi\)
0.383607 + 0.923496i \(0.374682\pi\)
\(242\) 0 0
\(243\) 247.913i 1.02022i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 72.2705i − 0.292593i
\(248\) 0 0
\(249\) −173.858 −0.698224
\(250\) 0 0
\(251\) 224.827i 0.895724i 0.894103 + 0.447862i \(0.147814\pi\)
−0.894103 + 0.447862i \(0.852186\pi\)
\(252\) 0 0
\(253\) 440.497 1.74110
\(254\) 0 0
\(255\) − 392.002i − 1.53726i
\(256\) 0 0
\(257\) 178.414 0.694219 0.347109 0.937825i \(-0.387163\pi\)
0.347109 + 0.937825i \(0.387163\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 213.864 0.819400
\(262\) 0 0
\(263\) 288.613i 1.09739i 0.836023 + 0.548694i \(0.184875\pi\)
−0.836023 + 0.548694i \(0.815125\pi\)
\(264\) 0 0
\(265\) 33.3517 0.125855
\(266\) 0 0
\(267\) − 53.6736i − 0.201025i
\(268\) 0 0
\(269\) 225.297 0.837536 0.418768 0.908093i \(-0.362462\pi\)
0.418768 + 0.908093i \(0.362462\pi\)
\(270\) 0 0
\(271\) 195.683i 0.722079i 0.932551 + 0.361039i \(0.117578\pi\)
−0.932551 + 0.361039i \(0.882422\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 444.503i 1.61637i
\(276\) 0 0
\(277\) −135.628 −0.489633 −0.244817 0.969569i \(-0.578728\pi\)
−0.244817 + 0.969569i \(0.578728\pi\)
\(278\) 0 0
\(279\) − 44.8607i − 0.160791i
\(280\) 0 0
\(281\) −372.495 −1.32560 −0.662802 0.748795i \(-0.730633\pi\)
−0.662802 + 0.748795i \(0.730633\pi\)
\(282\) 0 0
\(283\) 287.409i 1.01558i 0.861481 + 0.507789i \(0.169537\pi\)
−0.861481 + 0.507789i \(0.830463\pi\)
\(284\) 0 0
\(285\) 178.591 0.626637
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 440.907 1.52563
\(290\) 0 0
\(291\) − 10.3853i − 0.0356882i
\(292\) 0 0
\(293\) 131.947 0.450332 0.225166 0.974320i \(-0.427708\pi\)
0.225166 + 0.974320i \(0.427708\pi\)
\(294\) 0 0
\(295\) 220.026i 0.745850i
\(296\) 0 0
\(297\) −276.442 −0.930782
\(298\) 0 0
\(299\) 246.101i 0.823080i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 271.176i − 0.894971i
\(304\) 0 0
\(305\) −3.03544 −0.00995226
\(306\) 0 0
\(307\) − 47.8253i − 0.155783i −0.996962 0.0778913i \(-0.975181\pi\)
0.996962 0.0778913i \(-0.0248187\pi\)
\(308\) 0 0
\(309\) −137.478 −0.444913
\(310\) 0 0
\(311\) − 227.499i − 0.731508i −0.930712 0.365754i \(-0.880811\pi\)
0.930712 0.365754i \(-0.119189\pi\)
\(312\) 0 0
\(313\) 123.097 0.393280 0.196640 0.980476i \(-0.436997\pi\)
0.196640 + 0.980476i \(0.436997\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −480.295 −1.51513 −0.757563 0.652762i \(-0.773610\pi\)
−0.757563 + 0.652762i \(0.773610\pi\)
\(318\) 0 0
\(319\) 382.795i 1.19998i
\(320\) 0 0
\(321\) −291.646 −0.908553
\(322\) 0 0
\(323\) 332.537i 1.02953i
\(324\) 0 0
\(325\) −248.339 −0.764120
\(326\) 0 0
\(327\) 108.352i 0.331352i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 474.392i 1.43321i 0.697480 + 0.716604i \(0.254305\pi\)
−0.697480 + 0.716604i \(0.745695\pi\)
\(332\) 0 0
\(333\) 42.6091 0.127955
\(334\) 0 0
\(335\) 17.1126i 0.0510825i
\(336\) 0 0
\(337\) −305.861 −0.907599 −0.453799 0.891104i \(-0.649932\pi\)
−0.453799 + 0.891104i \(0.649932\pi\)
\(338\) 0 0
