Properties

Label 224.3.r.b
Level 224
Weight 3
Character orbit 224.r
Analytic conductor 6.104
Analytic rank 0
Dimension 4
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 224.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{3} -\zeta_{12}^{2} q^{5} -7 \zeta_{12}^{3} q^{7} -8 \zeta_{12}^{2} q^{9} +O(q^{10})\) \( q + \zeta_{12} q^{3} -\zeta_{12}^{2} q^{5} -7 \zeta_{12}^{3} q^{7} -8 \zeta_{12}^{2} q^{9} -17 \zeta_{12} q^{11} + 24 q^{13} -\zeta_{12}^{3} q^{15} + ( -1 + \zeta_{12}^{2} ) q^{17} + ( 7 \zeta_{12} - 7 \zeta_{12}^{3} ) q^{19} + ( 7 - 7 \zeta_{12}^{2} ) q^{21} + ( -7 \zeta_{12} + 7 \zeta_{12}^{3} ) q^{23} + ( 24 - 24 \zeta_{12}^{2} ) q^{25} -17 \zeta_{12}^{3} q^{27} + 24 q^{29} -41 \zeta_{12} q^{31} -17 \zeta_{12}^{2} q^{33} + ( -7 \zeta_{12} + 7 \zeta_{12}^{3} ) q^{35} + 49 \zeta_{12}^{2} q^{37} + 24 \zeta_{12} q^{39} -48 q^{41} + 24 \zeta_{12}^{3} q^{43} + ( -8 + 8 \zeta_{12}^{2} ) q^{45} + ( 55 \zeta_{12} - 55 \zeta_{12}^{3} ) q^{47} -49 q^{49} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{51} + ( 25 - 25 \zeta_{12}^{2} ) q^{53} + 17 \zeta_{12}^{3} q^{55} + 7 q^{57} + 17 \zeta_{12} q^{59} + \zeta_{12}^{2} q^{61} + ( -56 \zeta_{12} + 56 \zeta_{12}^{3} ) q^{63} -24 \zeta_{12}^{2} q^{65} + 65 \zeta_{12} q^{67} -7 q^{69} + 96 \zeta_{12}^{3} q^{71} + ( -95 + 95 \zeta_{12}^{2} ) q^{73} + ( 24 \zeta_{12} - 24 \zeta_{12}^{3} ) q^{75} + ( -119 + 119 \zeta_{12}^{2} ) q^{77} + ( 41 \zeta_{12} - 41 \zeta_{12}^{3} ) q^{79} + ( -55 + 55 \zeta_{12}^{2} ) q^{81} + 72 \zeta_{12}^{3} q^{83} + q^{85} + 24 \zeta_{12} q^{87} -95 \zeta_{12}^{2} q^{89} -168 \zeta_{12}^{3} q^{91} -41 \zeta_{12}^{2} q^{93} -7 \zeta_{12} q^{95} + 144 q^{97} + 136 \zeta_{12}^{3} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{5} - 16q^{9} + O(q^{10}) \) \( 4q - 2q^{5} - 16q^{9} + 96q^{13} - 2q^{17} + 14q^{21} + 48q^{25} + 96q^{29} - 34q^{33} + 98q^{37} - 192q^{41} - 16q^{45} - 196q^{49} + 50q^{53} + 28q^{57} + 2q^{61} - 48q^{65} - 28q^{69} - 190q^{73} - 238q^{77} - 110q^{81} + 4q^{85} - 190q^{89} - 82q^{93} + 576q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
95.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 −0.866025 0.500000i 0 −0.500000 0.866025i 0 7.00000i 0 −4.00000 6.92820i 0
95.2 0 0.866025 + 0.500000i 0 −0.500000 0.866025i 0 7.00000i 0 −4.00000 6.92820i 0
191.1 0 −0.866025 + 0.500000i 0 −0.500000 + 0.866025i 0 7.00000i 0 −4.00000 + 6.92820i 0
191.2 0 0.866025 0.500000i 0 −0.500000 + 0.866025i 0 7.00000i 0 −4.00000 + 6.92820i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.c even 3 1 inner
