Properties

Label 448.3.r.b
Level $448$
Weight $3$
Character orbit 448.r
Analytic conductor $12.207$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(191,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{3} + \zeta_{12}^{2} q^{5} + 7 \zeta_{12}^{3} q^{7} - 8 \zeta_{12}^{2} q^{9} - 17 \zeta_{12} q^{11} - 24 q^{13} + \zeta_{12}^{3} q^{15} + (\zeta_{12}^{2} - 1) q^{17} + ( - 7 \zeta_{12}^{3} + 7 \zeta_{12}) q^{19} + \cdots + 136 \zeta_{12}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} - 16 q^{9} - 96 q^{13} - 2 q^{17} - 14 q^{21} + 48 q^{25} - 96 q^{29} - 34 q^{33} - 98 q^{37} - 192 q^{41} + 16 q^{45} - 196 q^{49} - 50 q^{53} + 28 q^{57} - 2 q^{61} - 48 q^{65} + 28 q^{69}+ \cdots + 576 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −0.866025 + 0.500000i 0 0.500000 0.866025i 0 7.00000i 0 −4.00000 + 6.92820i 0
191.2 0 0.866025 0.500000i 0 0.500000 0.866025i 0 7.00000i 0 −4.00000 + 6.92820i 0
319.1 0 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 7.00000i 0 −4.00000 6.92820i 0
319.2 0 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 7.00000i 0 −4.00000 6.92820i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.c even 3 1 inner
28.g odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.3.r.b 4
4.b odd 2 1 inner 448.3.r.b 4
7.c even 3 1 inner 448.3.r.b 4
8.b even 2 1 224.3.r.b 4
8.d odd 2 1 224.3.r.b 4
28.g odd 6 1 inner 448.3.r.b 4
56.j odd 6 1 1568.3.d.c 2
56.k odd 6 1 224.3.r.b 4
56.k odd 6 1 1568.3.d.d 2
56.m even 6 1 1568.3.d.c 2
56.p even 6 1 224.3.r.b 4
56.p even 6 1 1568.3.d.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.3.r.b 4 8.b even 2 1
224.3.r.b 4 8.d odd 2 1
224.3.r.b 4 56.k odd 6 1
224.3.r.b 4 56.p even 6 1
448.3.r.b 4 1.a even 1 1 trivial
448.3.r.b 4 4.b odd 2 1 inner
448.3.r.b 4 7.c even 3 1 inner
448.3.r.b 4 28.g odd 6 1 inner
1568.3.d.c 2 56.j odd 6 1
1568.3.d.c 2 56.m even 6 1
1568.3.d.d 2 56.k odd 6 1
1568.3.d.d 2 56.p even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - T_{3}^{2} + 1 \) acting on \(S_{3}^{\mathrm{new}}(448, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 289 T^{2} + 83521 \) Copy content Toggle raw display
$13$ \( (T + 24)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$23$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$29$ \( (T + 24)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 1681 T^{2} + 2825761 \) Copy content Toggle raw display
$37$ \( (T^{2} + 49 T + 2401)^{2} \) Copy content Toggle raw display
$41$ \( (T + 48)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 576)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 3025 T^{2} + 9150625 \) Copy content Toggle raw display
$53$ \( (T^{2} + 25 T + 625)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 289 T^{2} + 83521 \) Copy content Toggle raw display
$61$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 4225 T^{2} + 17850625 \) Copy content Toggle raw display
$71$ \( (T^{2} + 9216)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 95 T + 9025)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 1681 T^{2} + 2825761 \) Copy content Toggle raw display
$83$ \( (T^{2} + 5184)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 95 T + 9025)^{2} \) Copy content Toggle raw display
$97$ \( (T - 144)^{4} \) Copy content Toggle raw display
show more
show less