\(339\) − 17.3249i − 0.0511059i
\(340\) 0 0
\(341\) 80.2963 0.235473
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −608.153 −1.76276
\(346\) 0 0
\(347\) 688.668i 1.98463i 0.123722 + 0.992317i \(0.460517\pi\)
−0.123722 + 0.992317i \(0.539483\pi\)
\(348\) 0 0
\(349\) 128.861 0.369228 0.184614 0.982811i \(-0.440896\pi\)
0.184614 + 0.982811i \(0.440896\pi\)
\(350\) 0 0
\(351\) − 154.445i − 0.440015i
\(352\) 0 0
\(353\) −95.0923 −0.269383 −0.134692 0.990888i \(-0.543004\pi\)
−0.134692 + 0.990888i \(0.543004\pi\)
\(354\) 0 0
\(355\) − 999.016i − 2.81413i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 36.2145i − 0.100876i −0.998727 0.0504380i \(-0.983938\pi\)
0.998727 0.0504380i \(-0.0160617\pi\)
\(360\) 0 0
\(361\) 209.500 0.580332
\(362\) 0 0
\(363\) 18.6586i 0.0514011i
\(364\) 0 0
\(365\) 632.850 1.73384
\(366\) 0 0
\(367\) − 23.8706i − 0.0650424i −0.999471 0.0325212i \(-0.989646\pi\)
0.999471 0.0325212i \(-0.0103536\pi\)
\(368\) 0 0
\(369\) −282.814 −0.766435
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −171.377 −0.459456 −0.229728 0.973255i \(-0.573784\pi\)
−0.229728 + 0.973255i \(0.573784\pi\)
\(374\) 0 0
\(375\) − 250.944i − 0.669184i
\(376\) 0 0
\(377\) −213.864 −0.567277
\(378\) 0 0
\(379\) 22.8798i 0.0603689i 0.999544 + 0.0301845i \(0.00960947\pi\)
−0.999544 + 0.0301845i \(0.990391\pi\)
\(380\) 0 0
\(381\) −222.339 −0.583566
\(382\) 0 0
\(383\) − 564.774i − 1.47460i −0.675563 0.737302i \(-0.736099\pi\)
0.675563 0.737302i \(-0.263901\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 137.902i 0.356335i
\(388\) 0 0
\(389\) 119.522 0.307254 0.153627 0.988129i \(-0.450905\pi\)
0.153627 + 0.988129i \(0.450905\pi\)
\(390\) 0 0
\(391\) − 1132.38i − 2.89611i
\(392\) 0 0
\(393\) 62.9975 0.160299
\(394\) 0 0
\(395\) 301.966i 0.764472i
\(396\) 0 0
\(397\) 525.469 1.32360 0.661799 0.749681i \(-0.269793\pi\)
0.661799 + 0.749681i \(0.269793\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −166.506 −0.415226 −0.207613 0.978211i \(-0.566569\pi\)
−0.207613 + 0.978211i \(0.566569\pi\)
\(402\) 0 0
\(403\) 44.8607i 0.111317i
\(404\) 0 0
\(405\) −51.8424 −0.128006
\(406\) 0 0
\(407\) 76.2662i 0.187386i
\(408\) 0 0
\(409\) 475.345 1.16221 0.581106 0.813828i \(-0.302620\pi\)
0.581106 + 0.813828i \(0.302620\pi\)
\(410\) 0 0
\(411\) − 211.364i − 0.514267i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 806.350i − 1.94301i
\(416\) 0 0
\(417\) 83.8361 0.201046
\(418\) 0 0
\(419\) 370.547i 0.884360i 0.896926 + 0.442180i \(0.145795\pi\)
−0.896926 + 0.442180i \(0.854205\pi\)
\(420\) 0 0
\(421\) −248.779 −0.590924 −0.295462 0.955355i \(-0.595474\pi\)
−0.295462 + 0.955355i \(0.595474\pi\)
\(422\) 0 0
\(423\) 347.112i 0.820596i
\(424\) 0 0
\(425\) 1142.68 2.68865
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 109.145 0.254416
\(430\) 0 0
\(431\) 66.0180i 0.153174i 0.997063 + 0.0765870i \(0.0244023\pi\)
−0.997063 + 0.0765870i \(0.975598\pi\)
\(432\) 0 0
\(433\) 753.932 1.74118 0.870591 0.492007i \(-0.163737\pi\)
0.870591 + 0.492007i \(0.163737\pi\)