28.g odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 224.3.r.b 4
4.b odd 2 1 inner 224.3.r.b 4
7.c even 3 1 inner 224.3.r.b 4
7.c even 3 1 1568.3.d.d 2
7.d odd 6 1 1568.3.d.c 2
8.b even 2 1 448.3.r.b 4
8.d odd 2 1 448.3.r.b 4
28.f even 6 1 1568.3.d.c 2
28.g odd 6 1 inner 224.3.r.b 4
28.g odd 6 1 1568.3.d.d 2
56.k odd 6 1 448.3.r.b 4
56.p even 6 1 448.3.r.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.3.r.b 4 1.a even 1 1 trivial
224.3.r.b 4 4.b odd 2 1 inner
224.3.r.b 4 7.c even 3 1 inner
224.3.r.b 4 28.g odd 6 1 inner
448.3.r.b 4 8.b even 2 1
448.3.r.b 4 8.d odd 2 1
448.3.r.b 4 56.k odd 6 1
448.3.r.b 4 56.p even 6 1
1568.3.d.c 2 7.d odd 6 1
1568.3.d.c 2 28.f even 6 1
1568.3.d.d 2 7.c even 3 1
1568.3.d.d 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - T_{3}^{2} + 1 \) acting on \(S_{3}^{\mathrm{new}}(224, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + 17 T^{2} + 208 T^{4} + 1377 T^{6} + 6561 T^{8} \)
$5$ \( ( 1 + T - 24 T^{2} + 25 T^{3} + 625 T^{4} )^{2} \)
$7$ \( ( 1 + 49 T^{2} )^{2} \)
$11$ \( 1 - 47 T^{2} - 12432 T^{4} - 688127 T^{6} + 214358881 T^{8} \)
$13$ \( ( 1 - 24 T + 169 T^{2} )^{4} \)
$17$ \( ( 1 + T - 288 T^{2} + 289 T^{3} + 83521 T^{4} )^{2} \)
$19$ \( 1 + 673 T^{2} + 322608 T^{4} + 87706033 T^{6} + 16983563041 T^{8} \)
$23$ \( 1 + 1009 T^{2} + 738240 T^{4} + 282359569 T^{6} + 78310985281 T^{8} \)
$29$ \( ( 1 - 24 T + 841 T^{2} )^{4} \)
$31$ \( 1 + 241 T^{2} - 865440 T^{4} + 222568561 T^{6} + 852891037441 T^{8} \)
$37$ \( ( 1 - 49 T + 1032 T^{2} - 67081 T^{3} + 1874161 T^{4} )^{2} \)
$41$ \( ( 1 + 48 T + 1681 T^{2} )^{4} \)
$43$ \( ( 1 - 3122 T^{2} + 3418801 T^{4} )^{2} \)
$47$ \( 1 + 1393 T^{2} - 2939232 T^{4} + 6797395633 T^{6} + 23811286661761 T^{8} \)
$53$ \( ( 1 - 25 T - 2184 T^{2} - 70225 T^{3} + 7890481 T^{4} )^{2} \)
$59$ \( 1 + 6673 T^{2} + 32411568 T^{4} + 80859149953 T^{6} + 146830437604321 T^{8} \)
$61$ \( ( 1 - T - 3720 T^{2} - 3721 T^{3} + 13845841 T^{4} )^{2} \)
$67$ \( 1 + 4753 T^{2} + 2439888 T^{4} + 95778278113 T^{6} + 406067677556641 T^{8} \)
$71$ \( ( 1 - 866 T^{2} + 25411681 T^{4} )^{2} \)
$73$ \( ( 1 + 95 T + 3696 T^{2} + 506255 T^{3} + 28398241 T^{4} )^{2} \)
$79$ \( 1 + 10801 T^{2} + 77711520 T^{4} + 420699824881 T^{6} + 1517108809906561 T^{8} \)
$83$ \( ( 1 - 8594 T^{2} + 47458321 T^{4} )^{2} \)
$89$ \( ( 1 + 95 T + 1104 T^{2} + 752495 T^{3} + 62742241 T^{4} )^{2} \)
$97$ \( ( 1 - 144 T + 9409 T^{2} )^{4} \)
show more
show less