\(434\) 0 0
\(435\) − 528.489i − 1.21492i
\(436\) 0 0
\(437\) 515.899 1.18055
\(438\) 0 0
\(439\) 37.2376i 0.0848238i 0.999100 + 0.0424119i \(0.0135042\pi\)
−0.999100 + 0.0424119i \(0.986496\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 562.222i 1.26912i 0.772872 + 0.634562i \(0.218820\pi\)
−0.772872 + 0.634562i \(0.781180\pi\)
\(444\) 0 0
\(445\) 248.937 0.559409
\(446\) 0 0
\(447\) − 334.953i − 0.749335i
\(448\) 0 0
\(449\) 265.855 0.592105 0.296052 0.955172i \(-0.404330\pi\)
0.296052 + 0.955172i \(0.404330\pi\)
\(450\) 0 0
\(451\) − 506.211i − 1.12242i
\(452\) 0 0
\(453\) −433.884 −0.957801
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −66.0818 −0.144599 −0.0722995 0.997383i \(-0.523034\pi\)
−0.0722995 + 0.997383i \(0.523034\pi\)
\(458\) 0 0
\(459\) 710.646i 1.54825i
\(460\) 0 0
\(461\) 59.0572 0.128107 0.0640534 0.997946i \(-0.479597\pi\)
0.0640534 + 0.997946i \(0.479597\pi\)
\(462\) 0 0
\(463\) 390.109i 0.842569i 0.906929 + 0.421285i \(0.138421\pi\)
−0.906929 + 0.421285i \(0.861579\pi\)
\(464\) 0 0
\(465\) −110.858 −0.238403
\(466\) 0 0
\(467\) 361.203i 0.773453i 0.922194 + 0.386727i \(0.126394\pi\)
−0.922194 + 0.386727i \(0.873606\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 390.392i 0.828858i
\(472\) 0 0
\(473\) −246.831 −0.521841
\(474\) 0 0
\(475\) 520.591i 1.09598i
\(476\) 0 0
\(477\) −23.8716 −0.0500452
\(478\) 0 0
\(479\) 96.4028i 0.201258i 0.994924 + 0.100629i \(0.0320856\pi\)
−0.994924 + 0.100629i \(0.967914\pi\)
\(480\) 0 0
\(481\) −42.6091 −0.0885845
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 48.1667 0.0993127
\(486\) 0 0
\(487\) − 56.6871i − 0.116401i −0.998305 0.0582003i \(-0.981464\pi\)
0.998305 0.0582003i \(-0.0185362\pi\)
\(488\) 0 0
\(489\) 481.156 0.983960
\(490\) 0 0
\(491\) − 559.896i − 1.14032i −0.821534 0.570159i \(-0.806882\pi\)
0.821534 0.570159i \(-0.193118\pi\)
\(492\) 0 0
\(493\) 984.046 1.99604
\(494\) 0 0
\(495\) − 506.211i − 1.02265i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 372.698i 0.746890i 0.927652 + 0.373445i \(0.121824\pi\)
−0.927652 + 0.373445i \(0.878176\pi\)
\(500\) 0 0
\(501\) −157.183 −0.313738
\(502\) 0 0
\(503\) 648.033i 1.28834i 0.764884 + 0.644168i \(0.222796\pi\)
−0.764884 + 0.644168i \(0.777204\pi\)
\(504\) 0 0
\(505\) 1257.71 2.49052
\(506\) 0 0
\(507\) − 237.938i − 0.469306i
\(508\) 0 0
\(509\) 420.562 0.826251 0.413125 0.910674i \(-0.364437\pi\)
0.413125 + 0.910674i \(0.364437\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −323.762 −0.631115
\(514\) 0 0
\(515\) − 637.622i − 1.23810i
\(516\) 0 0
\(517\) −621.297 −1.20173
\(518\) 0 0
\(519\) − 564.548i − 1.08776i
\(520\) 0 0
\(521\) 277.664 0.532943 0.266472 0.963843i \(-0.414142\pi\)
0.266472 + 0.963843i \(0.414142\pi\)
\(522\) 0 0
\(523\) − 653.025i − 1.24861i −0.781179 0.624307i \(-0.785382\pi\)
0.781179 0.624307i \(-0.214618\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 206.417i − 0.391683i
\(528\) 0 0
\(529\) −1227.78 −2.32094
\(530\) 0 0
\(531\) − 157.484i − 0.296580i
\(532\) 0 0
\(533\) 282.814 0.530609
\(534\) 0 0
\(535\) − 1352.65i − 2.52831i
\(536\) 0 0
\(537\) 246.625 0.459264
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 266.287 0.492213 0.246107 0.969243i \(-0.420849\pi\)
0.246107 + 0.969243i \(0.420849\pi\)
\(542\) 0 0
\(543\) − 129.352i − 0.238218i
\(544\) 0 0
\(545\) −502.535 −0.922082
\(546\) 0 0
\(547\) − 291.492i − 0.532892i −0.963850 0.266446i \(-0.914151\pi\)
0.963850 0.266446i \(-0.0858493\pi\)
\(548\) 0 0
\(549\) 2.17263 0.00395742
\(550\) 0 0
\(551\) 448.320i 0.813648i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) − 105.294i − 0.189718i
\(556\) 0 0
\(557\) −576.139 −1.03436 −0.517180 0.855876i \(-0.673018\pi\)
−0.517180 + 0.855876i \(0.673018\pi\)
\(558\) 0 0
\(559\) − 137.902i − 0.246694i
\(560\) 0 0
\(561\) −502.205 −0.895196
\(562\) 0 0
\(563\) − 575.149i − 1.02158i −0.859706 0.510790i \(-0.829353\pi\)
0.859706 0.510790i \(-0.170647\pi\)
\(564\) 0 0
\(565\) 80.3526 0.142217
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 857.219 1.50654 0.753268 0.657714i \(-0.228477\pi\)
0.753268 + 0.657714i \(0.228477\pi\)
\(570\) 0 0
\(571\) − 295.010i − 0.516655i −0.966057 0.258327i \(-0.916829\pi\)
0.966057 0.258327i \(-0.0831713\pi\)
\(572\) 0 0
\(573\) −226.908 −0.396000
\(574\) 0 0
\(575\) − 1772.75i − 3.08305i
\(576\) 0 0
\(577\) −566.402 −0.981633 −0.490817 0.871263i \(-0.663302\pi\)
−0.490817 + 0.871263i \(0.663302\pi\)
\(578\) 0 0
\(579\) 494.429i 0.853936i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 42.7278i − 0.0732896i
\(584\) 0 0
\(585\) 282.814 0.483443
\(586\) 0 0
\(587\) − 882.011i − 1.50257i −0.659975 0.751287i \(-0.729433\pi\)
0.659975 0.751287i \(-0.270567\pi\)
\(588\) 0 0
\(589\) 94.0411 0.159662
\(590\) 0 0
\(591\) − 175.216i − 0.296473i
\(592\) 0 0
\(593\) −925.083 −1.56001 −0.780003 0.625776i \(-0.784782\pi\)
−0.780003 + 0.625776i \(0.784782\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 417.984 0.700140
\(598\) 0 0
\(599\) 151.848i 0.253502i 0.991935 + 0.126751i \(0.0404550\pi\)
−0.991935 + 0.126751i \(0.959545\pi\)
\(600\) 0 0
\(601\) 485.178 0.807284 0.403642 0.914917i \(-0.367744\pi\)
0.403642 + 0.914917i \(0.367744\pi\)
\(602\) 0 0
\(603\) − 12.2484i − 0.0203125i
\(604\) 0 0
\(605\) −86.5382 −0.143038
\(606\) 0 0
\(607\) − 378.194i − 0.623054i −0.950237 0.311527i \(-0.899160\pi\)
0.950237 0.311527i \(-0.100840\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 347.112i − 0.568105i
\(612\) 0 0
\(613\) −614.281 −1.00209 −0.501045 0.865421i \(-0.667051\pi\)
−0.501045 + 0.865421i \(0.667051\pi\)
\(614\) 0 0
\(615\) 698.877i 1.13639i
\(616\) 0 0
\(617\) 1193.13 1.93377 0.966883 0.255220i \(-0.0821479\pi\)
0.966883 + 0.255220i \(0.0821479\pi\)
\(618\) 0 0
\(619\) − 488.526i − 0.789219i −0.918849 0.394609i \(-0.870880\pi\)
0.918849 0.394609i \(-0.129120\pi\)
\(620\) 0 0
\(621\) 1102.50 1.77536
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 106.497 0.170396
\(626\) 0 0
\(627\) − 228.799i − 0.364910i
\(628\) 0 0
\(629\) 196.057 0.311696
\(630\) 0 0
\(631\) 384.907i 0.609995i 0.952353 + 0.304998i \(0.0986557\pi\)
−0.952353 + 0.304998i \(0.901344\pi\)
\(632\) 0 0
\(633\) 689.246 1.08886
\(634\) 0 0
\(635\) − 1031.20i − 1.62394i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 715.049i 1.11901i
\(640\) 0 0
\(641\) 1093.96 1.70665 0.853325 0.521380i \(-0.174583\pi\)
0.853325 + 0.521380i \(0.174583\pi\)
\(642\) 0 0
\(643\) 866.317i 1.34731i 0.739048 + 0.673653i \(0.235276\pi\)
−0.739048 + 0.673653i \(0.764724\pi\)
\(644\) 0 0
\(645\) 340.776 0.528335
\(646\) 0 0
\(647\) 37.1894i 0.0574798i 0.999587 + 0.0287399i \(0.00914946\pi\)
−0.999587 + 0.0287399i \(0.990851\pi\)
\(648\) 0 0
\(649\) 281.882 0.434332
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1095.91 −1.67827 −0.839137 0.543920i \(-0.816939\pi\)
−0.839137 + 0.543920i \(0.816939\pi\)
\(654\) 0 0
\(655\) 292.181i 0.446079i
\(656\) 0 0
\(657\) −452.964 −0.689443
\(658\) 0 0
\(659\) − 13.9021i − 0.0210957i −0.999944 0.0105479i \(-0.996642\pi\)
0.999944 0.0105479i \(-0.00335755\pi\)
\(660\) 0 0
\(661\) −101.621 −0.153738 −0.0768689 0.997041i \(-0.524492\pi\)
−0.0768689 + 0.997041i \(0.524492\pi\)
\(662\) 0 0
\(663\) − 280.576i − 0.423192i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1526.65i − 2.28884i
\(668\) 0 0
\(669\) 180.798 0.270250
\(670\) 0 0
\(671\) 3.88879i 0.00579551i
\(672\) 0 0
\(673\) −71.7077 −0.106549 −0.0532747 0.998580i \(-0.516966\pi\)
−0.0532747 + 0.998580i \(0.516966\pi\)
\(674\) 0 0
\(675\) 1112.52i 1.64818i
\(676\) 0 0
\(677\) −1050.00 −1.55095 −0.775477 0.631376i \(-0.782491\pi\)
−0.775477 + 0.631376i \(0.782491\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −408.547 −0.599922
\(682\) 0 0
\(683\) 133.996i 0.196188i 0.995177 + 0.0980939i \(0.0312745\pi\)
−0.995177 + 0.0980939i \(0.968725\pi\)
\(684\) 0 0
\(685\) 980.301 1.43110
\(686\) 0 0
\(687\) − 29.7225i − 0.0432643i
\(688\) 0 0
\(689\) 23.8716 0.0346467
\(690\) 0 0
\(691\) 450.798i 0.652385i 0.945303 + 0.326193i \(0.105766\pi\)
−0.945303 + 0.326193i \(0.894234\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 388.831i 0.559468i
\(696\) 0 0
\(697\) −1301.31 −1.86701
\(698\) 0 0
\(699\) − 213.335i − 0.305201i
\(700\) 0 0
\(701\) −524.776 −0.748611 −0.374305 0.927306i \(-0.622119\pi\)
−0.374305 + 0.927306i \(0.622119\pi\)
\(702\) 0 0
\(703\) 89.3211i 0.127057i
\(704\) 0 0
\(705\) 857.766 1.21669
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −44.4372 −0.0626759 −0.0313379 0.999509i \(-0.509977\pi\)
−0.0313379 + 0.999509i \(0.509977\pi\)
\(710\) 0 0
\(711\) − 216.133i − 0.303985i
\(712\) 0 0
\(713\) −320.236 −0.449138
\(714\) 0 0
\(715\) 506.211i 0.707987i
\(716\) 0 0
\(717\) −194.319 −0.271017
\(718\) 0 0
\(719\) − 537.563i − 0.747654i −0.927499 0.373827i \(-0.878045\pi\)
0.927499 0.373827i \(-0.121955\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 327.037i 0.452333i
\(724\) 0 0
\(725\) 1540.54 2.12488
\(726\) 0 0
\(727\) − 168.754i − 0.232124i −0.993242 0.116062i \(-0.962973\pi\)
0.993242 0.116062i \(-0.0370271\pi\)
\(728\) 0 0
\(729\) −381.615 −0.523477
\(730\) 0 0
\(731\) 634.525i 0.868023i
\(732\) 0 0
\(733\) 201.692 0.275160 0.137580 0.990491i \(-0.456068\pi\)
0.137580 + 0.990491i \(0.456068\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.9235 0.0297470
\(738\) 0 0
\(739\) 221.788i 0.300119i 0.988677 + 0.150059i \(0.0479465\pi\)
−0.988677 + 0.150059i \(0.952054\pi\)
\(740\) 0 0
\(741\) 127.827 0.172507
\(742\) 0 0
\(743\) 344.416i 0.463547i 0.972770 + 0.231774i \(0.0744529\pi\)
−0.972770 + 0.231774i \(0.925547\pi\)
\(744\) 0 0
\(745\) 1553.51 2.08524
\(746\) 0 0
\(747\) 577.147i 0.772620i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1347.61i 1.79442i 0.441603 + 0.897211i \(0.354410\pi\)
−0.441603 + 0.897211i \(0.645590\pi\)
\(752\) 0 0
\(753\) −397.659 −0.528099
\(754\) 0 0
\(755\) − 2012.34i − 2.66536i
\(756\) 0 0
\(757\) −796.713 −1.05246 −0.526230 0.850342i \(-0.676395\pi\)
−0.526230 + 0.850342i \(0.676395\pi\)
\(758\) 0 0
\(759\) 779.122i 1.02651i
\(760\) 0 0
\(761\) −814.559 −1.07038 −0.535190 0.844732i \(-0.679760\pi\)
−0.535190 + 0.844732i \(0.679760\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1301.31 −1.70106
\(766\) 0 0
\(767\) 157.484i 0.205325i
\(768\) 0 0
\(769\) 60.5653 0.0787585 0.0393792 0.999224i \(-0.487462\pi\)
0.0393792 + 0.999224i \(0.487462\pi\)
\(770\) 0 0
\(771\) 315.567i 0.409296i
\(772\) 0 0
\(773\) −998.420 −1.29162 −0.645809 0.763499i \(-0.723480\pi\)
−0.645809 + 0.763499i \(0.723480\pi\)
\(774\) 0 0
\(775\) − 323.148i − 0.416965i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 592.861i − 0.761054i
\(780\) 0 0
\(781\) −1279.87 −1.63876
\(782\) 0 0
\(783\) 958.079i 1.22360i
\(784\) 0 0
\(785\) −1810.63 −2.30654
\(786\) 0 0
\(787\) − 753.969i − 0.958029i −0.877807 0.479014i \(-0.840994\pi\)
0.877807 0.479014i \(-0.159006\pi\)
\(788\) 0 0
\(789\) −510.480 −0.646996
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.17263 −0.00273975
\(794\) 0 0
\(795\) 58.9903i 0.0742016i
\(796\) 0 0
\(797\) 335.856 0.421400 0.210700 0.977551i \(-0.432426\pi\)
0.210700 + 0.977551i \(0.432426\pi\)
\(798\) 0 0
\(799\) 1597.16i 1.99895i
\(800\) 0 0
\(801\) −178.178 −0.222444
\(802\) 0 0
\(803\) − 810.762i − 1.00967i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 398.491i 0.493793i
\(808\) 0 0
\(809\) 749.689 0.926686 0.463343 0.886179i \(-0.346650\pi\)
0.463343 + 0.886179i \(0.346650\pi\)
\(810\) 0 0
\(811\) − 790.284i − 0.974456i −0.873275 0.487228i \(-0.838008\pi\)
0.873275 0.487228i \(-0.161992\pi\)
\(812\) 0 0
\(813\) −346.112 −0.425722
\(814\) 0 0
\(815\) 2231.59i 2.73815i
\(816\) 0 0
\(817\) −289.082 −0.353834
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 919.096 1.11948 0.559742 0.828667i \(-0.310900\pi\)
0.559742 + 0.828667i \(0.310900\pi\)
\(822\) 0 0
\(823\) 971.193i 1.18006i 0.807380 + 0.590032i \(0.200885\pi\)
−0.807380 + 0.590032i \(0.799115\pi\)
\(824\) 0 0
\(825\) −786.207 −0.952979
\(826\) 0 0
\(827\) 110.492i 0.133606i 0.997766 + 0.0668029i \(0.0212799\pi\)
−0.997766 + 0.0668029i \(0.978720\pi\)
\(828\) 0 0
\(829\) −495.972 −0.598278 −0.299139 0.954210i \(-0.596699\pi\)
−0.299139 + 0.954210i \(0.596699\pi\)
\(830\) 0 0
\(831\) − 239.891i − 0.288677i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 729.011i − 0.873067i
\(836\) 0 0
\(837\) 200.970 0.240107
\(838\) 0 0
\(839\) 529.377i 0.630962i 0.948932 + 0.315481i \(0.102166\pi\)
−0.948932 + 0.315481i \(0.897834\pi\)
\(840\) 0 0
\(841\) 485.672 0.577493
\(842\) 0 0
\(843\) − 658.844i − 0.781547i
\(844\) 0 0
\(845\) 1103.55 1.30598
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −508.350 −0.598763
\(850\) 0 0
\(851\) − 304.163i − 0.357418i
\(852\) 0 0
\(853\) 1122.77 1.31626 0.658132 0.752902i \(-0.271347\pi\)
0.658132 + 0.752902i \(0.271347\pi\)
\(854\) 0 0
\(855\) − 592.861i − 0.693405i
\(856\) 0 0
\(857\) −669.932 −0.781717 −0.390859 0.920451i \(-0.627822\pi\)
−0.390859 + 0.920451i \(0.627822\pi\)
\(858\) 0 0
\(859\) 234.046i 0.272464i 0.990677 + 0.136232i \(0.0434992\pi\)
−0.990677 + 0.136232i \(0.956501\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 51.7036i 0.0599115i 0.999551 + 0.0299557i \(0.00953663\pi\)
−0.999551 + 0.0299557i \(0.990463\pi\)
\(864\) 0 0
\(865\) 2618.36 3.02701
\(866\) 0 0
\(867\) 779.847i 0.899478i
\(868\) 0 0
\(869\) 386.858 0.445176
\(870\) 0 0
\(871\) 12.2484i 0.0140625i
\(872\) 0 0
\(873\) −34.4754 −0.0394908
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −108.325 −0.123518 −0.0617590 0.998091i \(-0.519671\pi\)
−0.0617590 + 0.998091i \(0.519671\pi\)
\(878\) 0 0
\(879\) 233.379i 0.265506i
\(880\) 0 0
\(881\) 901.643 1.02343 0.511716 0.859155i \(-0.329010\pi\)
0.511716 + 0.859155i \(0.329010\pi\)
\(882\) 0 0
\(883\) 391.049i 0.442864i 0.975176 + 0.221432i \(0.0710731\pi\)
−0.975176 + 0.221432i \(0.928927\pi\)
\(884\) 0 0
\(885\) −389.167 −0.439737
\(886\) 0 0
\(887\) 1296.88i 1.46209i 0.682328 + 0.731047i \(0.260968\pi\)
−0.682328 + 0.731047i \(0.739032\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 66.4167i 0.0745418i
\(892\) 0 0
\(893\) −727.647 −0.814835
\(894\) 0 0
\(895\) 1143.84i 1.27803i
\(896\) 0 0
\(897\) −435.287 −0.485270
\(898\) 0 0
\(899\) − 278.287i − 0.309552i
\(900\) 0 0
\(901\) −109.840 −0.121909
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 599.934 0.662911
\(906\) 0 0
\(907\) 461.509i 0.508831i 0.967095 + 0.254415i \(0.0818830\pi\)
−0.967095 + 0.254415i \(0.918117\pi\)
\(908\) 0 0
\(909\) −900.210 −0.990330
\(910\) 0 0
\(911\) 119.595i 0.131279i 0.997843 + 0.0656395i \(0.0209087\pi\)
−0.997843 + 0.0656395i \(0.979091\pi\)
\(912\) 0 0
\(913\) −1033.04 −1.13148
\(914\) 0 0
\(915\) − 5.36889i − 0.00586764i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 707.698i 0.770074i 0.922901 + 0.385037i \(0.125811\pi\)
−0.922901 + 0.385037i \(0.874189\pi\)
\(920\) 0 0
\(921\) 84.5902 0.0918460
\(922\) 0 0
\(923\) − 715.049i − 0.774701i
\(924\) 0 0
\(925\) 306.929 0.331815
\(926\) 0 0
\(927\) 456.380i 0.492319i
\(928\) 0 0
\(929\) −397.056 −0.427401 −0.213701 0.976899i \(-0.568552\pi\)
−0.213701 + 0.976899i \(0.568552\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 402.385 0.431281
\(934\) 0 0
\(935\) − 2329.22i − 2.49114i
\(936\) 0 0
\(937\) −1227.51 −1.31004 −0.655020 0.755612i \(-0.727340\pi\)
−0.655020 + 0.755612i \(0.727340\pi\)
\(938\) 0 0
\(939\) 217.725i 0.231869i
\(940\) 0 0
\(941\) −687.041 −0.730118 −0.365059 0.930984i \(-0.618951\pi\)
−0.365059 + 0.930984i \(0.618951\pi\)
\(942\) 0 0
\(943\) 2018.86i 2.14089i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 133.564i − 0.141039i −0.997510 0.0705194i \(-0.977534\pi\)
0.997510 0.0705194i \(-0.0224657\pi\)
\(948\) 0 0
\(949\) 452.964 0.477307
\(950\) 0 0
\(951\) − 849.514i − 0.893285i
\(952\) 0 0
\(953\) 1030.34 1.08115 0.540575 0.841296i \(-0.318207\pi\)
0.540575 + 0.841296i \(0.318207\pi\)
\(954\) 0 0
\(955\) − 1052.40i − 1.10198i
\(956\) 0 0
\(957\) −677.063 −0.707485
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 902.626 0.939257
\(962\) 0 0
\(963\) 968.161i 1.00536i
\(964\) 0 0
\(965\) −2293.15 −2.37632
\(966\) 0 0
\(967\) − 337.880i − 0.349410i −0.984621 0.174705i \(-0.944103\pi\)
0.984621 0.174705i \(-0.0558972\pi\)
\(968\) 0 0
\(969\) −588.170 −0.606986
\(970\) 0 0
\(971\) 1679.34i 1.72950i 0.502202 + 0.864750i \(0.332523\pi\)
−0.502202 + 0.864750i \(0.667477\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) − 439.246i − 0.450508i
\(976\) 0 0
\(977\) −1109.36 −1.13547 −0.567737 0.823210i \(-0.692181\pi\)
−0.567737 + 0.823210i \(0.692181\pi\)
\(978\) 0 0
\(979\) − 318.921i − 0.325762i
\(980\) 0 0
\(981\) 359.691 0.366657
\(982\) 0 0
\(983\) 416.403i 0.423604i 0.977313 + 0.211802i \(0.0679333\pi\)
−0.977313 + 0.211802i \(0.932067\pi\)
\(984\) 0 0
\(985\) 812.648 0.825023
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 984.404 0.995353
\(990\) 0 0
\(991\) − 1194.84i − 1.20569i −0.797858 0.602846i \(-0.794033\pi\)
0.797858 0.602846i \(-0.205967\pi\)
\(992\) 0 0
\(993\) −839.073 −0.844988
\(994\) 0 0
\(995\) 1938.60i 1.94834i
\(996\) 0 0
\(997\) 1677.13 1.68218 0.841090 0.540895i \(-0.181914\pi\)
0.841090 + 0.540895i \(0.181914\pi\)
\(998\) 0 0
\(999\) 190.883i 0.191074i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.3.d.i.1471.5 6
4.3 odd 2 inner 1568.3.d.i.1471.2 6
7.2 even 3 224.3.r.d.95.2 12
7.4 even 3 224.3.r.d.191.5 yes 12
7.6 odd 2 1568.3.d.l.1471.2 6
28.11 odd 6 224.3.r.d.191.2 yes 12
28.23 odd 6 224.3.r.d.95.5 yes 12
28.27 even 2 1568.3.d.l.1471.5 6
56.11 odd 6 448.3.r.f.191.5 12
56.37 even 6 448.3.r.f.319.5 12
56.51 odd 6 448.3.r.f.319.2 12
56.53 even 6 448.3.r.f.191.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.3.r.d.95.2 12 7.2 even 3
224.3.r.d.95.5 yes 12 28.23 odd 6
224.3.r.d.191.2 yes 12 28.11 odd 6
224.3.r.d.191.5 yes 12 7.4 even 3
448.3.r.f.191.2 12 56.53 even 6
448.3.r.f.191.5 12 56.11 odd 6
448.3.r.f.319.2 12 56.51 odd 6
448.3.r.f.319.5 12 56.37 even 6
1568.3.d.i.1471.2 6 4.3 odd 2 inner
1568.3.d.i.1471.5 6 1.1 even 1 trivial
1568.3.d.l.1471.2 6 7.6 odd 2
1568.3.d.l.1471.5 6 28.27 even 2